1
|
Song J, Yang K, Gajendran B, Varier KM, Li W, Liu Q, Rao Q, Hang Y, Shen X, Liu S, Huang L, Xu M, Li Y. A New Indole Derivative, LWX-473, Overcomes Glucocorticoid Resistance in Jurkat Cells by Activating Mediators of Apoptosis. FRONT BIOSCI-LANDMRK 2024; 29:163. [PMID: 38682179 DOI: 10.31083/j.fbl2904163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Glucocorticoids (GCs) are commonly used as the primary chemotherapy for lymphoid malignancies, including acute lymphoblastic leukemia (ALL). However, the development of GC resistance limits their prolonged use. METHODS In this study, we investigated the potential of a newly synthesized indole derivative called LWX-473, in combination with the classic GC Dexamethasone (DEX), to enhance the responsiveness of Jurkat cells to GC treatment. RESULTS Our findings demonstrate that LWX-473 alone or in combination with DEX significantly improves GC-induced cell apoptosis and arrests the cell cycle in the G1 phase. Notably, the combination of LWX-473 and DEX exhibits superior efficacy in killing Jurkat cells compared to LWX-473 alone. Importantly, this compound demonstrates reduced toxicity towards normal cells. CONCLUSIONS Our study reveals that LWX-473 has the ability to restore the sensitivity of Jurkat cells to DEX by modulating the mitochondrial membrane potential, activating the expression of DEX-liganded glucocorticoid receptor (GR), and inhibiting key molecules in the JAK/STAT signaling pathway. These findings suggest that LWX-473 could be a potential therapeutic agent for overcoming GC resistance in lymphoid malignancies.
Collapse
Affiliation(s)
- Jingrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Basic Medicine, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Kun Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, Guizhou, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Krishnapriya M Varier
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Wenxue Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Qin Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Qing Rao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Yubing Hang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Xiangchun Shen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Sheng Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Lei Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Mei Xu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| |
Collapse
|
2
|
Mao L, Wei W, Chen J. Biased regulation of glucocorticoid receptors signaling. Biomed Pharmacother 2023; 165:115145. [PMID: 37454592 DOI: 10.1016/j.biopha.2023.115145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.
Collapse
Affiliation(s)
- Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Spaner DE, Luo TY, Wang G, Schreiber G, Harari D, Shi Y. Paradoxical activation of chronic lymphocytic leukemia cells by ruxolitinib in vitro and in vivo. Front Oncol 2023; 13:1043694. [PMID: 37114129 PMCID: PMC10126367 DOI: 10.3389/fonc.2023.1043694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) is characterized by an aberrant cytokine network that can support tumor growth by triggering janus kinase (JAK)/STAT pathways. Targeting cytokine-signaling should then be a rational therapeutic strategy but the JAK inhibitor ruxolitinib failed to control and seemingly accelerated the disease in clinical trials. Methods The effect of ruxolitinib on primary human CLL cells was studied in vitro and in vivo. Results Ruxolitinib increased phosphorylation of IRAK4, an important toll-like receptor (TLR)- signaling intermediate, in circulating CLL cells in vitro. It also enhanced p38 and NFKB1 phosphorylation while lowering STAT3 phosphorylation in CLL cells activated with TLR-7/8 agonists and IL-2. Among the cytokines made by activated CLL cells, high levels of IL-10 contributed strongly to STAT3 phosphorylation and inhibited TLR7 activity. Ruxolitinib limited TLR-mediated IL10 transcription and markedly reduced IL-10 production in vitro. It also decreased blood levels of IL-10 while increasing TNFα along with phospho-p38 expression and gene sets associated with TLR-activation in CLL cells in vivo. The bruton's tyrosine kinase inhibitor ibrutinib decreased IL-10 production in vitro but, in contrast to ruxolitinib, blocked initial IL10 transcription induced by TLR-signaling in vitro, decreased TNFα production, and deactivates CLL cells in vivo. Discussion These findings suggest the possible benefits of inhibiting growth factors with JAK inhibitors in CLL are outweighed by negative effects on potential tumor suppressors such as IL-10 that allow unrestrained activation of NFκB by drivers such as TLRs. Specific inhibition of growth-promoting cytokines with blocking antibodies or infusing suppressive cytokines like IL-10 might be better strategies to manipulate cytokines in CLL.
