1
|
Ho NHJG, Talvard-Balland N, Köhler N, Zeiser R. Immune Escape of Acute Myeloid Leukemia after Transplantation. Blood Cancer Discov 2025; 6:168-181. [PMID: 40168448 PMCID: PMC12050969 DOI: 10.1158/2643-3230.bcd-24-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025] Open
Abstract
SIGNIFICANCE We discuss the mechanisms of AML immune evasion including loss or downregulation of MHC class I and II, reduced TRAIL receptor expression, inhibitory metabolite production, inhibitory ligand expression, impaired proinflammatory cytokine production, and AML niche alterations.
Collapse
Affiliation(s)
- Nguyen Huong Jenny Giang Ho
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Nana Talvard-Balland
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Natalie Köhler
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signaling Studies, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| |
Collapse
|
2
|
Wangulu C, Zhao D, Zhou Q, Wei C, Kumar R, Schimmer A, Chang H. Proposed Refinement of 2022 European LeukemiaNet Adverse-Risk Group of AML Patients Using a Real-World Cohort. Cancers (Basel) 2025; 17:1405. [PMID: 40361333 PMCID: PMC12070929 DOI: 10.3390/cancers17091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: The 2022 European LeukemiaNet (ELN 2022) is a widely used genotypic risk classification tool for the treatment and prognostication of acute myeloid leukemia (AML) patients. Our study evaluates its effectiveness in categorizing adverse-risk AML patients on standard therapy based on their overall survival (OS). Methods: We conducted a retrospective study involving 256 AML patients. Results: Those in the ELN 2022 adverse-risk group had the shortest OS (p < 0.0001) and were predominantly characterized by myelodysplasia-related (MR) mutations, complex karyotype (CK), monosomal karyotype (MK), and TP53 mutation (TP53 Mut). Subclassification and analysis of this adverse-risk group based on the TP53 Mut status revealed a significantly shorter OS compared to the adverse TP53 wild-type (TP53 WT) counterparts (p = 0.0036). We propose refining the ELN 2022 adverse-risk group into two categories, adverse TP53 Mut and adverse TP53 WT groups, to represent adverse- and ultra-adverse-risk groups, respectively. We used an external validation dataset to confirm our findings. Conclusions: This refinement allows for a more accurate classification of these adverse-risk patients based on their clinical outcomes.
Collapse
Affiliation(s)
- Collins Wangulu
- Princess Margaret Cancer Biobank (PMCB), University Health Network, Toronto, ON M5G 2C4, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1V4, Canada
| | - Davidson Zhao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1V4, Canada
- Department of Laboratory Hematology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1V4, Canada
- Department of Laboratory Hematology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Cuihong Wei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1V4, Canada
- Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Rajat Kumar
- Department of Hematology and Oncology, Princess Margaret Cancer Center, University Heath Network, Toronto, ON M5G 2C4, Canada
| | - Aaron Schimmer
- Department of Hematology and Oncology, Princess Margaret Cancer Center, University Heath Network, Toronto, ON M5G 2C4, Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1V4, Canada
- Department of Laboratory Hematology, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
3
|
Su Y, Han Z, Ji Y, Liu A, Zou D, Yan L, Liu D, Zhang Z, Wang QF. Patterns and variations of copy number alterations in acute myeloid leukemia: insights from the LeukAtlas database. Leukemia 2025; 39:827-836. [PMID: 39894867 DOI: 10.1038/s41375-025-02514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Recent pan-cancer analysis revealed the global pattern and potential aetiologies of copy number variation signatures in human cancers, particularly those derived from non-hematopoietic tissues. In sharp contrast, the generally low CNV burden in leukemia leaves the CNV landscape and variations largely unexplored, impeding understanding of CNV in leukemia development. Through a comprehensive compilation of public datasets, we constructed LeukAtlas ( https://ngdc.cncb.ac.cn/leukemia ), a user-friendly database encompassing 12,597 CNVs from 1446 AML samples across diverse subtypes and age groups, providing tools for multidimensional CNV analysis. Our analyses suggested the CNV levels significantly varied among AML patients. We discovered two previously unknown CNV patterns in adult AML patients, dominated by segmental LOH and/or minor gain, which have been shown to be associated with chromosomal instability in solid tumors. Additionally, we defined two potential new AML subgroups based on CNVs status, providing new stratification markers within the existing karyotype framework. Representing the most extensive CNV collection in AML, LeukAtlas is a valuable resource for exploring the role of CNVs in the pathogenesis and prognosis stratification of leukemia. Interrogation of this database uncovers novel subclasses with unique CNV profiles and reveals heterogeneous CNV patterns in AML, demonstrating the potential role of chromosomal instability in AML progression.
Collapse
Affiliation(s)
- Yanxun Su
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenxian Han
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- National Genomics Data Center, China National Center for Bioinformation, 100101, Beijing, China
| | - Yutong Ji
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Anqi Liu
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Zou
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- National Genomics Data Center, China National Center for Bioinformation, 100101, Beijing, China
| | - Lina Yan
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dan Liu
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhang Zhang
- China National Center for Bioinformation, 100101, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- National Genomics Data Center, China National Center for Bioinformation, 100101, Beijing, China.
| | - Qian-Fei Wang
- China National Center for Bioinformation, 100101, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
4
|
Jiménez-Vicente C, Esteve J, Baile-González M, Pérez-López E, Martin Calvo C, Aparicio C, Oiartzabal Ormategi I, Esquirol A, Peña-Muñoz F, Fernández-Luis S, Heras Fernando I, González-Rodríguez AP, López-García A, López-Lorenzo JL, Torrado T, Sáez Marín AJ, Acosta Fleytas C, García L, Villar S, Filaferro S, Balsalobre P, Pascual Cascón MJ, Salas MQ. Allo-HCT refined ELN 2022 risk classification: validation of the Adverse-Plus risk group in AML patients undergoing allogeneic hematopoietic cell transplantation within the Spanish Group for Hematopoietic Cell Transplantation (GETH-TC). Blood Cancer J 2025; 15:42. [PMID: 40118819 PMCID: PMC11928450 DOI: 10.1038/s41408-025-01223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 03/24/2025] Open
Abstract
This multicenter retrospective study by GETH-TC validates the prognostic value of the Allo-HCT Refined ELN 2022 risk classification in allografted AML patients. The new classification refines the ELN 2022 risk classification, dividing adverse-risk patients into two subgroups: Adv-Plus (AdvP), including those with complex karyotype, MECOM (EVI1) rearrangement, or TP53 mutations/del(17p), and an additional adverse group (Adv*). The study included 651 AML patients treated with at least one line of anthracycline-based induction therapy and in complete remission. According to the Allo-HCT Refined ELN 2022 risk classification, 19.4% (n = 126) patients were classified into the Favorable (Fav) risk, 38.1% (n = 248) into the Intermediate (Int) risk, 27.2% (n = 177) in the Adv* and 15.4% (n = 100) in the AdvP. Outcomes were significantly poorer for patients allocated in the AdvP risk group (5-year OS rate: 32.3%, 5-year LFS rate: 24.3%, both p < 0.001 with the rest of subgroups) and a higher CIR (5-year CIR: 64.3%, p < 0.001). Patients in the Adv* risk group had similar outcomes than patients in the Int risk group (5-year OS rate: 70.2% vs. 66.7%, p = 0.69, 5-year LFS rate: 63.8% vs. 55.9%, p = 0.33). Multivariate analysis confirmed the dismal outcomes for AdvP patients for OS: Hazard Ratio (HR) = 3.05, and LFS: HR = 2.66, both p < 0.001. Our findings validate the Allo-HCT Refined ELN 2022 classification as a robust prognostic tool, particularly highlighting the poor outcomes for the AdvP subgroup.
Collapse
Affiliation(s)
| | - Jordi Esteve
- Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | - Felipe Peña-Muñoz
- Institut Català d'Oncologia-Hospital Duran i Reynals, Barcelona, Spain
| | | | | | | | | | | | | | | | | | - Lucía García
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Sara Villar
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Silvia Filaferro
- Grupo Español de Trasplante de Progenitores Hematopoyéticos y Terapia Celular, Barcelona, Spain
| | - Pascual Balsalobre
- Grupo Español de Trasplante de Progenitores Hematopoyéticos y Terapia Celular, Barcelona, Spain
| | - María Jesús Pascual Cascón
- Grupo Español de Trasplante de Progenitores Hematopoyéticos y Terapia Celular, Barcelona, Spain
- Hospital Regional Universitario de Málaga, Málaga, Spain
| | | |
Collapse
|
5
|
Tseng CC, Obeng EA. RNA splicing as a therapeutic target in myelodysplastic syndromes. Semin Hematol 2024; 61:431-441. [PMID: 39542752 DOI: 10.1053/j.seminhematol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of hematological disorders and are more commonly found in people over the age of 60. MDS patients exhibit peripheral blood cytopenias and carry an increased risk of disease progression to acute myeloid leukemia (AML). Splicing factor mutations (including genes SF3B1, SRSF2, U2AF1, and ZRSR2) are early events identified in more than 50% of MDS cases. These mutations cause aberrant pre-mRNA splicing and impact MDS pathophysiology. Emerging evidence shows that splicing factor-mutant cells are more sensitive to perturbations targeting the spliceosome, aberrantly spliced genes and/or their regulated molecular pathways. This review summarizes current therapeutic strategies and ongoing efforts targeting splicing factor mutations for the treatment of MDS.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
6
|
Leppä AM, Grimes K, Jeong H, Huang FY, Andrades A, Waclawiczek A, Boch T, Jauch A, Renders S, Stelmach P, Müller-Tidow C, Karpova D, Sohn M, Grünschläger F, Hasenfeld P, Benito Garagorri E, Thiel V, Dolnik A, Rodriguez-Martin B, Bullinger L, Mrózek K, Eisfeld AK, Krämer A, Sanders AD, Korbel JO, Trumpp A. Single-cell multiomics analysis reveals dynamic clonal evolution and targetable phenotypes in acute myeloid leukemia with complex karyotype. Nat Genet 2024; 56:2790-2803. [PMID: 39587361 PMCID: PMC11631769 DOI: 10.1038/s41588-024-01999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
Chromosomal instability is a major driver of intratumoral heterogeneity (ITH), promoting tumor progression. In the present study, we combined structural variant discovery and nucleosome occupancy profiling with transcriptomic and immunophenotypic changes in single cells to study ITH in complex karyotype acute myeloid leukemia (CK-AML). We observed complex structural variant landscapes within individual cells of patients with CK-AML characterized by linear and circular breakage-fusion-bridge cycles and chromothripsis. We identified three clonal evolution patterns in diagnosis or salvage CK-AML (monoclonal, linear and branched polyclonal), with 75% harboring multiple subclones that frequently displayed ongoing karyotype remodeling. Using patient-derived xenografts, we demonstrated varied clonal evolution of leukemic stem cells (LSCs) and further dissected subclone-specific drug-response profiles to identify LSC-targeting therapies, including BCL-xL inhibition. In paired longitudinal patient samples, we further revealed genetic evolution and cell-type plasticity as mechanisms of disease progression. By dissecting dynamic genomic, phenotypic and functional complexity of CK-AML, our findings offer clinically relevant avenues for characterizing and targeting disease-driving LSCs.
Collapse
Affiliation(s)
- Aino-Maija Leppä
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Karen Grimes
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Hyobin Jeong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Frank Y Huang
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alvaro Andrades
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Alexander Waclawiczek
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Tobias Boch
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Stelmach
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Markus Sohn
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Florian Grünschläger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Vera Thiel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Anna Dolnik
- Charité Medical Department, Division of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | | | - Lars Bullinger
- Charité Medical Department, Division of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - Krzysztof Mrózek
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ann-Kathrin Eisfeld
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Ashley D Sanders
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg, Germany.
