1
|
Sutkowy P, Czeleń P. Redox Balance in Cancer in the Context of Tumor Prevention and Treatment. Biomedicines 2025; 13:1149. [PMID: 40426975 PMCID: PMC12109055 DOI: 10.3390/biomedicines13051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Malignant neoplasms constitute a substantial health concern for the human population, currently ranking as the second leading cause of mortality worldwide. In 2022, approximately 10 million deaths were attributable to cancer, and projections estimate that this number will rise to 35 million in 2050. Consequently, the development of effective cancer treatments and prevention strategies remains a primary focus of medical research. In this context, the impacts on the redox balance are being considered. The objective of this study was to present the current knowledge on oxidation and reduction processes in cancer. This review discloses the intricate and multifaceted interplay of oxidoreductive systems during carcinogenesis, which engenders discordant findings in the domain of tumor prevention and treatment. This study also examines the controversies surrounding the use of antioxidants, including their impact on other therapeutic interventions. The review offers a comprehensive overview of the existing knowledge on the subject, concluding that personalized and precise anticancer therapies targeting the redox processes can serve as both effective diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
4
|
Minò A, Lopez F, Barbaro R, Barile M, Ambrosone L, Colella M. Effects of Anionic Liposome Delivery of All- Trans-Retinoic Acid on Neuroblastoma Cell Differentiation. Biomimetics (Basel) 2024; 9:257. [PMID: 38786467 PMCID: PMC11118614 DOI: 10.3390/biomimetics9050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
All-trans-retinoic acid (ATRA) has long been known to affect cell growth and differentiation. To improve ATRA's therapeutic efficacy and pharmacodynamics, several delivery systems have been used. In this study, free ATRA and anionic-liposome-encapsulated ATRA were compared for their effects on SK-N-SH human neuroblastoma cell growth and differentiation. Anionic liposomes made of L-α-phosphatidylcholine (PC) and L-α-phosphatidic acid (PA), empty (PC-PA) and loaded with ATRA (PC-PA-ATRA), were characterized by dynamic light scattering (DLS) and electrophoretic mobility measurements, and drug entrapment efficiency (EE%) was measured to evaluate the applicability of the new colloidal formulation. The results of brightfield microscopy and cell growth curves indicated that ATRA, whether free or encapsulated, reduced growth and induced differentiation, resulting in SK-N-SH cells changing from epithelioid to neuronal-like morphologies, and producing a significant increase in neurite growth. To further characterize the neuro-differentiation of SK-N-SH cells, the expression of βIII-Tubulin and synaptophysin and mitochondria localization were analyzed via immunofluorescence. Increased expression of neuronal markers and a peculiar localization of mitochondria in the neuritic extensions were apparent both in ATRA- and PC-PA-ATRA-differentiated cells. As a whole, our results strongly indicate that ATRA treatment, by any means, can induce the differentiation of parent SK-N-SH, and they highlight that its encapsulation in anionic liposomes increases its differentiation ability in terms of the percentage of neurite-bearing cells. Interestingly, our data also suggest an unexpected differentiation capability of anionic liposomes per se. This work highlights the importance of developing and carefully testing novel delivery nanocarriers, which are a necessary first "step" in the development of new therapeutic settings.
Collapse
Affiliation(s)
- Antonio Minò
- Department of Biosciences and Territory (DiBT), University of Molise, Contrada Lappone, 86090 Pesche, Italy;
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Roberto Barbaro
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| |
Collapse
|
5
|
Makimoto A, Fujisaki H, Matsumoto K, Takahashi Y, Cho Y, Morikawa Y, Yuza Y, Tajiri T, Iehara T. Retinoid Therapy for Neuroblastoma: Historical Overview, Regulatory Challenges, and Prospects. Cancers (Basel) 2024; 16:544. [PMID: 38339295 PMCID: PMC10854948 DOI: 10.3390/cancers16030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Retinoids are vitamin A derivatives and include trans-retinoic acid, isotretinoin, tamibarotene, and bexarotene, all of which are currently available for clinical use. The clinical development of retinoid therapy for neuroblastoma has a history spanning more than four decades. The most promising agent is isotretinoin, which can contribute to improving event-free survival in patients with high-risk neuroblastoma by approximately 10% when administered over six months as maintenance therapy. Although isotretinoin is regarded as an essential component in the standard clinical management of high-risk neuroblastoma, its use for this purpose in the US and EU is off-label. To promote isotretinoin use in Japan as a treatment for neuroblastoma, our clinical research team is planning to launch an investigator-initiated, registration-directed clinical trial. The present review article discusses the basic science behind retinoid therapy, pre-clinical/clinical evidence on neuroblastoma, the concept of the proposed clinical trial, and prospects for this therapy.
