1
|
Zhang L, Yang Y, Yu X, Li G, Zhang P, Ren X, Luo S, Li L, Munyurangabo G, Jia Y, Song L, He A, Kong G. Arachidonic acid promotes myeloid differentiation of splenic CD45- Ter119+ cells in myeloproliferative neoplasm. J Cancer 2025; 16:2289-2297. [PMID: 40302792 PMCID: PMC12036098 DOI: 10.7150/jca.110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Although splenic CD45-Ter119+ cells promote cancer progression by secreting artemin, it remains unclear whether these cells play an important role in myeloproliferative neoplasm (MPN). Here, using a KrasG12D/+-induced mouse model of MPN, we demonstrated that the number and cycling of CD45-Ter119+ cells increased in the spleens of MPN mice. Moreover, these cells could differentiate into myeloid cells upon stimulation with GM-CSF and mIL-6. Through RNA sequencing, we further revealed that myeloid genes, such as Hoxa9, Mpo and Ms4a3, were highly expressed in CD45-Ter119+ cells. Mechanistically, we showed that the arachidonic acid content was significantly elevated in splenic CD45-Ter119+ cells, and exogenous arachidonic acid mediated the differentiation of splenic CD45-Ter119+ cells into myeloid cells. Our results revealed that splenic CD45-Ter119+ cells play a crucial role in myeloid leukemia and that arachidonic acid could be a potential therapeutic target for MPN treatment.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yi Yang
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiao Yu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Guodong Li
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Peihua Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiaomin Ren
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Siyu Luo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lin Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Gustave Munyurangabo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yachun Jia
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lingqin Song
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Guangyao Kong
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
2
|
Liu Y, Lankadasari M, Rosiene J, Johnson KE, Zhou J, Bapat S, Chow-Tsang LFL, Tian H, Mastrogiacomo B, He D, Connolly JG, Lengel HB, Caso R, Dunne EG, Fick CN, Rocco G, Sihag S, Isbell JM, Bott MJ, Li BT, Lito P, Brennan CW, Bilsky MH, Rekhtman N, Adusumilli PS, Mayo MW, Imielinski M, Jones DR. Modeling lung adenocarcinoma metastases using patient-derived organoids. Cell Rep Med 2024; 5:101777. [PMID: 39413736 PMCID: PMC11513837 DOI: 10.1016/j.xcrm.2024.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Approximately 50% of patients with surgically resected early-stage lung cancer develop distant metastasis. At present, there is no in vivo metastasis model to investigate the biology of human lung cancer metastases. Using well-characterized lung adenocarcinoma (LUAD) patient-derived organoids (PDOs), we establish an in vivo metastasis model that preserves the biologic features of human metastases. Results of whole-genome and RNA sequencing establish that our in vivo PDO metastasis model can be used to study clonality and tumor evolution and to identify biomarkers related to organotropism. Investigation of the response of KRASG12C PDOs to sotorasib demonstrates that the model can examine the efficacy of treatments to suppress metastasis and identify mechanisms of drug resistance. Finally, our PDO model cocultured with autologous peripheral blood mononuclear cells can potentially be used to determine the optimal immune-priming strategy for individual patients with LUAD.