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
7
|
Hwang J, Kim HN, Kwon JA, Yoon SY, Jeon MJ, Yu ES, Kim DS, Choi CW, Yoon J. Impact of TP53 mutation on genetic and cellular hierarchy profile in complex karyotype AML/MDS with increased blasts. Blood Cancer J 2024; 14:201. [PMID: 39548077 PMCID: PMC11568287 DOI: 10.1038/s41408-024-01188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Affiliation(s)
- Jinha Hwang
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Ha Nui Kim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Jung Ah Kwon
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Min Ji Jeon
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Eun Sang Yu
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Dae Sik Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Chul Won Choi
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Jung Yoon
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
8
|
Rammal S, Abou Abdallah F, Attieh C, El Mounajjed Z, Semaan W, Chebly A. Complex karyotypes in hematologic disorders: a 12-year single-center study from Lebanon. Front Oncol 2024; 14:1480793. [PMID: 39512772 PMCID: PMC11540823 DOI: 10.3389/fonc.2024.1480793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Conventional cytogenetic analysis is an important tool for the diagnosis of many hematologic disorders (HD). A karyotype is designed as « complex » when several alterations are detected. However, there is no clear consensus on the exact definition of a complex karyotype (CK), and there is a lack of studies that exclusively analyze CK in the literature. Complex karyotypes were analyzed over a period of 12 years at the Jacques Loiselet Center for Medical Genetics and Genomics (CGGM) at Saint Joseph University in Beirut (USJ) in Lebanon. 255 CK were analyzed with their associated chromosomal abnormalities (CA) detected. Out of 255 patients, 59.22% were males with a mean age of 59 years. The most common anomaly associated with CK was hyperdiploidy with a prevalence of 22.41%, which is different from a previously published study. To our knowledge, this represents the largest series of CK, particularly within the Middle East region. This study underscores the critical role of conventional cytogenetics in detecting CK, ultimately contributing to improved management of HD. Further investigations focusing on CK are needed.
Collapse
Affiliation(s)
- Souraya Rammal
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Farid Abou Abdallah
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Charbel Attieh
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Zeinab El Mounajjed
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Warde Semaan
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Alain Chebly
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| |
Collapse
|
9
|
Salman H. Comparative Analysis of AML Classification Systems: Evaluating the WHO, ICC, and ELN Frameworks and Their Distinctions. Cancers (Basel) 2024; 16:2915. [PMID: 39199685 PMCID: PMC11352995 DOI: 10.3390/cancers16162915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Comprehensive analyses of the molecular heterogeneity of acute myelogenous leukemia, AML, particularly when malignant cells retain normal karyotype, has significantly evolved. In 2022, significant revisions were introduced in the World Health Organization (WHO) classification and the European LeukemiaNet (ELN) 2022 guidelines of acute myeloid leukemia (AML). These revisions coincided with the inception of the first version of the International Consensus Classification (ICC) for AML. These modifications aim to improve diagnosis and treatment outcomes via a comprehensive incorporation of sophisticated genetic and clinical parameters as well as facilitate accruals to innovative clinical trials. Key updates include modifications to the blast count criteria for AML diagnosis, with WHO 2022 eliminating the ≥20% blast requirement in the presence of AML-defining abnormalities and ICC 2022 setting a 10% cutoff for recurrent genetic abnormalities. Additionally, new categories, such as AML with mutated TP53 and MDS/AML, were introduced. ELN 2022 guidelines retained risk stratification approach and emphasized the critical role of measurable residual disease (MRD) that increased the use of next-generation sequencing (NGS) and flow cytometry testing. These revisions underscore the importance of precise classification for targeted treatment strategies and improved patient outcomes. How much difference versus concordance these classifications present and the impact of those on clinical practice is a continuing discussion.
Collapse
Affiliation(s)
- Huda Salman
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Balciuniene J, Ning Y, Lazarus HM, Aikawa V, Sherpa S, Zhang Y, Morrissette JJD. Cancer cytogenetics in a genomics world: Wedding the old with the new. Blood Rev 2024; 66:101209. [PMID: 38852016 DOI: 10.1016/j.blre.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
Since the discovery of the Philadelphia chromosome in 1960, cytogenetic studies have been instrumental in detecting chromosomal abnormalities that can inform cancer diagnosis, treatment, and risk assessment efforts. The initial expansion of cancer cytogenetics was with fluorescence in situ hybridization (FISH) to assess submicroscopic alterations in dividing or non-dividing cells and has grown into the incorporation of chromosomal microarrays (CMA), and next generation sequencing (NGS). These molecular technologies add additional dimensions to the genomic assessment of cancers by uncovering cytogenetically invisible molecular markers. Rapid technological and bioinformatic advances in NGS are so promising that the idea of performing whole genome sequencing as part of routine patient care may soon become economically and logistically feasible. However, for now cytogenetic studies continue to play a major role in the diagnostic testing and subsequent assessments in leukemia with other genomic studies serving as complementary testing options for detection of actionable genomic abnormalities. In this review, we discuss the role of conventional cytogenetics (karyotyping, chromosome analysis) and FISH studies in hematological malignancies, highlighting the continued clinical utility of these techniques, the subtleties and complexities that are relevant to treating physicians and the unique strengths of cytogenetics that cannot yet be paralleled by the current high-throughput molecular technologies. Additionally, we describe how CMA, optical genome mapping (OGM), and NGS detect abnormalities that were beyond the capacity of cytogenetic studies and how an integrated approach (broad molecular testing) can contribute to the detection of actionable targets and variants in malignancies. Finally, we discuss advances in the field of genomic testing that are bridging the advantages of individual (single) cell based cytogenetic testing and broad genomic testing.
Collapse
Affiliation(s)
- Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Ning
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Vania Aikawa
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarina Sherpa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Jiménez-Vicente C, Charry P, Castaño-Diez S, Guijarro F, López-Guerra M, Pérez-Valencia AI, Martinez-Roca A, Cortés-Bullich A, Munárriz D, Solano MT, Rosiñol L, Carreras E, Urbano-Ispizua Á, Fernández-Avilés F, Martinez C, Suárez-Lledó M, Díaz-Beyá M, Rovira M, Salas MQ, Esteve J. Evaluation of European LeukemiaNet 2022 risk classification in patients undergoing allogeneic haematopoietic stem cell transplantation for acute myeloid leukaemia: Identification of a very poor prognosis genetic group. Br J Haematol 2024; 205:256-267. [PMID: 38811025 DOI: 10.1111/bjh.19518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
European LeukemiaNet refined their risk classification of acute myeloid leukaemia (AML) in 2022 (ELN 2022) according to the two new myeloid classifications published the same year. We have retrospectively assessed the prognostic value of the ELN 2022 in 120 AML patients undergoing allogeneic haematopoietic cell transplantation (allo-HCT), including 99 in first complete response (CR1) from 2011 to 2021 in our centre. Adverse risk patients (Adv) presented inferior outcome in terms of overall survival (OS) and leukaemia-free survival (LFS) (OS [p = 0.003], LFS [p = 0.02]), confirmed in multivariate analysis (hazard ratio [HR] for OS = 2.00, p = 0.037). These results were also seen in patients allografted in CR1. Further analysis identified a subgroup named adverse-plus (AdvP), including complex karyotype, MECOM(EVI1) rearrangements and TP53 mutations, with worse outcomes than the rest of groups of patients, including the Adv (HR for OS: 3.14, p < 0.001, HR for LFS: 3.36, p < 0.001), with higher 2-year cumulative incidence of relapse (p < 0.001). Notably, within this analysis, the outcome of Adv and intermediate patients were similar. These findings highlight the prognostic value of ELN 2022 in patients undergoing allo-HCT, which can be improved by the recognition of a poor genetic subset (AdvP) within the Adv risk group.
Collapse
Affiliation(s)
- Carlos Jiménez-Vicente
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paola Charry
- Apheresis and Cellular Therapy Unit, Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sandra Castaño-Diez
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesca Guijarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hemopathology Unit, Pathology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Mònica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Apheresis and Cellular Therapy Unit, Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Amanda Isabel Pérez-Valencia
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alexandra Martinez-Roca
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Cortés-Bullich
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Munárriz
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Laura Rosiñol
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Álvaro Urbano-Ispizua
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Carmen Martinez
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Suárez-Lledó
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marina Díaz-Beyá
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Montserrat Rovira
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - María Queralt Salas
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Esteve
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| |
Collapse
|
12
|
Della Porta MG, Martinelli G, Rambaldi A, Santoro A, Voso MT. A practical algorithm for acute myeloid leukaemia diagnosis following the updated 2022 classifications. Crit Rev Oncol Hematol 2024; 198:104358. [PMID: 38615870 DOI: 10.1016/j.critrevonc.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Disease classification of complex and heterogenous diseases, such as acute myeloid leukaemia (AML), is continuously updated to define diagnoses, appropriate treatments, and assist research and education. Recent availability of molecular profiling techniques further benefits the classification of AML. The World Health Organization (WHO) classification of haematolymphoid tumours and the International Consensus Classification of myeloid neoplasms and acute leukaemia from 2022 are two updated versions of the WHO 2016 classification. As a consequence, the European LeukemiaNet 2022 recommendations on the diagnosis and management of AML in adults have been also updated. The current review provides a practical interpretation of these guidelines to facilitate the diagnosis of AML and discusses genetic testing, disease genetic heterogeneity, and FLT3 mutations. We propose a practical algorithm for the speedy diagnosis of AML. Future classifications may need to incorporate gene mutation combinations to enable personalised treatment regimens in the management of patients with AML.
Collapse
Affiliation(s)
- Matteo Giovanni Della Porta
- Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Armadori", Meldola, Italy; University of Bologna, Bologna, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan, Milan, Italy and Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Santoro
- UOSD Laboratory of Oncohematology, Cellular Manipulation and Cytogenetics, Department of Genetic, Oncohematology a Rare Disease, AOR "Villa Sofia-Cervello", Palermo, Italy
| | - Maria Teresa Voso
- UOSD Diagnostica Avanzata Oncoematologia, Policlinico Tor Vergata, and Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
13
|
Santoro N, Salutari P, Di Ianni M, Marra A. Precision Medicine Approaches in Acute Myeloid Leukemia with Adverse Genetics. Int J Mol Sci 2024; 25:4259. [PMID: 38673842 PMCID: PMC11050344 DOI: 10.3390/ijms25084259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of acute myeloid leukemia (AML) with adverse genetics remains unsatisfactory, with very low response rates to standard chemotherapy and shorter durations of remission commonly observed in these patients. The complex biology of AML with adverse genetics is continuously evolving. Herein, we discuss recent advances in the field focusing on the contribution of molecular drivers of leukemia biogenesis and evolution and on the alterations of the immune system that can be exploited with immune-based therapeutic strategies. We focus on the biological rationales for combining targeted therapy and immunotherapy, which are currently being investigated in ongoing trials, and could hopefully ameliorate the poor outcomes of patients affected by AML with adverse genetics.