Collapse
Affiliation(s)
- Atsushi Makimoto
- Department of Laboratory Medicine, Tokyo Metropolitan Children’s Medical Center, Fuchu 183-8561, Japan
- Clinical Research Support Center, Tokyo Metropolitan Children’s Medical Center, Fuchu 183-8561, Japan;
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, Fuchu 183-8561, Japan;
| | - Hiroyuki Fujisaki
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka 534-0021, Japan;
| | - Kimikazu Matsumoto
- Children’s Cancer Center, National Center for Child Health and Development, Tokyo 157-8535, Japan;
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan;
| | - Yuko Cho
- Department of Pediatrics, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Yoshihiko Morikawa
- Clinical Research Support Center, Tokyo Metropolitan Children’s Medical Center, Fuchu 183-8561, Japan;
| | - Yuki Yuza
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, Fuchu 183-8561, Japan;
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Tomoko Iehara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| |
Collapse
|
6
|
Talib WH, Ahmed Jum’AH DA, Attallah ZS, Jallad MS, Al Kury LT, Hadi RW, Mahmod AI. Role of vitamins A, C, D, E in cancer prevention and therapy: therapeutic potentials and mechanisms of action. Front Nutr 2024; 10:1281879. [PMID: 38274206 PMCID: PMC10808607 DOI: 10.3389/fnut.2023.1281879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer, a leading global cause of mortality, arises from intricate interactions between genetic and environmental factors, fueling uncontrolled cell growth. Amidst existing treatment limitations, vitamins have emerged as promising candidates for cancer prevention and treatment. This review focuses on Vitamins A, C, E, and D because of their protective activity against various types of cancer. They are essential as human metabolic coenzymes. Through a critical exploration of preclinical and clinical studies via PubMed and Google Scholar, the impact of these vitamins on cancer therapy was analyzed, unraveling their complicated mechanisms of action. Interestingly, vitamins impact immune function, antioxidant defense, inflammation, and epigenetic regulation, potentially enhancing outcomes by influencing cell behavior and countering stress and DNA damage. Encouraging clinical trial results have been observed; however, further well-controlled studies are imperative to validate their effectiveness, determine optimal dosages, and formulate comprehensive cancer prevention and treatment strategies. Personalized supplementation strategies, informed by medical expertise, are pivotal for optimal outcomes in both clinical and preclinical contexts. Nevertheless, conclusive evidence regarding the efficacy of vitamins in cancer prevention and treatment is still pending, urging further research and exploration in this compelling area of study.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | | | - Zeena Shamil Attallah
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Mohanned Sami Jallad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Rawan Wamidh Hadi
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
7
|
Chen J, Zhang JX, Lei HX, Li XY, Yan YX, Wang YL, Lv YH, Yan YL, Lei YH. 13-Cis Retinoic Acid Induces Neuronal Differentiation in Daoy (Medulloblastoma) Cells Through Epigenetic Regulation of Topoisomerase IIβ. Appl Biochem Biotechnol 2023; 195:7429-7445. [PMID: 37000354 DOI: 10.1007/s12010-023-04476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Medulloblastoma (MB) is a malignant tumor of the cerebellum that occurs in children and infants. Abnormal neuronal differentiation can lead to brain tumors, and topoisomerase IIβ (Top IIβ) plays an important role in neuronal differentiation. The aim of this study was to investigate the molecular mechanism of 13-cis retinoic acid (13-cis RA) promoting the expression of Top IIβ and inducing neuronal differentiation in human MB Daoy cells. The results showed that 13-cis RA inhibited the cell proliferation and induced cell cycle arrest in G0/G1 phase. The cells differentiated into a neuronal phenotype, with high expression of the neuronal marker microtubule-associated protein 2 (MAP2) and abundant Top IIβ, and obvious neurite growth. Chromatin immunoprecipitation (ChIP) assay showed that histone H3 lysine 27 tri-methylation (H3K27me3) modification in Top IIβ promoter decreased after 13-cis RA-induced cell differentiation, while jumonji domain-containing protein 3 (JMJD3) binding in Top IIβ promoter increased. These results suggest that H3K27me3 and JMJD3 can regulate the expression of Top IIβ gene, which is related to inducing neural differentiation. Our results provide new insights into understanding the regulatory mechanisms of Top IIβ during neuronal differentiation and imply the potential application of 13-cis RA in the clinical treatment of MB.