Collapse
Affiliation(s)
- Yuan Liu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manendra Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology, New York University, New York, NY, USA
| | - Kofi E Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Juan Zhou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samhita Bapat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lai-Fong L Chow-Tsang
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huasong Tian
- Department of Pathology, New York University, New York, NY, USA
| | - Brooke Mastrogiacomo
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Di He
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James G Connolly
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harry B Lengel
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raul Caso
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth G Dunne
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron N Fick
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James M Isbell
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark H Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Ma J, Xia M, Guo J, Li W, Sun S, Chen B. MEK/ERK signaling drives the transdifferentiation of supporting cells into functional hair cells by modulating the Notch pathway. Stem Cells Transl Med 2024; 13:661-677. [PMID: 38709826 PMCID: PMC11227976 DOI: 10.1093/stcltm/szae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Loss of cochlear hair cells (HCs) leads to permanent hearing loss in mammals, and regenerative medicine is regarded as an ideal strategy for hearing recovery. Limited genetic and pharmaceutical approaches for HC regeneration have been established, and the existing strategies cannot achieve recovery of auditory function. A promising target to promote HC regeneration is MEK/ERK signaling because dynamic shifts in its activity during the critical stages of inner ear development have been observed. Here, we first showed that MEK/ERK signaling is activated specifically in supporting cells (SCs) after aminoglycoside-induced HC injury. We then selected 4 MEK/ERK signaling inhibitors, and PD0325901 (PD03) was found to induce the transdifferentiation of functional supernumerary HCs from SCs in the neonatal mammalian cochlear epithelium. We next found that PD03 facilitated the generation of HCs in inner ear organoids. Through genome-wide high-throughput RNA sequencing and verification, we found that the Notch pathway is the downstream target of MEK/ERK signaling. Importantly, delivery of PD03 into the inner ear induced mild HC regeneration in vivo. Our study thus reveals the importance of MEK/ERK signaling in cell fate determination and suggests that PD03 might serve as a new approach for HC regeneration.
Collapse
Affiliation(s)
- Jiaoyao Ma
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Mingyu Xia
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Jin Guo
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Wen Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Bing Chen
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
4
|
Rajagopalan A, Feng Y, Gayatri MB, Ranheim EA, Klungness T, Matson DR, Lee MH, Jung MM, Zhou Y, Gao X, Nadiminti KV, Yang DT, Tran VL, Padron E, Miyamoto S, Bresnick EH, Zhang J. A gain-of-function p53 mutant synergizes with oncogenic NRAS to promote acute myeloid leukemia in mice. J Clin Invest 2023; 133:e173116. [PMID: 37847561 PMCID: PMC10721149 DOI: 10.1172/jci173116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
We previously demonstrated that a subset of acute myeloid leukemia (AML) patients with concurrent RAS pathway and TP53 mutations have an extremely poor prognosis and that most of these TP53 mutations are missense mutations. Here, we report that, in contrast to the mixed AML and T cell malignancy that developed in NrasG12D/+ p53-/- (NP-/-) mice, NrasG12D/+ p53R172H/+ (NPmut) mice rapidly developed inflammation-associated AML. Under the inflammatory conditions, NPmut hematopoietic stem and progenitor cells (HSPCs) displayed imbalanced myelopoiesis and lymphopoiesis and mostly normal cell proliferation despite MEK/ERK hyperactivation. RNA-Seq analysis revealed that oncogenic NRAS signaling and mutant p53 synergized to establish an NPmut-AML transcriptome distinct from that of NP-/- cells. The NPmut-AML transcriptome showed GATA2 downregulation and elevated the expression of inflammatory genes, including those linked to NF-κB signaling. NF-κB was also upregulated in human NRAS TP53 AML. Exogenous expression of GATA2 in human NPmut KY821 AML cells downregulated inflammatory gene expression. Mouse and human NPmut AML cells were sensitive to MEK and NF-κB inhibition in vitro. The proteasome inhibitor bortezomib stabilized the NF-κB-inhibitory protein IκBα, reduced inflammatory gene expression, and potentiated the survival benefit of a MEK inhibitor in NPmut mice. Our study demonstrates that a p53 structural mutant synergized with oncogenic NRAS to promote AML through mechanisms distinct from p53 loss.