Collapse
Affiliation(s)
- Nicole Santoro
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Prassede Salutari
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Mauro Di Ianni
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
- Department of Medicine and Science of Aging, “G.D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Marra
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00196 Rome, Italy
| |
Collapse
|
14
|
Liu FS, Huang HL. Case report: One case of acute myeloid leukemia M3 with atypical morphology. Front Oncol 2024; 14:1341840. [PMID: 38567145 PMCID: PMC10985165 DOI: 10.3389/fonc.2024.1341840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Acute promyelocytic leukemia (APL) is a type of acute myeloid leukemia. About 2% of APL is characterized by atypical rearrangements. Here we reported one APL case with atypical manifestations and morphology. A 35-year-old woman patient, mainly due to fatigue, poor appetite for over 10 days and intermittent fever for 3 days. combined with the results of flow cytometry, fusion gene and chromosome, the patient was diagnosed as AML-M3 with atypical morphology. Double induction therapy with retinoic acid and arsenous acid was immediately administrated. Idarubicin was administrated on the 18th day. A re-examination was performed in the 5th week, both the blood routine test and myelogram showed normal results, and the fusion gene turned negative, indicating complete remission. When atypical morphology occurs, peripheral blood POX staining may be performed to check the abnormal cells. Flow cytometry, chromosome analysis, and fusion gene analysis are also required for further diagnosis.
Collapse
Affiliation(s)
| | - Hua-Liang Huang
- Department of Laboratory, Inner Mongolia Baogang Hospital, Baotou, China
| |
Collapse
|
15
|
Snaith O, Poveda-Rogers C, Laczko D, Yang G, Morrissette JJD. Cytogenetics and genomics of acute myeloid leukemia. Best Pract Res Clin Haematol 2024; 37:101533. [PMID: 38490763 DOI: 10.1016/j.beha.2023.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/14/2023] [Accepted: 12/03/2023] [Indexed: 03/17/2024]
Abstract
The diversity of genetic and genomic abnormalities observed in acute myeloid leukemia (AML) reflects the complexity of these hematologic neoplasms. The detection of cytogenetic and molecular alterations is fundamental to diagnosis, risk stratification and treatment of AML. Chromosome rearrangements are well established in the diagnostic classification of AML, as are some gene mutations, in several international classification systems. Additionally, the detection of new mutational profiles at relapse and identification of mutations in the pre- and post-transplant settings are illuminating in understanding disease evolution and are relevant to the risk assessment of AML patients. In this review, we discuss recurrent cytogenetic abnormalities, as well as the detection of recurrent mutations, within the context of a normal karyotype, and in the setting of chromosome abnormalities. Two new classification schemes from the WHO and ICC are described, comparing these classifications in terms of diagnostic criteria and entity definition in AML. Finally, we discuss ways in which genomic sequencing can condense the detection of gene mutations and chromosome abnormalities into a single assay.
Collapse
Affiliation(s)
- Oraine Snaith
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey Poveda-Rogers
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Dorottya Laczko
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Guang Yang
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Eisfeld AK, Mardis ER. Acute Myeloid Leukemia Genomics: Impact on Care and Remaining Challenges. Clin Chem 2024; 70:4-12. [PMID: 38175584 DOI: 10.1093/clinchem/hvad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Ann-Kathrin Eisfeld
- Division of Hematology, The Ohio State University College of Medicine, Columbus, OH, United States
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Elaine R Mardis
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
17
|
Bewersdorf JP, Stahl M, Taylor J, Mi X, Chandhok NS, Watts J, Derkach A, Wysocki M, Lu SX, Bourcier J, Hogg SJ, Rahman J, Chaudhry S, Totiger TM, Abdel-Wahab O, Stein EM. E7820, an anti-cancer sulfonamide, degrades RBM39 in patients with splicing factor mutant myeloid malignancies: a phase II clinical trial. Leukemia 2023; 37:2512-2516. [PMID: 37814121 PMCID: PMC10681888 DOI: 10.1038/s41375-023-02050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Medicine; Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Justin Taylor
- Leukemia Program, Department of Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Xiaoli Mi
- Department of Medicine; Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Namrata Sonia Chandhok
- Leukemia Program, Department of Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Justin Watts
- Leukemia Program, Department of Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Andriy Derkach
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mateusz Wysocki
- Department of Medicine; Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sydney X Lu
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessie Bourcier
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon J Hogg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jahan Rahman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sana Chaudhry
- Leukemia Program, Department of Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Tulasigeri M Totiger
- Leukemia Program, Department of Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Omar Abdel-Wahab
- Department of Medicine; Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eytan M Stein
- Department of Medicine; Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Lee C, Kim HN, Kwon JA, Hwang J, Park JY, Shin OS, Yoon SY, Yoon J. Identification of a Complex Karyotype Signature with Clinical Implications in AML and MDS-EB Using Gene Expression Profiling. Cancers (Basel) 2023; 15:5289. [PMID: 37958462 PMCID: PMC10648390 DOI: 10.3390/cancers15215289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Complex karyotype (CK) is associated with a poor prognosis in both acute myeloid leukemia (AML) and myelodysplastic syndrome with excess blasts (MDS-EB). Transcriptomic analyses have improved our understanding of the disease and risk stratification of myeloid neoplasms; however, CK-specific gene expression signatures have been rarely investigated. In this study, we developed and validated a CK-specific gene expression signature. Differential gene expression analysis between the CK and non-CK groups using data from 348 patients with AML and MDS-EB from four cohorts revealed enrichment of the downregulated genes localized on chromosome 5q or 7q, suggesting that haploinsufficiency due to the deletion of these chromosomes possibly underlies CK pathogenesis. We built a robust transcriptional model for CK prediction using LASSO regression for gene subset selection and validated it using the leave-one-out cross-validation method for fitting the logistic regression model. We established a 10-gene CK signature (CKS) predictive of CK with high predictive accuracy (accuracy 94.22%; AUC 0.977). CKS was significantly associated with shorter overall survival in three independent cohorts, and was comparable to that of previously established risk stratification models for AML. Furthermore, we explored of therapeutic targets among the genes comprising CKS and identified the dysregulated expression of superoxide dismutase 1 (SOD1) gene, which is potentially amenable to SOD1 inhibitors.
Collapse
Affiliation(s)
- Cheonghwa Lee
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 08308, Republic of Korea; (C.L.); (H.N.K.); (J.A.K.); (J.H.)
| | - Ha Nui Kim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 08308, Republic of Korea; (C.L.); (H.N.K.); (J.A.K.); (J.H.)
| | - Jung Ah Kwon
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 08308, Republic of Korea; (C.L.); (H.N.K.); (J.A.K.); (J.H.)
| | - Jinha Hwang
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 08308, Republic of Korea; (C.L.); (H.N.K.); (J.A.K.); (J.H.)
| | - Ji-Ye Park
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea (O.S.S.)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea (O.S.S.)
| | - Soo-Young Yoon
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 08308, Republic of Korea; (C.L.); (H.N.K.); (J.A.K.); (J.H.)
| | - Jung Yoon
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 08308, Republic of Korea; (C.L.); (H.N.K.); (J.A.K.); (J.H.)
| |
Collapse
|
19
|
Duong VH, Ruppert AS, Mims AS, Borate U, Stein EM, Baer MR, Stock W, Kovacsovics T, Blum W, Arellano ML, Schiller GJ, Olin RL, Foran JM, Litzow MR, Lin TL, Patel PA, Foster MC, Redner RL, Al-Mansour Z, Cogle CR, Swords RT, Collins RH, Vergilio JA, Heerema NA, Rosenberg L, Yocum AO, Marcus S, Chen T, Druggan F, Stefanos M, Gana TJ, Shoben AB, Druker BJ, Burd A, Byrd JC, Levine RL, Boyiadzis MM. Entospletinib with decitabine in acute myeloid leukemia with mutant TP53 or complex karyotype: A phase 2 substudy of the Beat AML Master Trial. Cancer 2023; 129:2308-2320. [PMID: 37078412 PMCID: PMC11225573 DOI: 10.1002/cncr.34780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Patients with acute myeloid leukemia (AML) who have tumor protein p53 (TP53) mutations or a complex karyotype have a poor prognosis, and hypomethylating agents are often used. The authors evaluated the efficacy of entospletinib, an oral inhibitor of spleen tyrosine kinase, combined with decitabine in this patient population. METHODS This was a multicenter, open-label, phase 2 substudy of the Beat AML Master Trial (ClinicalTrials.gov identifier NCT03013998) using a Simon two-stage design. Eligible patients aged 60 years or older who had newly diagnosed AML with mutations in TP53 with or without a complex karyotype (cohort A; n = 45) or had a complex karyotype without TP53 mutation (cohort B; n = 13) received entospletinib 400 mg twice daily with decitabine 20 mg/m2 on days 1-10 every 28 days for up to three induction cycles, followed by up to 11 consolidation cycles, in which decitabine was reduced to days 1-5. Entospletinib maintenance was given for up to 2 years. The primary end point was complete remission (CR) and CR with hematologic improvement by up to six cycles of therapy. RESULTS The composite CR rates for cohorts A and B were 13.3% (95% confidence interval, 5.1%-26.8%) and 30.8% (95% confidence interval, 9.1%-61.4%), respectively. The median duration of response was 7.6 and 8.2 months, respectively, and the median overall survival was 6.5 and 11.5 months, respectively. The study was stopped because the futility boundary was crossed in both cohorts. CONCLUSIONS The combination of entospletinib and decitabine demonstrated activity and was acceptably tolerated in this patient population; however, the CR rates were low, and overall survival was short. Novel treatment strategies for older patients with TP53 mutations and complex karyotype remain an urgent need.
Collapse
Affiliation(s)
- Vu H. Duong
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Amy S. Ruppert
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Uma Borate
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Eytan M. Stein
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Wendy Stock
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Tibor Kovacsovics
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, USA
| | - William Blum
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | - Gary J. Schiller
- David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Rebecca L. Olin
- Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, California, USA
| | - James M. Foran
- Hematology and Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mark R. Litzow
- Departments of Medical Oncology, Hematology, and Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tara L. Lin
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prapti A. Patel
- University of Texas Southwestern Medical Center Medical School, Dallas, Texas, USA
| | - Matthew C. Foster
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert L. Redner
- Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zeina Al-Mansour
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Ronan T. Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert H. Collins
- University of Texas Southwestern Medical Center Medical School, Dallas, Texas, USA
| | | | - Nyla A. Heerema
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Sonja Marcus
- The Leukemia & Lymphoma Society, Rye Brook, New York, USA
| | - Timothy Chen
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Franchesca Druggan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mona Stefanos
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Abigail B. Shoben
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Amy Burd
- The Leukemia & Lymphoma Society, Rye Brook, New York, USA
| | - John C. Byrd
- Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ross L. Levine
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael M. Boyiadzis
- Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Boscaro E, Urbino I, Catania FM, Arrigo G, Secreto C, Olivi M, D'Ardia S, Frairia C, Giai V, Freilone R, Ferrero D, Audisio E, Cerrano M. Modern Risk Stratification of Acute Myeloid Leukemia in 2023: Integrating Established and Emerging Prognostic Factors. Cancers (Basel) 2023; 15:3512. [PMID: 37444622 DOI: 10.3390/cancers15133512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
An accurate estimation of AML prognosis is complex since it depends on patient-related factors, AML manifestations at diagnosis, and disease genetics. Furthermore, the depth of response, evaluated using the level of MRD, has been established as a strong prognostic factor in several AML subgroups. In recent years, this rapidly evolving field has made the prognostic evaluation of AML more challenging. Traditional prognostic factors, established in cohorts of patients treated with standard intensive chemotherapy, are becoming less accurate as new effective therapies are emerging. The widespread availability of next-generation sequencing platforms has improved our knowledge of AML biology and, consequently, the recent ELN 2022 recommendations significantly expanded the role of new gene mutations. However, the impact of rare co-mutational patterns remains to be fully disclosed, and large international consortia such as the HARMONY project will hopefully be instrumental to this aim. Moreover, accumulating evidence suggests that clonal architecture plays a significant prognostic role. The integration of clinical, cytogenetic, and molecular factors is essential, but hierarchical methods are reaching their limit. Thus, innovative approaches are being extensively explored, including those based on "knowledge banks". Indeed, more robust prognostic estimations can be obtained by matching each patient's genomic and clinical data with the ones derived from very large cohorts, but further improvements are needed.