Collapse
Affiliation(s)
- David E. Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Hematology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: David E. Spaner,
| | - Tina YuXuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
4
|
Spaner DE, Luo Y, Wang G, Gallagher J, Tsui H, Shi Y. Janus kinases restrain chronic lymphocytic leukemia cells in patients on ibrutinib: Results of a phase II trial. Cancer Med 2021; 10:8789-8798. [PMID: 34791813 PMCID: PMC8683523 DOI: 10.1002/cam4.4378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 11/06/2022] Open
Abstract
Preclinical observations that killing of chronic lymphocytic leukemia (CLL) cells was dexamethasone (DEX) were enhanced by concomitant inhibition of Bruton's tyrosine kinase and janus kinases (JAKs) motivated a phase II trial to determine if clinical responses to ibrutinib could be deepened by DEX and the JAK inhibitor ruxolitinib. Patients on ibrutinib at 420 mg daily for 2 months or with abnormal serum β2M levels after 6 months or with persistent lymphadenopathy or splenomegaly after 12 months were randomized to receive DEX 40 mg on days 1-4 of a 4-week cycle for six cycles alone (three patients) or with ruxolitinib 15 mg BID on days 1-21 of each cycle (five patients). Ruxolitinib dosing was based on a previous phase I trial. Steroid withdrawal symptoms and significantly decreased serum IgG levels occurred in all patients regardless of their exposure to ruxolitinib. A fatal invasive fungal infection was seen in a patient taking DEX without ruxolitinib. Complete responses anticipated with addition of ruxolitinib were not seen. Gene expression studies suggested ruxolitinib had turned off interferon signaling in CLL cells and turned on genes associated with the activation of NFκB by TNF-α. Ruxolitinib increased blood levels of TNF-α by cycle 3 and decreased the inhibitory cytokine IL-10. These results suggest ruxolitinib releases activating signals for CLL cells that persist in patients on ibrutinib. This inhibitory JAK signaling may contribute to the therapeutic activity of ibrutinib. Thus JAK inhibitors provide no added value with ibrutinib for disease control and should be used with caution in CLL patients. Combining glucocorticoids with ibrutinib may increase the risk of serious infects.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuxuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Guizhei Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Division of Hematological Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells. Cancers (Basel) 2021; 13:cancers13071618. [PMID: 33807411 PMCID: PMC8037275 DOI: 10.3390/cancers13071618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA's promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.
Collapse
|
6
|
Gimenez N, Tripathi R, Giró A, Rosich L, López-Guerra M, López-Oreja I, Playa-Albinyana H, Arenas F, Mas JM, Pérez-Galán P, Delgado J, Campo E, Farrés J, Colomer D. Systems biology drug screening identifies statins as enhancers of current therapies in chronic lymphocytic leukemia. Sci Rep 2020; 10:22153. [PMID: 33335123 PMCID: PMC7746765 DOI: 10.1038/s41598-020-78315-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B lymphoid malignancy highly dependent on the microenvironment. Despite new targeted therapies such as ibrutinib and venetoclax, disease progression and relapse remain an issue. CLL cell interactions with the supportive tissue microenvironment play a critical role in disease pathogenesis. We used a platform for drug discovery based on systems biology and artificial intelligence, to identify drugs targeting key proteins described to have a role in the microenvironment. The selected compounds were screened in CLL cell lines in the presence of stromal cells to mimic the microenvironment and validated the best candidates in primary CLL cells. Our results showed that the commercial drug simvastatin was the most effective and selective out of the tested compounds. Simvastatin decreased CLL cell survival and proliferation as well as cell adhesion. Importantly, this drug enhanced the antitumor effect of venetoclax and ibrutinib. We proposed that systems biology approaches combined with pharmacological screening could help to find new drugs for CLL treatment and to predict new combinations with current therapies. Our results highlight the possibility of repurposing widely used drugs such as statins to target the microenvironment and to improve the efficacy of ibrutinib or venetoclax in CLL cells.
Collapse
Affiliation(s)
- Neus Gimenez
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Anaxomics Biotech, Barcelona, Spain
| | - Rupal Tripathi
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ariadna Giró
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Laia Rosich
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Mònica López-Guerra
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Irene López-Oreja
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Fabian Arenas
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | | | - Patricia Pérez-Galán
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Microenvironment in Lymphoma Pathogenesis and Therapy Group, IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Department of Hematology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Elias Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clinic, IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | | | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain. .,Hematopathology Unit, Department of Pathology, Hospital Clinic, IDIBAPS, Barcelona, Spain. .,University of Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Xia M, Luo TY, Shi Y, Wang G, Tsui H, Harari D, Spaner DE. Effect of Ibrutinib on the IFN Response of Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2629-2639. [PMID: 33067379 DOI: 10.4049/jimmunol.2000478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023]
Abstract
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has profound activity in chronic lymphocytic leukemia (CLL) but limited curative potential by itself. Residual signaling pathways that maintain survival of CLL cells might be targeted to improve ibrutinib's therapeutic activity, but the nature of these pathways is unclear. Ongoing activation of IFN receptors in patients on ibrutinib was suggested by the presence of type I and II IFN in blood together with the cycling behavior of IFN-stimulated gene (ISG) products when IFN signaling was blocked intermittently with the JAK inhibitor ruxolitinib. IFN signaling in CLL cells from human patients was not prevented by ibrutinib in vitro or in vivo, but ISG expression was significantly attenuated in vitro. ISGs such as CXCL10 that require concomitant activation of NF-κB were decreased when this pathway was inhibited by ibrutinib. Other ISGs, exemplified by LAG3, were decreased as a result of inhibited protein translation. Effects of IFN on survival remained intact as type I and II IFN-protected CLL cells from ibrutinib in vitro, which could be prevented by ruxolitinib and IFNR blocking Abs. These observations suggest that IFNs may help CLL cells persist and specific targeting of IFN signaling might deepen clinical responses of patients on ibrutinib.