Collapse
Affiliation(s)
- Adhithi Rajagopalan
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yubin Feng
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Meher B. Gayatri
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Erik A. Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Taylor Klungness
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Daniel R. Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Moon Hee Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mabel Minji Jung
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Xin Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kalyan V.G. Nadiminti
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - David T. Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Vu L. Tran
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Eric Padron
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Kelliher S, Gamba S, Weiss L, Shen Z, Marchetti M, Schieppati F, Scaife C, Madden S, Bennett K, Fortune A, Maung S, Fay M, Ní Áinle F, Maguire P, Falanga A, Kevane B, Krishnan A. Platelet proteo-transcriptomic profiling validates mediators of thrombosis and proteostasis in patients with myeloproliferative neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563619. [PMID: 37961700 PMCID: PMC10634751 DOI: 10.1101/2023.10.23.563619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patients with chronic Myeloproliferative Neoplasms (MPN) including polycythemia vera (PV) and essential thrombocythemia (ET) exhibit unique clinical features, such as a tendency toward thrombosis and hemorrhage, and risk of disease progression to secondary bone marrow fibrosis and/or acute leukemia. Although an increase in blood cell lineage counts (quantitative features) contribute to these morbid sequelae, the significant qualitative abnormalities of myeloid cells that contribute to vascular risk are not well understood. Here, we address this critical knowledge gap via a comprehensive and untargeted profiling of the platelet proteome in a large (n= 140) cohort of patients (from two independent sites) with an established diagnosis of PV and ET (and complement prior work on the MPN platelet transcriptome from a third site). We discover distinct MPN platelet protein expression and confirm key molecular impairments associated with proteostasis and thrombosis mechanisms of potential relevance to MPN pathology. Specifically, we validate expression of high-priority candidate markers from the platelet transcriptome at the platelet proteome (e.g., calreticulin (CALR), Fc gamma receptor (FcγRIIA) and galectin-1 (LGALS1) pointing to their likely significance in the proinflammatory, prothrombotic and profibrotic phenotypes in patients with MPN. Together, our proteo-transcriptomic study identifies the peripherally-derived platelet molecular profile as a potential window into MPN pathophysiology and demonstrates the value of integrative multi-omic approaches in gaining a better understanding of the complex molecular dynamics of disease.
Collapse
Affiliation(s)
- Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Sara Gamba
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Luisa Weiss
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Zhu Shen
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Schieppati
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Caitriona Scaife
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kathleen Bennett
- School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anne Fortune
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Su Maung
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Fay
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Fionnuala Ní Áinle
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Medicine, Royal College of Surgeons in Ireland
| | - Patricia Maguire
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, University College Dublin, Dublin, Ireland
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- University of Milano-Bicocca, Department of Medicine and Surgery, Monza, Italy
| | - Barry Kevane
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Rutgers University, Piscataway, NJ
- Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
6
|
Sun H, Ren Y, Zhou X, Chen Q, Liu Y, Zhu C, Ruan Y, Ruan H, Tong H, Ying S, Lin P. DUSP1 Signaling Pathway Regulates Cytarabine Sensitivity in Acute Myeloid Leukemia. Technol Cancer Res Treat 2023; 22:15330338231207765. [PMID: 37872685 PMCID: PMC10594969 DOI: 10.1177/15330338231207765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023] Open
Abstract
Objectives: Dual specificity phosphatase 1 (DUSP1) is high-expressed in various cancers and plays an important role in the cellular response to agents that damage DNA. We aimed to investigate the expressions and mechanisms of DUSP1 signaling pathway regulating cytarabine (Ara-C) resistance in acute myeloid leukemia (AML). Methods: Immunohistochemistry was performed on bone marrow biopsy specimens from AML and controls to explore the expression of DUSP1. Western blot and Q-PCR were used to detect the protein and mRNA expression levels. MTT assay was used to detect the proliferation of cells. Cell apoptosis was detected by flow cytometry. The immune protein-protein interaction (PPI) network of DUSP1 was analyzed in the platform of Pathway Commons, and immune infiltration analysis was used to study the immune microenvironment of AML. Results: We found that the expression levels of DUSP1 in AML patients exceeded that in controls. Survival analysis in public datasets showed that AML patients with higher levels of DUSP1 had poor clinical outcomes. Further public data analysis indicated that DUSP1 was overexpressed in NRAS mutated AML. DUSP1 knockdown by siRNA could sensitize AML cells to Ara-C treatments. The phosphorylation level of mitogen-activated protein kinase (MAPK) pathway was significantly elevated in DUSP1 down-regulated NRAS G13D mutated AML cells. The PPI analysis showed DUSP1 correlated with immune gene CREB1 and CXCL8 in NRAS mutated AML. We also revealed a correlation between tumor-infiltrating immune cells in RAS mutated AML microenvironment. Conclusion: Our findings suggest that DUSP1 signaling pathways may regulate Ara-C sensitivity in AML.