Collapse
Affiliation(s)
- Eleonora Boscaro
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Irene Urbino
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Federica Maria Catania
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giulia Arrigo
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Carolina Secreto
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Matteo Olivi
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Stefano D'Ardia
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Chiara Frairia
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Valentina Giai
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Roberto Freilone
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Dario Ferrero
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Ernesta Audisio
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Marco Cerrano
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
21
|
Qin G, Han X. The Prognostic Value of TP53 Mutations in Adult Acute Myeloid Leukemia: A Meta-Analysis. Transfus Med Hemother 2023; 50:234-244. [PMID: 37435002 PMCID: PMC10331159 DOI: 10.1159/000526174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/24/2022] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE Mutations of the tumor protein p53 (TP53) gene were considered to be associated with an unfavorable prognosis in acute myeloid leukemia (AML). This meta-analysis aimed to systematically elucidate the prognostic value of TP53 mutation in adult patients with AML. METHOD A comprehensive literature search was conducted for eligible studies published before August 2021. The primary endpoint was overall survival (OS). Pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) were calculated for prognostic parameters. Subgroup analyses based on intensive treatment were performed. RESULTS Thirty-two studies with 7,062 patients were included. As compared to wild-type carriers, AML patients with TP53 mutations had significantly shorter OS (HR: 2.40, 95% CI: 2.16-2.67, I2: 46.6%). Similar results were found in DFS (HR: 2.87, 95% CI: 1.88-4.38), EFS (HR: 2.56, 95% CI: 1.97-3.31), and RFS (HR: 2.40, 95% CI: 1.79-3.22). Mutant TP53 predicted inferior OS (HR: 2.77, 95% CI: 2.41-3.18) in the intensively treated AML subgroup, compared with the non-intensively treated group (HR: 1.89, 95% CI: 1.58-2.26). Among intensively-treated AML patients, the age of 65 did not affect the prognostic value of TP53 mutations. Besides, TP53 mutation was also strongly associated with an elevated risk of adverse cytogenetics, which conferred a dismal OS in AML patients (HR: 2.03, 95% CI: 1.74-2.37). CONCLUSION TP53 mutation exhibits a promising potential for discriminating AML patients with a worse prognosis, thus being capable of serving as a novel tool for prognostication and therapeutic decision-making in the management of AML.
Collapse
Affiliation(s)
- Guoxiang Qin
- Department of Hematology, Jincheng People's Hospital, Jincheng, China
| | - Xueling Han
- Hospital Office, Zezhou People's Hospital, Jincheng, China
| |
Collapse
|
22
|
Ogbue O, Unlu S, Ibodeng GO, Singh A, Durmaz A, Visconte V, Molina JC. Single-Cell Next-Generation Sequencing to Monitor Hematopoietic Stem-Cell Transplantation: Current Applications and Future Perspectives. Cancers (Basel) 2023; 15:cancers15092477. [PMID: 37173944 PMCID: PMC10177286 DOI: 10.3390/cancers15092477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are genetically complex and diverse diseases. Such complexity makes challenging the monitoring of response to treatment. Measurable residual disease (MRD) assessment is a powerful tool for monitoring response and guiding therapeutic interventions. This is accomplished through targeted next-generation sequencing (NGS), as well as polymerase chain reaction and multiparameter flow cytometry, to detect genomic aberrations at a previously challenging leukemic cell concentration. A major shortcoming of NGS techniques is the inability to discriminate nonleukemic clonal hematopoiesis. In addition, risk assessment and prognostication become more complicated after hematopoietic stem-cell transplantation (HSCT) due to genotypic drift. To address this, newer sequencing techniques have been developed, leading to more prospective and randomized clinical trials aiming to demonstrate the prognostic utility of single-cell next-generation sequencing in predicting patient outcomes following HSCT. This review discusses the use of single-cell DNA genomics in MRD assessment for AML/MDS, with an emphasis on the HSCT time period, including the challenges with current technologies. We also touch on the potential benefits of single-cell RNA sequencing and analysis of accessible chromatin, which generate high-dimensional data at the cellular resolution for investigational purposes, but not currently used in the clinical setting.
Collapse
Affiliation(s)
- Olisaemeka Ogbue
- Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, USA
| | - Serhan Unlu
- Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, USA
| | - Gogo-Ogute Ibodeng
- Internal Medicine, Infirmary Health's Thomas Hospital, Fairhope, AL 36607, USA
| | - Abhay Singh
- Department of Hematology Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44106, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44106, USA
| | - John C Molina
- Department of Hematology Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Desai SS, Ravindran F, Panchal A, Ojha N, Jadhav S, Choudhary B. Whole transcriptome sequencing reveals HOXD11-AGAP3, a novel fusion transcript in the Indian acute leukemia cohort. Front Genet 2023; 14:1100587. [PMID: 37113989 PMCID: PMC10126405 DOI: 10.3389/fgene.2023.1100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Acute leukemia is a heterogeneous disease with distinct genotypes and complex karyotypes leading to abnormal proliferation of hematopoietic cells. According to GLOBOCAN reports, Asia accounts for 48.6% of leukemia cases, and India reports ~10.2% of all leukemia cases worldwide. Previous studies have shown that the genetic landscape of AML in India is significantly different from that in the western population by WES. Methods: We have sequenced and analyzed 9 acute myeloid leukemia (AML) transcriptome samples in the present study. We performed fusion detection in all the samples and categorized the patients based on cytogenetic abnormalities, followed by a differential expression analysis and WGCNA analysis. Finally, Immune profiles were obtained using CIBERSORTx. Results: We found a novel fusion HOXD11-AGAP3 in 3 patients, BCR-ABL1 in 4, and KMT2A-MLLT3 in one patient. Categorizing the patients based on their cytogenetic abnormalities and performing a differential expression analysis, followed by WGCNA analysis, we observed that in the HOXD11-AGAP3 group, correlated co-expression modules were enriched with genes from pathways like Neutrophil degranulation, Innate Immune system, ECM degradation, and GTP hydrolysis. Additionally, we obtained HOXD11-AGAP3-specific overexpression of chemokines CCL28 and DOCK2. Immune profiling using CIBRSORTx revealed differences in the immune profiles across all the samples. We also observed HOXD11-AGAP3-specific elevated expression of lincRNA HOTAIRM1 and its interacting partner HOXA2. Discussion: The findings highlight population-specific HOXD11-AGAP3, a novel cytogenetic abnormality in AML. The fusion led to alterations in immune system represented by CCL28 and DOCK2 over-expression. Interestingly, in AML, CCL28 is known prognostic marker. Additionally, non-coding signatures (HOTAIRM1) were observed specific to the HOXD11-AGAP3 fusion transcript which are known to be implicated in AML.
Collapse
Affiliation(s)
- Sagar Sanjiv Desai
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Febina Ravindran
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Amey Panchal
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Nishit Ojha
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Sachin Jadhav
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| |
Collapse
|
24
|
Rausch C, Rothenberg-Thurley M, Dufour A, Schneider S, Gittinger H, Sauerland C, Görlich D, Krug U, Berdel WE, Woermann BJ, Hiddemann W, Braess J, von Bergwelt-Baildon M, Spiekermann K, Herold T, Metzeler KH. Validation and refinement of the 2022 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01884-2. [PMID: 37041198 DOI: 10.1038/s41375-023-01884-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The revised 2022 European LeukemiaNet (ELN) AML risk stratification system requires validation in large, homogeneously treated cohorts. We studied 1118 newly diagnosed AML patients (median age, 58 years; range, 18-86 years) who received cytarabine-based induction chemotherapy between 1999 and 2012 and compared ELN-2022 to the previous ELN-2017 risk classification. Key findings were validated in a cohort of 1160 mostly younger patients. ELN-2022 reclassified 15% of patients, 3% into more favorable, and 12% into more adverse risk groups. This was mainly driven by patients reclassified from intermediate- to adverse-risk based on additional myelodysplasia-related mutations being included as adverse-risk markers. These patients (n = 79) had significantly better outcomes than patients with other adverse-risk genotypes (5-year OS, 26% vs. 12%) and resembled the remaining intermediate-risk group. Overall, time-dependent ROC curves and Harrel's C-index controlling for age, sex, and AML type (de novo vs. sAML/tAML) show slightly worse prognostic discrimination of ELN-2022 compared to ELN-2017 for OS. Further refinement of ELN-2022 without including additional genetic markers is possible, in particular by recognizing TP53-mutated patients with complex karyotypes as "very adverse". In summary, the ELN-2022 risk classification identifies a larger group of adverse-risk patients at the cost of slightly reduced prognostic accuracy compared to ELN-2017.
Collapse
Affiliation(s)
- Christian Rausch
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Annika Dufour
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Gittinger
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Cristina Sauerland
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | | | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Michael von Bergwelt-Baildon
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Klaus H Metzeler
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
25
|
Shah MV, Tran ENH, Shah S, Chhetri R, Baranwal A, Ladon D, Shultz C, Al-Kali A, Brown AL, Chen D, Scott HS, Greipp P, Thomas D, Alkhateeb HB, Singhal D, Gangat N, Kumar S, Patnaik MM, Hahn CN, Kok CH, Tefferi A, Hiwase DK. TP53 mutation variant allele frequency of ≥10% is associated with poor prognosis in therapy-related myeloid neoplasms. Blood Cancer J 2023; 13:51. [PMID: 37041128 PMCID: PMC10090194 DOI: 10.1038/s41408-023-00821-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Revised diagnostic criteria for myeloid neoplasms (MN) issued by the International Consensus Classification (ICC) and the World Health Organization (WHO) recommended major change pertaining to TP53-mutated (TP53mut) MN. However, these assertions have not been specifically examined in therapy-related myeloid neoplasm (t-MN), a subset enriched with TP53mut. We analyzed 488 t-MN patients for TP53mut. At least one TP53mut with variant allele frequency (VAF) ≥ 2% with or without loss of TP53 locus was noted in 182 (37.3%) patients and 88.2% of TP53mut t-MN had a VAF ≥10%. TP53mut t-MN with VAF ≥ 10% had a distinct clinical and biological profile compared to both TP53mut VAF < 10% and wild-type TP53 (TP53wt) cases. Notably, TP53mut VAF ≥ 10% had a significantly shorter survival compared to TP53wt (8.3 vs. 21.6 months; P < 0.001), while the survival of TP53mut VAF < 10% was comparable to TP53wt. Within TP53mut VAF ≥ 10% cohort, the inferior outcomes persisted irrespective of the single- or multi-hit status, co-mutation pattern, or treatments received. Finally, survival of TP53mut patients was poor across all the blast categories and MDS patients with >10% blasts had inferior survival compared to <5%. In summary, TP53mut VAF ≥10% signified a clinically and molecularly homogenous cohort regardless of the allelic status.
Collapse
Affiliation(s)
| | - Elizabeth Ngoc Hoa Tran
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
| | - Syed Shah
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Rakchha Chhetri
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | | | - Dariusz Ladon
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Carl Shultz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Anna L Brown
- University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hamish S Scott
- University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Patricia Greipp
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Thomas
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
| | | | - Deepak Singhal
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | | | - Sharad Kumar
- University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | | | - Christopher N Hahn
- University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Chung Hoow Kok
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | | | - Devendra K Hiwase
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
- University of Adelaide, Adelaide, SA, Australia.