Collapse
Affiliation(s)
- Jing Chen
- Department of Cell Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jing-Xia Zhang
- Department of Radiology, Shijiazhuang Second Hospital, Shijiazhuang, Hebei, China
| | - Hai-Xia Lei
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing-Yu Li
- Department of Cell Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yong-Xin Yan
- Department of Cell Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yan-Ling Wang
- Department of Cell Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yu-Hong Lv
- Department of Cell Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yun-Li Yan
- Department of Cell Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yu-Hua Lei
- Department of Cell Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Katta SS, Nagati V, Paturi ASV, Murakonda SP, Murakonda AB, Pandey MK, Gupta SC, Pasupulati AK, Challagundla KB. Neuroblastoma: Emerging trends in pathogenesis, diagnosis, and therapeutic targets. J Control Release 2023; 357:444-459. [PMID: 37023798 DOI: 10.1016/j.jconrel.2023.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Neuroblastoma (NB) accounts for about 13% of all pediatric cancer mortality and is the leading cause of pediatric cancer death for children aged 1 to 5 years. NB, a developmental malignancy of neural ganglia, originates from neural crest-derived cells, which undergo a defective sympathetic neuronal differentiation due to genomic and epigenetic aberrations. NB is a complex disease with remarkable biological and genetic variation and clinical heterogeneity, such as spontaneous regression, treatment resistance, and poor survival rates. Depending on its severity, NB is categorized as high-risk, intermediate-risk, and low-risk., whereas high-risk NB accounts for a high infant mortality rate. Several studies revealed that NB cells suppress immune cell activity through diverse signaling pathways, including exosome-based signaling pathways. Exosome signaling has been shown to modulate gene expression in the target immune cells and attenuate the signaling events through non-coding RNAs. Since high-risk NB is characterized by a low survival rate and high clinical heterogeneity with current intensive therapies, it is crucial to unravel the molecular events of pathogenesis and develop novel therapeutic targets in high-risk, relapsed, or recurrent tumors in NB to improve patient survival. This article discusses etiology, pathophysiology, risk assessment, molecular cytogenetics, and the contribution of extracellular vesicles, non-coding RNAs, and cancer stem cells in the tumorigenesis of NB. We also detail the latest developments in NB immunotherapy and nanoparticle-mediated drug delivery treatment options.
Collapse
Affiliation(s)
- Santharam S Katta
- REVA University, Rukmini Knowledge Park, Kattigenahalli Yelahanka, Bangalore, Karnataka 560064, India
| | - Veerababu Nagati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Atreya S V Paturi
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Swati P Murakonda
- Sri Rajiv Gandhi College of Dental Science & Hospital, Bengaluru, Karnataka, 560032, India
| | - Ajay B Murakonda
- Sree Sai Dental College & Research Institute, Srikakulam, Andhra Pradesh 532001, India
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam 781101, India
| | - Anil K Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center, Omaha, NE 68198, USA; The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Wang S, Zhu T, Ni W, Zhou C, Zhou H, Lin L, Hu Y, Sun X, Han J, Zhou Y, Jin G, Zu J, Shi H, Yang X, Zhang Z, Hua F. Early activation of Toll-like receptor-3 reduces the pathological progression of Alzheimer's disease in APP/PS1 mouse. Alzheimers Res Ther 2023; 15:33. [PMID: 36797783 PMCID: PMC9933297 DOI: 10.1186/s13195-023-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) plays an important role in the immune/inflammatory response in the nervous system and is a main pathological feature of Alzheimer's disease (AD). This study investigates the role of early activation of TLR3 in the pathophysiological process of AD. METHODS In the experiment, the agonist of TLR3, Poly(I:C), was intraperitoneally injected into the APP/PS1 mouse model of AD and wild-type control mice starting from the age of 4 to 9 months. At the age of 14 months, behavioral tests were conducted. Western blot and immunohistochemistry staining were used to evaluate the level of amyloid β-protein (Aβ), the activation of inflammatory cells, and neuron loss. In addition, the levels of inflammatory cytokines were measured using a quantitative polymerase chain reaction. RESULTS The results demonstrated that the early activation of TLR3 attenuated neuronal loss and neurobehavioral