Collapse
Affiliation(s)
- Huali Sun
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanling Ren
- Myelodysplastic Syndrome Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinping Zhou
- Myelodysplastic Syndrome Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanmei Liu
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chumeng Zhu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongli Ruan
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongyan Tong
- Myelodysplastic Syndrome Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shenpeng Ying
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Peipei Lin
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Kropp EM, Li Q. Mechanisms of Resistance to Targeted Therapies for Relapsed or Refractory Acute Myeloid Leukemia. Exp Hematol 2022; 111:13-24. [PMID: 35417742 PMCID: PMC10116852 DOI: 10.1016/j.exphem.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease of clonal hematopoiesis with a high rate of relapse and refractory disease despite intensive therapy. Traditionally, relapsed or refractory AML has increased therapeutic resistance and poor long-term survival. In recent years, advancements in the mechanistic understanding of leukemogenesis have allowed for the development of targeted therapies. These therapies offer novel alternatives to intensive chemotherapy and have prolonged survival in relapsed or refractory AML. Unfortunately, a significant portion of patients do not respond to these therapies and relapse occurs in most patients who initially responded. This review focuses on the mechanisms of resistance to targeted therapies in relapsed or refractory AML.
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI
| | - Qing Li
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI.
| |
Collapse
|
8
|
Notch-mediated lactate metabolism regulates MDSC development through the Hes1/MCT2/c-Jun axis. Cell Rep 2022; 38:110451. [PMID: 35263597 DOI: 10.1016/j.celrep.2022.110451] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) play critical roles in tumorigenesis. However, the mechanisms underlying MDSC and TAM development and function remain unclear. In this study, we find that myeloid-specific activation of Notch/RBP-J signaling downregulates lactate transporter MCT2 transcription via its downstream molecule Hes1, leading to reduced intracellular lactate levels, blunted granulocytic MDSC (G-MDSC) differentiation, and enhanced TAM maturation. We identify c-Jun as a novel intracellular sensor of lactate in myeloid cells using liquid-chromatography-mass spectrometry (LC-MS) followed by CRISPR-Cas9-mediated gene disruption. Meanwhile, lactate interacts with c-Jun to protect from FBW7 ubiquitin-ligase-mediated degradation. Activation of Notch signaling and blockade of lactate import repress tumor progression by remodeling myeloid development. Consistently, the relationship between the Notch-MCT2/lactate-c-Jun axis in myeloid cells and tumorigenesis is also confirmed in clinical lung cancer biopsies. Taken together, our current study shows that lactate metabolism regulated by activated Notch signaling might participate in MDSC differentiation and TAM maturation.
Collapse
|
9
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Wei H, Ge Q, Zhang LY, Xie J, Gan RH, Lu YG, Zheng DL. EGCG inhibits growth of tumoral lesions on lip and tongue of K-Ras transgenic mice through the Notch pathway. J Nutr Biochem 2021; 99:108843. [PMID: 34407449 DOI: 10.1016/j.jnutbio.2021.108843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 01/29/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), the main active ingredient of green tea, exhibits low toxic side effect and versatile bioactivities, and its anti-cancer effect has been extensively studied. Most of the studies used cancer cell lines and xenograft models. However, whether EGCG can prevent tumor onset after cancer-associated mutations occur is still controversial. In the present study, Krt14-cre/ERT-Kras transgenic mice were developed and the expression of K-RasG12D was induced by tamoxifen. Two weeks after induction, the K-Ras mutant mice developed exophytic tumoral lesions on the lips and tongues, with significant activation of Notch signaling pathway. Administration of EGCG effectively delayed the time of appearance, decreased the size and weight of tumoral lesions, relieved heterotypic hyperplasia of tumoral lesions, and prolonged the life of the mice. The Notch signaling pathway was significantly inhibited by EGCG in the tumoral lesions. Furthermore, EGCG significantly induced cell apoptosis and inhibited the proliferation of tongue cancer cells by blocking the activation of Notch signaling pathway. Taken together, these results indicate EGCG as an effective chemotherapeutic agent for tongue cancer by targeting Notch pathway.