Collapse
Affiliation(s)
- Meihui Xia
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.,Department of Gynecology and Obstetrics, First Hospital, Jilin University, 130021 Changchun, Jilin, China.,Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, 130021 Changchun, Jilin, China
| | - Tina Yuxuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Hematopathology, Sunnybrook Health Sciences Center, Toronto, Ontario M4C 3E7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada; and.,Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
8
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
9
|
Liu W, Chen G, Xu B, Sun S, Tian J, Zhang Y. Early stage Acute B lymphocytic leukemia presenting with symptoms of ankylosing spondylitis (AS): A case report. Medicine (Baltimore) 2020; 99:e19806. [PMID: 32282746 PMCID: PMC7220661 DOI: 10.1097/md.0000000000019806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Acute lymphoblastic leukemia (ALL) has acute and severe onset characterized by fever, moderate to severe anemia, bone and joint pain, and sternal tenderness. It is easy to be misdiagnosed as rheumatic disease when joint pain is the first symptom. PATIENT CONCERNS A male Han, 18 years of age was admitted on July 15th, 2016 for multi-joint swelling and pain with intermittent fever for half a year which had aggravated in the last 10 days. DIAGNOSIS Based on symptoms, imaging, family history, and blood tests, he was first diagnosed with ankylosing spondylitis, but he was refractory to treatment. Bone marrow biopsy then revealed acute B-lymphoblastic leukemia (possibility Pro-B-ALL). INTERVENTIONS The patient was transferred to the hematology department on July 23rd, 2016 for chemotherapy. OUTCOMES No joint pain occurred during follow-up, which ended on November 4th, 2018. LESSONS ALL may present with symptoms suggestive of rheumatic diseases like ankylosing spondylitis. Physicians should be aware of this possibility, especially in young patients.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Agents/therapeutic use
- Arthralgia/diagnosis
- Arthralgia/etiology
- Biopsy
- Bone Marrow/pathology
- Diagnosis, Differential
- Diagnostic Errors
- Fever/diagnosis
- Fever/etiology
- Humans
- Joint Diseases/diagnostic imaging
- Joint Diseases/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Spondylitis, Ankylosing/blood
- Spondylitis, Ankylosing/diagnosis
- Spondylitis, Ankylosing/therapy
- Tomography, X-Ray Computed/methods
- Treatment Outcome
Collapse
Affiliation(s)
- Wei Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
| | - Guangfeng Chen
- Department of Rheumatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Bing Xu
- Department of Rheumatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Suping Sun
- Department of Rheumatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Jingzhen Tian
- Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Yingying Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
| |
Collapse
|
10
|
Spaner DE, McCaw L, Wang G, Tsui H, Shi Y. Persistent janus kinase-signaling in chronic lymphocytic leukemia patients on ibrutinib: Results of a phase I trial. Cancer Med 2019; 8:1540-1550. [PMID: 30843659 PMCID: PMC6488147 DOI: 10.1002/cam4.2042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/20/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Methods to deepen clinical responses to ibrutinib are needed to improve outcomes for patients with chronic lymphocytic leukemia (CLL). This study aimed to determine the safety and efficacy of combining a janus kinase (JAK)‐inhibitor with ibrutinib because JAK‐mediated cytokine‐signals support CLL cells and may not be inhibited by ibrutinib. The JAK1/2 inhibitor ruxolitinib was prescribed to 12 CLL patients with abnormal serum beta‐2 microglobulin levels after 6 months or persistent lymphadenopathy or splenomegaly after 12 months on ibrutinib using a 3 + 3 phase 1 trial design (NCT02912754). Ibrutinib was continued at 420 mg daily and ruxolitinib was added at 5, 10, 15, or 20 mg BID for 3 weeks out of five for seven cycles. The break was mandated to avoid anemia and thrombocytopenia observed with ruxolitinib as a single agent in CLL. The combination was well‐tolerated without dose‐limiting toxicities. Cyclic changes in platelets, lymphocytes, and associated chemokines and thrombopoietic factors were observed and partial response criteria were met in 2 of 12 patients. The results suggest that JAK‐signaling helps CLL cells persist in the presence of ibrutinib and ruxolitinib with ibrutinib is well‐tolerated and may be a useful regiment to use in combination therapies for CLL.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Odette Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Guizhei Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Canada.,Division of Hematopathology, Sunnybrook Health Sciences Center, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|