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
| |
Collapse
|
26
|
Frisch A, Rowe JM, Ofran Y. The increasingly blurred line between induction, consolidation and maintenance in acute myeloid leukaemia. Br J Haematol 2023; 200:556-562. [PMID: 36572392 DOI: 10.1111/bjh.18613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Since the early 1970s, the treatment of acute myeloid leukaemia (AML) has undergone a major transformation. Initially based on only two drugs, an anthracycline and cytosine arabinoside, the aim of therapy was to achieve a haematological response allowing patients to recover and go home. Back in those early days, cure was not a realistic expectation. Treatment was analogous to a heart attack; upon recovery and a short respite, recurrence and death inevitably followed. Over the subsequent decades, slow but remarkable progress was made such that a subgroup of young adults could become long-term survivors. This astonishing feat was achieved initially without the use of new drugs. Supportive care played a major role with the widespread availability of platelet transfusions and improved antimicrobial therapy, particularly antifungal. No less important was the better use of existing drugs and the development of allogeneic haematopoietic cell transplantation. While initially the focus was on maximal tolerated therapy, an understanding of the immunologic role of allogeneic transplantation, better genetic characterization of the biology of the disease, advanced tools for detection of minimal disease as well as the recent development of new drugs changed the focus to a more refined approach targeting patients who are more likely to respond. Clearly, the historical paradigm where the term AML was generic and applicable to all patients requires a rethinking from the traditional therapeutic demarcations of therapy into phases of induction, consolidation and maintenance. These evolving new concepts and paradigm will be herein considered.
Collapse
Affiliation(s)
- Avi Frisch
- Department of Hematology and Bone Marrow Transplantation, Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| | - Jacob M Rowe
- Department of Hematology and Bone Marrow Transplantation, Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel.,Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yishai Ofran
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Yoshida S, Onozawa M, Miyashita N, Kimura H, Takahashi S, Yokoyama S, Matsukawa T, Hirabayashi S, Mori A, Hidaka D, Minauchi K, Shigematsu A, Hashiguchi J, Igarashi T, Kakinoki Y, Tsutsumi Y, Ibata M, Kobayashi H, Haseyama Y, Fujimoto K, Ishihara T, Sakai H, Ota S, Kondo T, Teshima T. Clinical features of complex karyotype in newly diagnosed acute myeloid leukemia. Int J Hematol 2022; 117:544-552. [PMID: 36572814 DOI: 10.1007/s12185-022-03522-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
Complex karyotype acute myeloid leukemia (CK-AML) has been classified as an adverse-risk subtype. Although a few reports have further classified CK-AML as typical (including monosomy of chromosomes 5, 7 and 17 or deletion of 5q, 7q and/or 17p) or atypical, the clinical features of these subtypes in Japanese patients remain unclear. We retrospectively analyzed a total of 115 patients with CK-AML, including 77 with typical CK-AML and 38 with atypical CK-AML. Median overall survival (OS) was significantly shorter in patients with typical CK-AML than atypical CK-AML (143 days vs. 369 days, P = 0.009). Among patients with typical CK-AML, those with monosomy 17 or deletion of 17p had significantly shorter OS than patients without such abnormalities (105 days vs. 165 days, P = 0.033). TP53 mutations were more predominant in patients with typical CK-AML than in patients with atypical CK-AML (69.7% vs. 32.4%, P < 0.001). Patients with typical CK-AML had a poor prognosis regardless of TP53 mutation status. Among patients with atypical CK-AML, however, prognosis was worse for those with the TP53 mutation than those without the mutation. In conclusion, prognosis is extremely poor for both typical CK-AML and atypical CK-AML with TP53 mutation.
Collapse
|
28
|
Villar S, Ariceta B, Agirre X, Urribarri AD, Ayala R, Martínez-Cuadrón D, Bergua JM, Vives S, Algarra L, Tormo M, Martínez P, Serrano J, Simoes C, Herrera P, Calasanz MJ, Alfonso-Piérola A, Paiva B, Martínez-López J, San Miguel JF, Prósper F, Montesinos P. The transcriptomic landscape of elderly acute myeloid leukemia identifies B7H3 and BANP as a favorable signature in high-risk patients. Front Oncol 2022; 12:1054458. [PMID: 36505804 PMCID: PMC9729799 DOI: 10.3389/fonc.2022.1054458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) in the elderly remains a clinical challenge, with a five-year overall survival rate below 10%. The current ELN 2017 genetic risk classification considers cytogenetic and mutational characteristics to stratify fit AML patients into different prognostic groups. However, this classification is not validated for elderly patients treated with a non-intensive approach, and its performance may be suboptimal in this context. Indeed, the transcriptomic landscape of AML in the elderly has been less explored and it might help stratify this group of patients. In the current study, we analyzed the transcriptome of 224 AML patients > 65 years-old at diagnosis treated in the Spanish PETHEMA-FLUGAZA clinical trial in order to identify new prognostic biomarkers in this population. We identified a specific transcriptomic signature for high-risk patients with mutated TP53 or complex karyotype, revealing that low expression of B7H3 gene with high expression of BANP gene identifies a subset of high-risk AML patients surviving more than 12 months. This result was further validated in the BEAT AML cohort. This unique signature highlights the potential of transcriptomics to identify prognostic biomarkers in in elderly AML.
Collapse
Affiliation(s)
- Sara Villar
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Beñat Ariceta
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,Centro de Investigación Médica Aplicada (CIMA) LAB Diagnostics, Universidad de Navarra, Pamplona, Spain,Program of Hematology-Oncology, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Xabier Agirre
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,Program of Hematology-Oncology, CIMA, Universidad de Navarra, Pamplona, Spain
| | | | - Rosa Ayala
- Hospital Universitario 12 de octubre, Madrid, Spain
| | | | | | - Susana Vives
- ICO Badalona- Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Mar Tormo
- Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Josefina Serrano
- Hospital Universitario Reina Sofía, Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Catia Simoes
- Program of Hematology-Oncology, CIMA, Universidad de Navarra, Pamplona, Spain
| | | | - Maria José Calasanz
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,Centro de Investigación Médica Aplicada (CIMA) LAB Diagnostics, Universidad de Navarra, Pamplona, Spain
| | - Ana Alfonso-Piérola
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Bruno Paiva
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,Centro de Investigación Médica Aplicada (CIMA) LAB Diagnostics, Universidad de Navarra, Pamplona, Spain
| | | | - Jesús F. San Miguel
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Felipe Prósper
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,*Correspondence: Felipe Prósper, ; Pau Montesinos,
| | - Pau Montesinos
- Hospital Universitario y Politécnico la Fe, Valencia, Spain,*Correspondence: Felipe Prósper, ; Pau Montesinos,
| |
Collapse
|
29
|
Zhao D, Eladl E, Zarif M, Capo‐Chichi J, Schuh A, Atenafu E, Minden M, Chang H. Molecular characterization of
AML‐MRC
reveals
TP53
mutation as an adverse prognostic factor irrespective of
MRC
‐defining criteria,
TP53
allelic state, or
TP53
variant allele frequency. Cancer Med 2022; 12:6511-6522. [PMID: 36394085 PMCID: PMC10067127 DOI: 10.1002/cam4.5421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) generally confers poor prognosis, however, patient outcomes are heterogeneous. The impact of TP53 allelic state and variant allele frequency (VAF) in AML-MRC remains poorly defined. METHODS We retrospectively evaluated 266 AML-MRC patients who had NGS testing at our institution from 2014 to 2020 and analyzed their clinical outcomes based on clinicopathological features. RESULTS TP53 mutations were associated with cytogenetic abnormalities in 5q, 7q, 17p, and complex karyotype. Prognostic evaluation of TP53MUT AML-MRC revealed no difference in outcome between TP53 double/multi-hit state and single-hit state. Patients with high TP53MUT variant allele frequency (VAF) had inferior outcomes compared to patients with low TP53MUT VAF. When compared to TP53WT patients, TP53MUT patients had inferior outcomes regardless of MRC-defining criteria, TP53 allelic state, or VAF. TP53 mutations and elevated serum LDH were independent predictors for inferior OS and EFS, while PHF6 mutations and transplantation were independent predictors for favorable OS and EFS. NRAS mutation was an independent predictor for favorable EFS. CONCLUSIONS Our study suggests that TP53MUT AML-MRC defines a very-high-risk subentity of AML in which novel therapies should be explored.
Collapse
Affiliation(s)
- Davidson Zhao
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - Entsar Eladl
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
- Department of Pathology, Faculty of Medicine Mansoura University Mansoura Egypt
| | - Mojgan Zarif
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - José‐Mario Capo‐Chichi
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - Andre Schuh
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - Eshetu Atenafu
- Department of Biostatistics University Health Network Toronto Ontario Canada
| | - Mark Minden
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| |
Collapse
|
30
|
Real-World Experience of Measurable Residual Disease Response and Prognosis in Acute Myeloid Leukemia Treated with Venetoclax and Azacitidine. Cancers (Basel) 2022; 14:cancers14153576. [PMID: 35892834 PMCID: PMC9332730 DOI: 10.3390/cancers14153576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The prognostic value of measurable residual disease (MRD) by flow cytometry in acute myeloid leukemia (AML) patients treated with non-intensive therapy is relatively unexplored. The clinical value of MRD threshold below 0.1% is also unknown after non-intensive therapy. In this study, MRD to a sensitivity of 0.01% was analyzed in sixty-three patients in remission after azacitidine/venetoclax treatment. Multivariable cox regression analysis identified prognostic factors associated with cumulative incidence of relapse (CIR), progression-free survival (PFS) and overall survival (OS). Patients who achieved MRD < 0.1% had a lower relapse rate than those who were MRD ≥ 0.1% at 18 months (13% versus 57%, p = 0.006). Patients who achieved an MRD-negative CR had longer median PFS and OS (not reached and 26.5 months) than those who were MRD-positive (12.6 and 10.3 months, respectively). MRD < 0.1% was an independent predictor for CIR, PFS, and OS, after adjusting for European Leukemia Net (ELN) risk, complex karyotype, and transplant (HR 5.92, 95% CI 1.34−26.09, p = 0.019 for PFS; HR 2.60, 95% CI 1.02−6.63, p = 0.046 for OS). Only an MRD threshold of 0.1%, and not 0.01%, was predictive for OS. Our results validate the recommended ELN MRD cut-off of 0.1% to discriminate between patients with improved CIR, PFS, and OS after azacitidine/venetoclax therapy.
Collapse
|
31
|
Lai X, Sun Y, Zhang X, Wang D, Wang J, Wang H, Zhao Y, Liu X, Xu X, Song H, Ping W, Sun Y, Hu Z. Honokiol Induces Ferroptosis by Upregulating HMOX1 in Acute Myeloid Leukemia Cells. Front Pharmacol 2022; 13:897791. [PMID: 35645831 PMCID: PMC9132251 DOI: 10.3389/fphar.2022.897791] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 01/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the malignant hematological cancers with high mortality. Finding a more effective and readily available treatment is of the utmost importance. Here, we aimed to identify the anti-leukemia effect of a natural small molecule compound honokiol on a panel of AML cell lines, including THP-1, U-937, and SKM-1, and explored honokiol’s potential biological pathways and mechanisms. The results showed that honokiol decreased the viability of the targeted AML cells, induced their cell cycle arrest at G0/G1 phase, and inhibited their colony-formation capacity. Honokiol also triggers a noncanonical ferroptosis pathway in THP-1 and U-937 cells by upregulating the level of intracellular lipid peroxide and HMOX1 significantly. Subsequent studies verified that HMOX1 was a critical target in honokiol-induced ferroptosis. These results reveal that honokiol is an effective anti-leukemia agent in AML cell lines and may be a potential ferroptosis activator in AML.