Collapse
Affiliation(s)
- Hua Wei
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qi Ge
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ling-Yu Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jing Xie
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Rui-Huan Gan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Stuani L, Sabatier M, Saland E, Cognet G, Poupin N, Bosc C, Castelli FA, Gales L, Turtoi E, Montersino C, Farge T, Boet E, Broin N, Larrue C, Baran N, Cissé MY, Conti M, Loric S, Kaoma T, Hucteau A, Zavoriti A, Sahal A, Mouchel PL, Gotanègre M, Cassan C, Fernando L, Wang F, Hosseini M, Chu-Van E, Le Cam L, Carroll M, Selak MA, Vey N, Castellano R, Fenaille F, Turtoi A, Cazals G, Bories P, Gibon Y, Nicolay B, Ronseaux S, Marszalek JR, Takahashi K, DiNardo CD, Konopleva M, Pancaldi V, Collette Y, Bellvert F, Jourdan F, Linares LK, Récher C, Portais JC, Sarry JE. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. J Exp Med 2021; 218:e20200924. [PMID: 33760042 PMCID: PMC7995203 DOI: 10.1084/jem.20200924] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/25/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.
Collapse
MESH Headings
- Acute Disease
- Aminopyridines/pharmacology
- Animals
- Cell Line, Tumor
- Doxycycline/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Glycine/analogs & derivatives
- Glycine/pharmacology
- HL-60 Cells
- Humans
- Isocitrate Dehydrogenase/antagonists & inhibitors
- Isocitrate Dehydrogenase/genetics
- Isocitrate Dehydrogenase/metabolism
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mutation
- Oxadiazoles/pharmacology
- Oxidative Phosphorylation/drug effects
- Piperidines/pharmacology
- Pyridines/pharmacology
- Triazines/pharmacology
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Nathalie Poupin
- UMR1331 Toxalim, Université de Toulouse, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Ecole Nationale Vétérinaire de Toulouse, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Florence A. Castelli
- CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-sur-Yvette, France
| | - Lara Gales
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des sciences appliquées, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Evgenia Turtoi
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
- Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform for Translational Oncometabolomics, Biocampus, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Montpellier, France
| | - Camille Montersino
- Aix-Marseille University, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancérologie de Marseille, Marseille, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Nicolas Broin
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Natalia Baran
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Madi Y. Cissé
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Marc Conti
- Institut National de la Santé et de la Recherché Médicale U938, Hôpital St Antoine, Paris, France
- Integracell, Longjumeau, France
| | - Sylvain Loric
- Institut National de la Santé et de la Recherché Médicale U938, Hôpital St Antoine, Paris, France
| | - Tony Kaoma
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alexis Hucteau
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Aliki Zavoriti
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Pierre-Luc Mouchel
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Mathilde Gotanègre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Cédric Cassan
- UMR1332 Biologie du Fruit et Pathologie, Plateforme Métabolome Bordeaux, Institut National de la Recherche Agronomique, Université de Bordeaux, Villenave d'Ornon, France
| | - Laurent Fernando
- UMR1331 Toxalim, Université de Toulouse, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Ecole Nationale Vétérinaire de Toulouse, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Feng Wang
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Mohsen Hosseini
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Emeline Chu-Van
- CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-sur-Yvette, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Martin Carroll
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary A. Selak
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Norbert Vey
- Aix-Marseille University, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancérologie de Marseille, Marseille, France
| | - Rémy Castellano
- Aix-Marseille University, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancérologie de Marseille, Marseille, France
| | - François Fenaille
- CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Gif-sur-Yvette, France
| | - Andrei Turtoi
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Guillaume Cazals