dysfunction. Moreover, the early activation of TLR3 reduced Aβ deposition, inhibited the activation of microglia and astrocytes, and decreased the transcription of pro-inflammatory factors in the hippocampus. CONCLUSIONS The results indicated that the activation of TLR3 by Poly (I:C) in the early stage of development of AD in a mouse model attenuated neuron loss and improved neurobehavioral functions. The underlying mechanisms could be attributed to its role in Aβ clearance, the inhibition of glial cells, and the regulation of neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Shang Wang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.89957.3a0000 0000 9255 8984Department of Human Anatomy, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Taiyang Zhu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chao Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Lin
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuting Hu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Sun
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.452511.6Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Han
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guoliang Jin
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jie Zu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongjuan Shi
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xingxing Yang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zuohui Zhang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fang Hua
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China. .,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China. .,Department of Interdisciplinary Health Science, College of Allied Health Science, Augusta University, Augusta, 30912, USA.
| |
Collapse
|
11
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
12
|
Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23052672. [PMID: 35269825 PMCID: PMC8911024 DOI: 10.3390/ijms23052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.
Collapse
Affiliation(s)
| | | | | | | | - Guangchao Sui
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| | - Jinming Shi
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| |
Collapse
|
13
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Giustarini G, Pavesi A, Adriani G. Nanoparticle-Based Therapies for Turning Cold Tumors Hot: How to Treat an Immunosuppressive Tumor Microenvironment. Front Bioeng Biotechnol 2021; 9:689245. [PMID: 34150739 PMCID: PMC8207137 DOI: 10.3389/fbioe.2021.689245] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotechnologies are rapidly increasing their role in immuno-oncology in line with the need for novel therapeutic strategies to treat patients unresponsive to chemotherapies and immunotherapies. The tumor immune microenvironment (TIME) has emerged as critical for tumor classification and patient stratification to design better treatments. Notably, the tumor infiltration of effector T cells plays a crucial role in antitumor responses and has been identified as the primary parameter to define hot, immunosuppressed, excluded, and cold tumors. Organic and inorganic nanoparticles (NPs) have been applied as carriers of new targeted therapies to turn cold or altered (i.e., immunosuppressed or excluded) tumors into more therapeutically responsive hot tumors. This mini-review discusses the significant advances in NP-based approaches to turn immunologically cold tumors into hot ones.
Collapse
Affiliation(s)
- Giulio Giustarini
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. J Pers Med 2021; 11:jpm11030211. [PMID: 33809565 PMCID: PMC7999600 DOI: 10.3390/jpm11030211] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
A neuroblastoma (NB) is a solid paediatric tumour arising from undifferentiated neuronal cells. Despite the recent advances in disease management and treatment, it remains one of the leading causes of childhood cancer deaths, thereby necessitating the development of new therapeutic agents and regimens. Retinoic acid (RA), a vitamin A derivative, is a promising agent that can induce differentiation in NB cells. Its isoform, 13-cis RA or isotretinoin, is used in NB therapy; however, its effectiveness is limited to treating a minimal residual disease as maintenance therapy. As such, research focuses on RA derivatives that might increase the anti-NB action or explores the potential synergy between RA and other classes of drugs, such as cellular processes mediators, epigenetic modifiers, and immune modulators. This review summarises the in vitro, in vivo, and clinical data of RA, its derivatives, and synergising compounds, thereby establishing the most promising RA derivatives and combinations of RA for further investigation.