Collapse
Affiliation(s)
- Xingrong Lai
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
| | - Yanhua Sun
- Department of Hematology, Weifang People’s Hospital, Weifang, China
| | - Xuedi Zhang
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
| | - Dan Wang
- Weifang Medical University, Weifang, China
| | - Jialing Wang
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
| | - Haihua Wang
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yao Zhao
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xinling Liu
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xin Xu
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Haoran Song
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Wenjia Ping
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Yanli Sun
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Zhenbo Hu, ; Yanli Sun,
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Zhenbo Hu, ; Yanli Sun,
| |
Collapse
|
32
|
Sharma R, Jani C. Mapping incidence and mortality of leukemia and its subtypes in 21 world regions in last three decades and projections to 2030. Ann Hematol 2022; 101:1523-1534. [PMID: 35536353 DOI: 10.1007/s00277-022-04843-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
Abstract
This study examines the burden of leukemia and its subtypes at the global, regional, and national levels in 21 world regions and 204 countries in the last three decades. The estimates of incidence, deaths, and age-standardized rates of leukemia for 21 regions and 204 countries for 1990-2019 were extracted from the Global Burden of Disease 2019 study. Average annual percentage change in 1990-2019 for 21 regions was utilized for projecting leukemia burden in 2030. Globally, there were 643,579 [586,980-699,729] incident cases and 334,592 [306,818-360,214] deaths in 2019 due to leukemia, up from 474,924 [388,559-560,550] cases and 263,263 [233,664-298,696] deaths in 1990. Between 1990 and 2019, the age-standardized incidence rate (ASIR) decreased from 9.6 [8.1-11.0] in 1990 to 8.2 [7.5-8.9] per 100,000 person-years in 2019, and the age-standardized mortality rate (ASMR) decreased from 5.8/100,000 [5.2-6.4] in 1990 to 4.3/100,000 [3.9-4.6] in 2019. Between 1990 and 2019, the ASIR decreased in majority of regions except Western Europe and high-income Asia Pacific, whereas the ASMR decreased in all 21 regions. In 2019, country-wise, the ASIR varied from 3.0/100,000 [2.3-3.7] in Palau to 35.1/100,000 [26.4-47.2] in San Marino and the ASMR spanned from 2.3/100,000 [1.7-2.8] in San Marino to 15.8/100,000 [12.0-20.4] in Syria. As per our projections, globally, there will be 720,168 incident cases and 367,804 deaths due to leukemia in 2030. Substantial improvements have been witnessed in leukemia mortality rates in all regions, especially high-income regions and countries. Health care policies focusing on diagnostic improvements, cancer registration, and newer therapeutics at reduced cost or with insurance coverage are needed in low and middle-income countries.
Collapse
Affiliation(s)
- Rajesh Sharma
- University School of Management and Entreprenuership, Delhi Technological University, East Delhi Campus, Room No. 305, Vivek Vihar Phase II, Delhi, 110095, India.
| | - Chinmay Jani
- Mount Aubrun Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Nguyen-Khac F, Bidet A, Daudignon A, Lafage-Pochitaloff M, Ameye G, Bilhou-Nabéra C, Chapiro E, Collonge-Rame MA, Cuccuini W, Douet-Guilbert N, Eclache V, Luquet I, Michaux L, Nadal N, Penther D, Quilichini B, Terre C, Lefebvre C, Troadec MB, Véronèse L. The complex karyotype in hematological malignancies: a comprehensive overview by the Francophone Group of Hematological Cytogenetics (GFCH). Leukemia 2022; 36:1451-1466. [DOI: 10.1038/s41375-022-01561-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022]
|
34
|
Stavast CJ, van Zuijen I, Erkeland SJ. MicroRNA-139, an Emerging Gate-Keeper in Various Types of Cancer. Cells 2022; 11:cells11050769. [PMID: 35269391 PMCID: PMC8909004 DOI: 10.3390/cells11050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mounting data show that MIR139 is commonly silenced in solid cancer and hematological malignancies. MIR139 acts as a critical tumor suppressor by tuning the cellular response to different types of stress, including DNA damage, and by repressing oncogenic signaling pathways. Recently, novel insights into the mechanism of MIR139 silencing in tumor cells have been described. These include epigenetic silencing, inhibition of POL-II transcriptional activity on gene regulatory elements, enhanced expression of competing RNAs and post-transcriptional regulation by the microprocessor complex. Some of these MIR139-silencing mechanisms have been demonstrated in different types of cancer, suggesting that these are more general oncogenic events. Reactivation of MIR139 expression in tumor cells causes inhibition of tumor cell expansion and induction of cell death by the repression of oncogenic mRNA targets. In this review, we discuss the different aspects of MIR139 as a tumor suppressor gene and give an overview on different transcriptional mechanisms regulating MIR139 in oncogenic stress and across different types of cancer. The novel insights into the expression regulation and the tumor-suppressing activities of MIR139 may pave the way to new treatment options for cancer.
Collapse
|
35
|
Lee WY, Gutierrez-Lanz EA, Xiao H, McClintock D, Chan MP, Bixby DL, Shao L. ERG amplification is a secondary recurrent driver event in myeloid malignancy with complex karyotype and TP53 mutations. Genes Chromosomes Cancer 2022; 61:399-411. [PMID: 35083818 DOI: 10.1002/gcc.23027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/09/2022] Open
Abstract
ERG is a transcription factor encoded on chromosome 21q22.2 with important roles in hematopoiesis and oncogenesis of prostate cancer. ERG amplification has been identified as one of the most common recurrent events in acute myeloid leukemia with complex karyotype (AML-CK). In this study, we uncover 3 different modes of ERG amplification in AML-CK. Importantly, we present evidence to show that ERG amplification is distinct from intrachromosomal amplification of chromosome 21 (iAMP21), a hallmark segmental amplification frequently encompassing RUNX1 and ERG in a subset of high-risk B-lymphoblastic leukemia. We also characterize the association with TP53 aberrations and other chromosomal aberrations, including chromothripsis. Lastly, we show that ERG amplification can initially emerge as subclonal events in low grade myeloid neoplasms. These findings demonstrate that ERG amplification is a recurrent secondary driver event in AML and raise the tantalizing possibility of ERG as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Winston Y Lee
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Efrain A Gutierrez-Lanz
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hong Xiao
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David McClintock
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - May P Chan
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dale L Bixby
- Division of Hematology and Medical Oncology, Department of Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lina Shao
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML. Blood Adv 2022; 6:2847-2853. [PMID: 35073573 PMCID: PMC9092405 DOI: 10.1182/bloodadvances.2021006239] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/29/2021] [Indexed: 12/04/2022] Open
Abstract
Among patients with MDS and AML, the presence of TP53 mutation in the context of CK identifies a homogeneously aggressive disease. TP53 mutation (in particular multihit) identifies an aggressive disease, irrespective of the blast count or therapy-relatedness.
A subset of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) show complex karyotype (CK), and these cases include a relatively high proportion of cases of therapy-related myeloid neoplasms and TP53 mutations. We aimed to evaluate the clinicopathologic features of outcome of 299 AML and MDS patients with CK collected from multiple academic institutions. Mutations were present in 287 patients (96%), and the most common mutation detected was in TP53 gene (247, 83%). A higher frequency of TP53 mutations was present in therapy-related cases (P = .008), with a trend for worse overall survival (OS) in therapy-related patients as compared with de novo disease (P = .08) and within the therapy-related group; the presence of TP53 mutation strongly predicted for worse outcome (P = .0017). However, there was no difference in survival between CK patients based on categorization of AML vs MDS (P = .96) or presence of absence of circulating blasts ≥1% (P = .52). TP53-mutated patients presented with older age (P = .06) and lower hemoglobin levels (P = .004) and marrow blast counts (P = .02) compared with those with CK lacking TP53 mutation. Multivariable analysis identified presence of multihit TP53 mutation as strongest predictor of worse outcome, whereas neither a diagnosis of AML vs MDS nor therapy-relatedness independently influenced OS. Our findings suggest that among patients with MDS and AML, the presence of TP53 mutation (in particular multihit TP53 mutation) in the context of CK identifies a homogeneously aggressive disease, irrespective of the blast count at presentation or therapy-relatedness. The current classification of these cases into different disease categories artificially separates a single biologic disease entity.
Collapse
|
37
|
European LeukemiaNet 2017 risk stratification for acute myeloid leukemia: validation in a risk-adapted protocol. Blood Adv 2021; 6:1193-1206. [PMID: 34911079 PMCID: PMC8864653 DOI: 10.1182/bloodadvances.2021005585] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
The ELN 2017 classification has been validated in a risk-adapted intensive protocol, supporting its utility to predict outcome. Within the ELN 2017 adverse group, there is a subset of patients (inv(3) and TP53 abnormalities) with a particularly poor prognosis.
The 2017 European LeukemiaNet (ELN 2017) guidelines for the diagnosis and management of acute myeloid leukemia (AML) have become fundamental guidelines to assess the prognosis and postremission therapy of patients. However, they have been retrospectively validated in few studies with patients included in different treatment protocols. We analyzed 861 patients included in the Cooperativo Para el Estudio y Tratamiento de las Leucemias Agudas y Mielodisplasias-12 risk-adapted protocol, which indicates cytarabine-based consolidation for patients allocated to the ELN 2017 favorable-risk group, whereas it recommends allogeneic stem cell transplantation (alloSCT) as a postremission strategy for the ELN 2017 intermediate- and adverse-risk groups. We retrospectively classified patients according to the ELN 2017, with 327 (48%), 109 (16%), and 245 (36%) patients allocated to the favorable-, intermediate-, and adverse-risk group, respectively. The 2- and 5-year overall survival (OS) rates were 77% and 70% for favorable-risk patients, 52% and 46% for intermediate-risk patients, and 33% and 23% for adverse-risk patients, respectively. Furthermore, we identified a subgroup of patients within the adverse group (inv(3)/t(3;3), complex karyotype, and/or TP53 mutation/17p abnormality) with a particularly poor outcome, with a 2-year OS of 15%. Our study validates the ELN 2017 risk stratification in a large cohort of patients treated with an ELN-2017 risk-adapted protocol based on alloSCT after remission for nonfavorable ELN subgroups and identifies a genetic subset with a very poor outcome that warrants investigation of novel strategies.
Collapse
|
38
|
Molecular associations, clinical, and prognostic implications of PTPN11 mutations in acute myeloid leukemia (Alliance). Blood Adv 2021; 6:1371-1380. [PMID: 34847232 PMCID: PMC8905707 DOI: 10.1182/bloodadvances.2021006242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
Patients with N-terminal SH2 domain PTPN11 mutations had an early death (<30 days) more often than those with phosphatase domain mutations. PTPN11 mutations are associated with inferior outcomes in AML patients with wild-type NPM1.