- Laboratoire de Mesures Physiques, Université de Montpellier, Montpellier, France
| | - Pierre Bories
- Réseau Régional de Cancérologie Onco-Occitanie, Toulouse, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Plateforme Métabolome Bordeaux, Institut National de la Recherche Agronomique, Université de Bordeaux, Villenave d'Ornon, France
| | | | | | - Joseph R. Marszalek
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Koichi Takahashi
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Courtney D. DiNardo
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Véra Pancaldi
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Yves Collette
- Aix-Marseille University, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancérologie de Marseille, Marseille, France
| | - Floriant Bellvert
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des sciences appliquées, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Fabien Jourdan
- UMR1331 Toxalim, Université de Toulouse, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Ecole Nationale Vétérinaire de Toulouse, INP-Purpan, Université Paul Sabatier, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Laetitia K. Linares
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherché Médicale, Université de Montpellier, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des sciences appliquées, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- STROMALab, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Institut National de la Santé et de la Recherché Médicale, Centre National de la Recherche Scientifique, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Notch Pathway: A Journey from Notching Phenotypes to Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:201-222. [PMID: 33034034 DOI: 10.1007/978-3-030-55031-8_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Notch is a key evolutionary conserved pathway, which has fascinated and engaged the work of investigators in an uncountable number of biological fields, from development of metazoans to immunotherapy for cancer. The study of Notch has greatly contributed to the understanding of cancer biology and a substantial effort has been spent in designing Notch-targeting therapies. Due to its broad involvement in cancer, targeting Notch would allow to virtually modulate any aspect of the disease. However, this means that Notch-based therapies must be highly specific to avoid off-target effects. This review will present the newest mechanistic and therapeutic advances in the Notch field and discuss the promises and challenges of this constantly evolving field.
Collapse
|
13
|
You X, Wen Z, Chang YI, Ranheim EA, Zhou Y, Zhou L, Kong G, Zhang J. Systemic Notch downregulation promotes Kras G12D -induced myeloproliferative neoplasm. Br J Haematol 2019; 186:e52-e56. [PMID: 30931528 DOI: 10.1111/bjh.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhi Wen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuan-I Chang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA.,Institute of Physiology, National Yang-Ming University, Taipei City, Taiwan
| | - Erik A Ranheim
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Guangyao Kong
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R.China
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Unique dependence on Sos1 in Kras G12D -induced leukemogenesis. Blood 2018; 132:2575-2579. [PMID: 30377195 DOI: 10.1182/blood-2018-09-874107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
We and others have previously shown that Kras G12D is a much more potent oncogene than oncogenic Nras in hematological malignancies. We attributed the strong leukemogenic activity of KrasG12D at least partially to its unique capability to hyperactivate wild-type (WT) Nras and Hras. Here, we report that Sos1, a guanine nucleotide exchange factor, is required to mediate this process. Sos1 is overexpressed in Kras G12D/+ cells, but not in Nras Q61R/+ and Nras G12D/+ cells. KrasG12D proteins form a complex with Sos1 in vivo. Sos1 deficiency attenuates hyperactivation of WT Nras, Hras, and the downstream ERK signaling in Kras G12D/+ cells. Thus, Sos1 deletion ameliorates oncogenic Kras-induced myeloproliferative neoplasm (MPN) phenotypes and prolongs the survival of Kras G12D/+ mice. In contrast, Sos1 is dispensable for hyperactivated granulocyte-macrophage colony-stimulating factor signaling in Nras Q61R/+ cells, and Sos1 -/- does not affect MPN phenotypes in Nras Q61R/+ mice. Moreover, the survival of Kras G12D/+ ; Sos1 -/- recipients is comparable to that of Kras G12D/+ recipients treated with combined MEK and JAK inhibitors. Our study suggests that targeting Sos1-oncogenic Kras interaction may improve the survival of cancer patients with KRAS mutations.
Collapse
|