Collapse
|
16
|
Mokhtari Y, Pourbagheri‐Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs): An old family of immune receptors with a new face in cancer pathogenesis. J Cell Mol Med 2021; 25:639-651. [PMID: 33336901 PMCID: PMC7812258 DOI: 10.1111/jcmm.16214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
In the dark path of tumorigenesis, the more carefully the cancer biology is studied, the more brilliant answers could be given to the countless questions about its orchestrating derivers. The identification of the correlation between Toll-like receptors (TLRs) and different processes involved in carcinogenesis was one of the single points of blinding light highlighting the interconnection between the immune system and cancer. TLRs are a wide family of single-pass membrane-spanning receptors that have developed through the evolution to recognize the structurally conserved molecules derived from microorganisms or damaged cells. But this is not everything about these receptors as they could orchestrate several downstream signalling pathways leading to the formation or suppression of cancer cells. The present review is tempted to provide a concise schematic about the biology and the characters of TLRs and also summarize the major findings of the regulatory role of TLRs and their associated signalling in the pathogenesis of human cancers.
Collapse
Affiliation(s)
- Yazdan Mokhtari
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Atieh Pourbagheri‐Sigaroodi
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Zafari
- Department of ImmunologyFaculty of MedicineMazandaran University of Medical SciencesSariIran
- Student Research CommitteeFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Nader Bagheri
- Cellular and Molecular Research CenterBasic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Seyed H. Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research CenterShariati HospitalSchool of MedicineTehran University of Medical SciencesTehranIran
| | - Davood Bashash
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
17
|
Toll-Like Receptor 3 in Solid Cancer and Therapy Resistance. Cancers (Basel) 2020; 12:cancers12113227. [PMID: 33147700 PMCID: PMC7692054 DOI: 10.3390/cancers12113227] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Toll-like receptor 3 (TLR3) is a member of the TLR family, which has been extensively studied for the antiviral function and, therefore, its role in the innate and adaptive immune responses. It is highly expressed in the endosomes of antigen-presenting immune cells and epithelial cells. Several studies have demonstrated TLR3 expression in multiple neoplasia types including breast, prostate, and ovarian cancer. In this perspective, we focus on the mechanisms through which TLR3 can either lead to tumor regression or promote carcinogenesis as well as on the potential of TLR-based therapies in resistant cancer. Abstract Toll-like receptor 3 (TLR3) is a member of the TLR family, which has been extensively studied for its antiviral function. It is highly expressed in the endosomes of antigen-presenting immune cells and epithelial cells. TLR3 binds specifically double-strand RNAs (dsRNAs), leading to the activation of mainly two downstream pathways: the phosphorylation of IRF3, with subsequent production of type I interferon, and the activation of NF-κB, which drives the production of inflammatory cytokines and chemokines. Several studies have demonstrated TLR3 expression in multiple neoplasia types including breast, prostate, and lung cancer. Most studies were focused on the beneficial role of TLR3 activation in tumor cells, which leads to the production of cytotoxic cytokines and interferons and promotes caspase-dependent apoptosis. Indeed, ligands of this receptor were proposed for the treatment of cancer, also in combination with conventional chemotherapy. In contrast to these findings, recent evidence showed a link between TLR3 and tumor progression, metastasis, and therapy resistance. In the present review, we summarize the current knowledge of the mechanisms through which TLR3 can either lead to tumor regression or promote carcinogenesis as well as the potential of TLR-based therapies in resistant cancer.
Collapse
|
18
|
Aravindan N, Herman T, Aravindan S. Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets 2020; 24:899-914. [PMID: 33021426 PMCID: PMC7554151 DOI: 10.1080/14728222.2020.1790528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB. AREAS COVERED Recent studies (2017-2020) pertinent to NB evolution are selectively reviewed to recognize novel and effective therapeutic targets. The prospective and promising therapeutic targets/strategies for HR-NB are categorized into (a) targeting oncogene-like and/or reinforcing tumor suppressor (TS)-like lncRNAs; (b) targeting oncogene-like microRNAs (miRs) and/or mimicking TS-miRs; (c) targets for immunotherapy; (d) targeting epithelial-to-mesenchymal transition and cancer stem cells; (e) novel and beneficial combination approaches; and (f) repurposing drugs and other strategies in development. EXPERT OPINION It is highly unlikely that agents targeting a single candidate or signaling will be beneficial for an HR-NB cure. We must develop efficient drug deliverables for functional targets, which could be integrated and advance clinical therapy. Fittingly, the looming evidence indicated an aggressive evolution of promising novel and integrative targets, development of efficient drugs, and improvised strategies for HR-NB treatment.
Collapse
Affiliation(s)
| | - Terence Herman
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Stephenson Cancer Center, Oklahoma City, USA
| | | |
Collapse
|