Prognostic factors associated with chemotherapy outcomes in patients with acute myeloid leukemia (AML) are extensively reported, and one gene whose mutation is recognized as conferring resistance to several newer targeted therapies is protein tyrosine phosphatase non-receptor type 11 (PTPN11). The broader clinical implications of PTPN11 mutations in AML are still not well understood. The objective of this study was to determine which cytogenetic abnormalities and gene mutations co-occur with PTPN11 mutations and how PTPN11 mutations affect outcomes of patients treated with intensive chemotherapy. We studied 1725 patients newly diagnosed with AML (excluding acute promyelocytic leukemia) enrolled onto the Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology trials. In 140 PTPN11-mutated patient samples, PTPN11 most commonly co-occurred with mutations in NPM1, DNMT3A, and TET2. PTPN11 mutations were relatively common in patients with an inv(3)(q21q26)/t(3;3)(q21;q26) and a normal karyotype but were very rare in patients with typical complex karyotype and core-binding factor AML. Mutations in the N-terminal SH2 domain of PTPN11 were associated with a higher early death rate than those in the phosphatase domain. PTPN11 mutations did not affect outcomes of NPM1-mutated patients, but these patients were less likely to have co-occurring kinase mutations (ie, FLT3-ITD), suggesting activation of overlapping signaling pathways. However, in AML patients with wild-type NPM1, PTPN11 mutations were associated with adverse patient outcomes, providing a rationale to study the biology and treatment approaches in this molecular group. This trial was registered at www.clinicaltrials.gov as #NCT00048958 (CALGB 8461), #NCT00899223 (CALGB 9665), and #NCT00900224 (CALGB 20202).
Collapse
|
39
|
Wen XM, Xu ZJ, Jin Y, Xia PH, Ma JC, Qian W, Lin J, Qian J. Association Analyses of TP53 Mutation With Prognosis, Tumor Mutational Burden, and Immunological Features in Acute Myeloid Leukemia. Front Immunol 2021; 12:717527. [PMID: 34745095 PMCID: PMC8566372 DOI: 10.3389/fimmu.2021.717527] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease related to a broad spectrum of molecular alterations. The successes of immunotherapies treating solid tumors and a deeper understanding of the immune systems of patients with hematologic malignancies have promoted the development of immunotherapies for the treatment of AML. And high tumor mutational burden (TMB) is an emerging predictive biomarker for response to immunotherapy. However, the association of gene mutation in AML with TMB and immunological features still has not been clearly elucidated. In our study, based on The Cancer Genome Atlas (TCGA) and BeatAML cohorts, 20 frequently mutated genes were found to be covered by both datasets in AML. And TP53 mutation was associated with a poor prognosis, and its mutation displayed exclusiveness with other common mutated genes in both datasets. Moreover, TP53 mutation correlated with TMB and the immune microenvironment. Gene Set Enrichment Analysis (GSEA) showed that TP53 mutation upregulated signaling pathways involved in the immune system. In summary, TP53 mutation is frequently mutated in AML, and its mutation is associated with dismal outcome, TMB, and immunological features, which may serve as a biomarker to predict immune response in AML.
Collapse
Affiliation(s)
- Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pei-Hui Xia
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Qian
- Department of Otolaryngology-Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
40
|
Alwash Y, Khoury JD, Tashakori M, Kanagal-Shamanna R, Daver N, Ravandi F, Kadia TM, Konopleva M, Dinardo CD, Issa GC, Loghavi S, Takahashi K, Jabbour E, Guerra V, Kornblau S, Kantarjian H, Short NJ. Development of TP53 mutations over the course of therapy for acute myeloid leukemia. Am J Hematol 2021; 96:1420-1428. [PMID: 34351647 PMCID: PMC9167467 DOI: 10.1002/ajh.26314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
TP53 mutations in acute myeloid leukemia (AML) are associated with resistance to standard treatments and dismal outcomes. The incidence and prognostic impact of the emergence of newly detectable TP53 mutations over the course of AML therapy has not been well described. We retrospectively analyzed 200 patients with newly diagnosed TP53 wild type AML who relapsed after or were refractory to frontline therapy. Twenty-nine patients (15%) developed a newly detectable TP53 mutation in the context of relapsed/refractory disease. The median variant allelic frequency (VAF) was 15% (range, 1.1%-95.6%). TP53 mutations were more common after intensive therapy versus lower-intensity therapy (23% vs. 10%, respectively; p = 0.02) and in patients who had undergone hematopoietic stem cell transplant versus those who had not (36% vs. 12%, respectively; p = 0.005). Lower TP53 VAF was associated with an increased likelihood of complete remission (CR) or CR with incomplete hematologic recovery (CRi) compared to higher TP53 VAF (CR/CRi rate of 41% for VAF < 20% vs. 13% for VAF ≥ 20%, respectively). The median overall survival (OS) after acquisition of TP53 mutation was 4.6 months, with a 1-year OS rate of 19%. TP53 VAF at relapse was significantly associated with OS; the median OS of patients with TP53 VAF ≥ 20% was 3.5 months versus 6.1 months for those with TP53 VAF < 20% (p < 0.05). In summary, new TP53 mutations may be acquired throughout the course of AML therapy. Sequential monitoring for TP53 mutations is likely to be increasingly relevant in the era of emerging TP53-targeting therapies for AML.
Collapse
Affiliation(s)
- Yasmin Alwash
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehrnoosh Tashakori
- The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi Kanagal-Shamanna
- The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan M. Kadia
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney D. Dinardo
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ghayas C. Issa
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanam Loghavi
- The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koichi Takahashi
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veronica Guerra
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven Kornblau
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop Kantarjian
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas J. Short
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
41
|
Zhang J, Gao X, Yu L. Roles of Histone Deacetylases in Acute Myeloid Leukemia With Fusion Proteins. Front Oncol 2021; 11:741746. [PMID: 34540702 PMCID: PMC8440836 DOI: 10.3389/fonc.2021.741746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate orchestration of gene expression is critical for the process of normal hematopoiesis, and dysregulation is closely associated with leukemogenesis. Epigenetic aberration is one of the major causes contributing to acute myeloid leukemia (AML), where chromosomal rearrangements are frequently found. Increasing evidences have shown the pivotal roles of histone deacetylases (HDACs) in chromatin remodeling, which are involved in stemness maintenance, cell fate determination, proliferation and differentiation, via mastering the transcriptional switch of key genes. In abnormal, these functions can be bloomed to elicit carcinogenesis. Presently, HDAC family members are appealing targets for drug exploration, many of which have been deployed to the AML treatment. As the majority of AML events are associated with chromosomal translocation resulting in oncogenic fusion proteins, it is valuable to comprehensively understand the mutual interactions between HDACs and oncogenic proteins. Therefore, we reviewed the process of leukemogenesis and roles of HDAC members acting in this progress, providing an insight for the target anchoring, investigation of hyperacetylated-agents, and how the current knowledge could be applied in AML treatment.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
42
|
Limongello R, Marra A, Mancusi A, Bonato S, Hoxha E, Ruggeri L, Hui S, Velardi A, Pierini A. Novel Immune Cell-Based Therapies to Eradicate High-Risk Acute Myeloid Leukemia. Front Immunol 2021; 12:695051. [PMID: 34413848 PMCID: PMC8368440 DOI: 10.3389/fimmu.2021.695051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Adverse genetic risk acute myeloid leukemia (AML) includes a wide range of clinical-pathological entities with extremely poor outcomes; thus, novel therapeutic approaches are needed. Promising results achieved by engineered chimeric antigen receptor (CAR) T cells in other blood neoplasms have paved the way for the development of immune cell-based therapies for adverse genetic risk AML. Among these, adoptive cell immunotherapies with single/multiple CAR-T cells, CAR-natural killer (NK) cells, cytokine-induced killer cells (CIK), and NK cells are subjects of ongoing clinical trials. On the other hand, allogeneic hematopoietic stem cell transplantation (allo-HSCT) still represents the only curative option for adverse genetic risk AML patients. Unfortunately, high relapse rates (above 50%) and associated dismal outcomes (reported survival ~10–20%) even question the role of current allo-HSCT protocols and emphasize the urgency of adopting novel effective transplant strategies. We have recently demonstrated that haploidentical allo-HSCT combined with regulatory and conventional T cells adoptive immunotherapy (Treg-Tcon haplo-HSCT) is able to overcome disease-intrinsic chemoresistance, prevent leukemia-relapse, and improve survival of adverse genetic risk AML patients. In this Perspective, we briefly review the recent advancements with immune cell-based strategies against adverse genetic risk AML and discuss how such approaches could favorably impact on patients’ outcomes.
Collapse
Affiliation(s)
- Roberto Limongello
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Andrea Marra
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Antonella Mancusi
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Samanta Bonato
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Eni Hoxha
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Loredana Ruggeri
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA, United States.,Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Andrea Velardi
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Antonio Pierini
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| |
Collapse
|
43
|
Kurzer JH, Weinberg OK. PHF6 Mutations in Hematologic Malignancies. Front Oncol 2021; 11:704471. [PMID: 34381727 PMCID: PMC8350393 DOI: 10.3389/fonc.2021.704471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Next generation sequencing has uncovered several genes with associated mutations in hematologic malignancies that can serve as potential biomarkers of disease. Keeping abreast of these genes is therefore of paramount importance in the field of hematology. This review focuses on PHF6, a highly conserved epigenetic transcriptional regulator that is important for neurodevelopment and hematopoiesis. PHF6 serves as a tumor suppressor protein, with PHF6 mutations and deletions often implicated in the development of T-lymphoblastic leukemia and less frequently in acute myeloid leukemia and other myeloid neoplasms. PHF6 inactivation appears to be an early event in T-lymphoblastic leukemogenesis, requiring cooperating events, including NOTCH1 mutations or overexpression of TLX1 and TLX3 for full disease development. In contrast, PHF6 mutations tend to occur later in myeloid malignancies, are frequently accompanied by RUNX1 mutations, and are often associated with disease progression. Moreover, PHF6 appears to play a role in lineage plasticity within hematopoietic malignancies, with PHF6 mutations commonly present in mixed phenotype acute leukemias with a predilection for T-lineage marker expression. Due to conflicting data, the prognostic significance of PHF6 mutations remains unclear, with a subset of studies showing no significant difference in outcomes compared to malignancies with wild-type PHF6, and other studies showing inferior outcomes in certain patients with mutated PHF6. Future studies are necessary to elucidate the role PHF6 plays in development of T-lymphoblastic leukemia, progression of myeloid malignancies, and its overall prognostic significance in hematopoietic neoplasms.
Collapse
Affiliation(s)
- Jason H. Kurzer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Olga K. Weinberg
- Department of Pathology, UT Southwestern, Dallas, TX, United States
| |
Collapse
|
44
|
Li Y, Wan H, Jing Y. Molecular Characterization and Clinical Treatment of Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Patients With TP53 Mutation. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:841-851. [PMID: 34376372 DOI: 10.1016/j.clml.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in TP53 in myeloid neoplasms patients have been associated with poor prognosis. Effective treatments to these patients remain unclear. PATIENTS AND METHODS In this study, we retrospectively analyzed diagnostic and outcomes of 31 Acute Myeloid leukemia (AML) and 9 Myelodysplastic syndromes (MDS) patients with TP53 mutation at our hospital from September 2015 to October 2020. RESULTS A total of 42 variants (28 unique variants) in the coding region of TP53 gene were identified, and most were missense mutation (34 of 42, 81%). The median overall survival (OS) was 8 months for the AML patients (1-32 months) and 7 months for the MDS patients (3-27 months). There were 35 and 13 patients underwent frontline chemical therapy and Allo-HSCT, respectively. The overall response rate was 45.3% (16/35) for the frontline treatment. There was no significant difference between intensive and low-intensity regimens on either response to the frontline treatment (P = .255) or overall survival (P = .078). Patients, who achieved complete or partial remission at the frontline treatment, presented a higher survival than patients in non-remission, no matter transplant or not. CONCLUSION This study corroborates that improving the response to the first-line treatment could prolong the survival of myeloid neoplasms patients with TP53 mutation. Allo-HSCT could be a curative option for patients with TP53 mutation, when in complete remission during the first-line treatment.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hua Wan
- Beijing USCI Medical Laboratory, Beijing, China
| | - Yu Jing
- Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
45
|
Bill M, Mrózek K, Giacopelli B, Kohlschmidt J, Nicolet D, Papaioannou D, Eisfeld AK, Kolitz JE, Powell BL, Carroll AJ, Stone RM, Garzon R, Byrd JC, Bloomfield CD, Oakes CC. Precision oncology in AML: validation of the prognostic value of the knowledge bank approach and suggestions for improvement. J Hematol Oncol 2021; 14:107. [PMID: 34229733 PMCID: PMC8261916 DOI: 10.1186/s13045-021-01118-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Recently, a novel knowledge bank (KB) approach to predict outcomes of individual patients with acute myeloid leukemia (AML) was developed using unbiased machine learning. To validate its prognostic value, we analyzed 1612 adults with de novo AML treated on Cancer and Leukemia Group B front-line trials who had pretreatment clinical, cytogenetics, and mutation data on 81 leukemia/cancer-associated genes available. We used receiver operating characteristic (ROC) curves and the area under the curve (AUC) to evaluate the predictive values of the KB algorithm and other risk classifications. The KB algorithm predicted 3-year overall survival (OS) probability in the entire patient cohort (AUCKB = 0.799), and both younger (< 60 years) (AUCKB = 0.747) and older patients (AUCKB = 0.770). The KB algorithm predicted non-remission death (AUCKB = 0.860) well but was less accurate in predicting relapse death (AUCKB = 0.695) and death in first complete remission (AUCKB = 0.603). The KB algorithm’s 3-year OS predictive value was higher than that of the 2017 European LeukemiaNet (ELN) classification (AUC2017ELN = 0.707, p < 0.001) and 2010 ELN classification (AUC2010ELN = 0.721, p < 0.001) but did not differ significantly from that of the 17-gene stemness score (AUC17-gene = 0.732, p = 0.10). Analysis of additional cytogenetic and molecular markers not included in the KB algorithm revealed that taking into account atypical complex karyotype, infrequent recurrent balanced chromosome rearrangements and mutational status of the SAMHD1, AXL and NOTCH1 genes may improve the KB algorithm. We conclude that the KB algorithm has a high predictive value that is higher than those of the 2017 and 2010 ELN classifications. Inclusion of additional genetic features might refine the KB algorithm.
Collapse
Affiliation(s)
- Marius Bill
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA. .,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA. .,The Ohio State University Comprehensive Cancer Center, 444 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210-1228, USA.
| | - Brian Giacopelli
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,Alliance Statistics and Data Center, The Ohio State University Comprehensive, Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,Alliance Statistics and Data Center, The Ohio State University Comprehensive, Cancer Center, Columbus, OH, USA
| | - Dimitrios Papaioannou
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - Jonathan E Kolitz
- Zucker School of Medicine At Hofstra/Northwell, Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | | | - Richard M Stone
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
| | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - Clara D Bloomfield
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - Christopher C Oakes
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA. .,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA.
| |
Collapse
|
46
|
CT classification of acute myeloid leukemia with pulmonary infiltration. Jpn J Radiol 2021; 39:1049-1058. [PMID: 34142307 DOI: 10.1007/s11604-021-01151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To characterize and categorize the CT findings of pulmonary leukemic infiltration (PLI) in patients with acute myeloid leukemia (AML). MATERIALS AND METHODS Among 435 patients with AML, 20 patients with PLI were retrospectively selected, and clinical characteristics and CT findings were analyzed. PLI was categorized into four patterns according to CT findings: type A, multiple nodules and/or masses; type B, bilateral perihilar airspace opacities (GGA or consolidation) without any nodules or masses; type C, mixture of type A and B; and type D, PLI without visible abnormal lung opacity. The difference in overall survival among four CT patterns was also examined. RESULTS The frequency of complex karyotypes was higher in AML patients with PLI than in whole AML patients. Percentages of patients with CT findings of type A, B, C, and D were 35%, 20%, 35%, and 10%, respectively. There was a clear difference in the localization of opacities according to the type of infiltrates, i.e., nodules/masses were mainly detected in the lower/peripheral portion. Conversely, GGA was mainly located in the upper/central portion. The median overall survival from diagnosis of PLI was 262 days (range 12-1148). The CT pattern was not significantly associated with survival (p = 0.3), with the exception of patients with type C tending to have significantly better outcomes compared to patients with type B (p = 0.05). CONCLUSION This classification can contribute in accurate non-invasive diagnosis and possibly in the estimation of prognosis.
Collapse
|
47
|
de Oliveira Lisboa M, Brofman PRS, Schmid-Braz AT, Rangel-Pozzo A, Mai S. Chromosomal Instability in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13112655. [PMID: 34071283 PMCID: PMC8198625 DOI: 10.3390/cancers13112655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), the increasing rate in which cells acquire new chromosomal alterations, is one of the hallmarks of cancer. Many studies highlighted CIN as an important mechanism in the origin, progression, and relapse of acute myeloid leukemia (AML). The ambivalent feature of CIN as a cancer-promoting or cancer-suppressing mechanism might explain the prognostic variability. The latter, however, is described in very few studies. This review highlights the important CIN mechanisms in AML, showing that CIN signatures can occur largely in all the three major AML types (de novo AML, secondary-AML, and therapy-related-AML). CIN features in AML could also be age-related and reflect the heterogeneity of the disease. Although most of these abnormalities show an adverse prognostic value, they also offer a strong new perspective on personalized therapy approaches, which goes beyond assessing CIN in vitro in patient tumor samples to predict prognosis. Current and emerging AML therapies are exploring CIN to improve AML treatment, which includes blocking CIN or increasing CIN beyond the limit threshold to induce cell death. We argue that the characterization of CIN features, not included yet in the routine diagnostic of AML patients, might provide a better stratification of patients and be extended to a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Ana Teresa Schmid-Braz
- Hospital das Clínicas, Universidade Federal do Paraná, Curitiba 80060-240, Paraná, Brazil;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| |
Collapse
|
48
|
Chen X, Wang X, Dou H, Yang Z, Bi J, Huang Y, Lu L, Yu J, Bao L. Cytogenetic and mutational analysis and outcome assessment of a cohort of 284 children with de novo acute myeloid leukemia reveal complex karyotype as an adverse risk factor for inferior survival. Mol Cytogenet 2021; 14:27. [PMID: 34011412 PMCID: PMC8136172 DOI: 10.1186/s13039-021-00547-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is rare in children. Although complex karyotype (CK) defined as ≥ 3 cytogenetic abnormalities is an adverse risk factor in adult AML, its prognostic impact on childhood AML remains to be determined. Results We studied the prevalence, cytogenetic and mutational features, and outcome impact of CK in a cohort of 284 Chinese children with de novo AML. Thirty-four (12.0%) children met the criteria for CK-AML with atypical CK being more frequent than typical CK featured with -5/5q-, -7/7q-, and/or 17p aberration. Mutational prevalence was low and co-occurrence mutants were uncommon. Children with CK-AML showed shorter overall survival (OS) (5-year OS: 26.7 ± 10.6% vs. 37.5 ± 8.6%, p = 0.053) and event-free survival (EFS) (5-year EFS: 26.7 ± 10.6% vs. 38.8 ± 8.6%, p = 0.039) compared with those with intermediate-risk genetics. Typical CK tended to correlate with a decreased OS than atypical CK (5-year OS: 0 vs. 33 ± 12.7%.; p = 0.084), and CK with ≥ 5 cytogenetic aberrations was associated with an inferior survival compared with CK with ≤ 4 aberrations (5-year OS: 13.6 ± 11.7% vs. 50.0 ± 18.6%; p = 0.040; 5-year EFS: 13.6 ± 11.7% vs. 50.0 ± 18.6%; p = 0.048). Conclusion Our results demonstrate CK as an adverse risk factor for reduced survival in childhood AML. Our findings shed light on the cytogenetic and mutational profile of childhood CK-AML and would inform refinement of risk stratification in childhood AML to improve outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-021-00547-0.
Collapse
Affiliation(s)
- Xi Chen
- Center for Clinical Molecular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xingjuan Wang
- Center for Reproductive Medicine, Baoji Maternal and Child Health Hospital, Shanxi, China
| | - Hu Dou
- Department of Clinical Laboratory, Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhen Yang
- Department of Clinical Laboratory, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Junqin Bi
- Department of Laboratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ling Lu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshang 2nd Road, Chongqing, 400014, China.
| | - Liming Bao
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, 12705 E. Montview Boulevard, Suite 400, Aurora, CO, 80045, USA.
| |
Collapse
|
49
|
Grieselhuber NR, Mims AS. Novel Targeted Therapeutics in Acute Myeloid Leukemia: an Embarrassment of Riches. Curr Hematol Malig Rep 2021; 16:192-206. [PMID: 33738705 DOI: 10.1007/s11899-021-00621-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow that has a poor prognosis with traditional cytotoxic chemotherapy, especially in elderly patients. In recent years, small molecule inhibitors targeting AML-associated IDH1, IDH2, and FLT3 mutations have been FDA approved. However, the majority of AML cases do not have a targetable mutation. A variety of novel agents targeting both previously untargetable mutations and general pathways in AML are currently being investigated. Herein, we review selected new targeted therapies currently in early-phase clinical investigation in AML. RECENT FINDINGS The DOT1L inhibitor pinometostat in KMT2A-rearranged AML, the menin inhibitors KO-539 and SYNDX-5613 in KMT2Ar and NPM1-mutated AML, and the mutant TP53 inhibitor APR-246 are examples of novel agents targeting specific mutations in AML. In addition, BET inhibitors, polo-like kinase inhibitors, and MDM2 inhibitors are promising new drug classes for AML which do not depend on the presence of a particular mutation. AML remains in incurable disease for many patients but advances in genomics, epigenetics, and drug discovery have led to the development of many potential novel therapeutic agents, many of which are being investigated in ongoing clinical trials. Additional studies will be necessary to determine how best to incorporate these novel agents into routine clinical treatment of AML.
Collapse
Affiliation(s)
- Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
50
|
Rapaport F, Neelamraju Y, Baslan T, Hassane D, Gruszczynska A, Robert de Massy M, Farnoud N, Haddox S, Lee T, Medina-Martinez J, Sheridan C, Thurmond A, Becker M, Bekiranov S, Carroll M, Moses Murdock H, Valk PJM, Bullinger L, D'Andrea R, Lowe SW, Neuberg D, Levine RL, Melnick A, Garrett-Bakelman FE. Genomic and evolutionary portraits of disease relapse in acute myeloid leukemia. Leukemia 2021; 35:2688-2692. [PMID: 33580203 PMCID: PMC8357838 DOI: 10.1038/s41375-021-01153-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Franck Rapaport
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Clinical and Translational Science, The Rockefeller University, New York, NY, USA.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Duane Hassane
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Agata Gruszczynska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Marc Robert de Massy
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noushin Farnoud
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Haddox
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tak Lee
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Juan Medina-Martinez
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Sheridan
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Alexis Thurmond
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael Becker
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heardly Moses Murdock
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Richard D'Andrea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Donna Neuberg
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - Ross L Levine
- Molecular Cancer Medicine Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari Melnick
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA. .,Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA. .,Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA. .,University of Virginia Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|