1
|
He B, Ying Y, Shi Y, Meng Z, Yin Z, Chen Z, Hu Z, Xue R, Jing L, Lu Y, Sun Z, Man W, Wu Y, Lei D, Zhang N, Wang G, Xue P. Intraoperative Fast Adaptive Focus Tracking Robotic OCT Enables Real-Time Tumor Grading and Large-Area Microvascular Imaging in Human Spinal Cord Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503566. [PMID: 40278646 DOI: 10.1002/advs.202503566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Current surgical procedures for spinal cord tumors lack in vivo high-resolution multifunctional imaging systems, hindering precise tumor resection. This study introduces the fast adaptive focus tracking robotic optical coherence tomography (FACT-ROCT) system, which provides real-time, artifact-free imaging during surgery, addressing motion artifacts and resolution degradation. Imaging occurs in 22 patients, including 13 with gliomas (WHO grade I-IV). This represents the first in situ OCT imaging of human spinal cord tumors, enabling the differentiation of tumor types in real-time. The standard deviation of the attenuation coefficient serves as a physical marker, achieving 90.2% ± 2.7% accuracy in distinguishing high- from low-grade gliomas intraoperatively at a threshold of 0.75 ± 0.01 mm-1. FACT-ROCT also enables microvascular imaging, covering areas of 70 mm × 13 mm × 10 mm within 2 min and revealing greater vascular tortuosity in higher-grade tumors. This extensive imaging capability provides critical information that guides surgical strategies, enhancing surgical outcomes. Overall, FACT-ROCT represents a significant advancement in intraoperative imaging, offering high-resolution, high-speed, and comprehensive insights into spinal cord tumor structure and vasculature.
Collapse
Affiliation(s)
- Bin He
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yuzhe Ying
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Yejiong Shi
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| | - Zhe Meng
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Zichen Yin
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| | - Zhengyu Chen
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| | - Zhangwei Hu
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| | - Ruizhi Xue
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| | - Linkai Jing
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Yang Lu
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhenxing Sun
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Youtu Wu
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Dan Lei
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Ning Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine and Institute of Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Ping Xue
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| |
Collapse
|
2
|
Li Y, Guo S, Mattison B, Hu J, Man KNM, Yang W. High-speed two-photon microscopy with adaptive line-excitation. OPTICA 2024; 11:1138-1145. [PMID: 39610401 PMCID: PMC11601119 DOI: 10.1364/optica.529930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 11/30/2024]
Abstract
We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortex in vivo. Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.
Collapse
Affiliation(s)
- Yunyang Li
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Shu Guo
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Ben Mattison
- Department of Biomedical Engineering,
University of California, Davis, California
95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California 95616, USA
| | - Junjie Hu
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Kwun Nok Mimi Man
- Department of Biochemistry and Molecular
Medicine, University of California, Davis,
California 95616, USA
- Current address: Max Planck
Florida Institute for Neuroscience, Jupiter, Florida
33458, USA
| | - Weijian Yang
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California 95616, USA
| |
Collapse
|
3
|
Prince MNH, Sain N, Chakraborty T. Remote refocusing for multi-scale imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:080501. [PMID: 39119134 PMCID: PMC11309005 DOI: 10.1117/1.jbo.29.8.080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Significance The technique of remote focusing (RF) has attracted considerable attention among microscopists due to its ability to quickly adjust focus across different planes, thus facilitating quicker volumetric imaging. However, the difficulty in changing objectives to align with a matching objective in a remote setting while upholding key requirements remains a challenge. Aim We aim to propose a customized yet straightforward technique to align multiple objectives with a remote objective, employing an identical set of optical elements to ensure meeting the criteria of remote focusing. Approach We propose a simple optical approach for aligning multiple objectives with a singular remote objective to achieve a perfect imaging system. This method utilizes readily accessible, commercial optical components to meet the fundamental requirements of remote focusing. Results Our experimental observations indicate that the proposed RF technique offers at least comparable, if not superior, performance over a significant axial depth compared with the conventional RF technique based on commercial lenses while offering the flexibility to switch the objective for multi-scale imaging. Conclusions The proposed technique addresses various microscopy challenges, particularly in the realm of multi-resolution imaging. We have experimentally demonstrated the efficacy of this technique by capturing images of focal volumes generated by two distinct objectives in a water medium.
Collapse
Affiliation(s)
- Md Nasful Huda Prince
- University of New Mexico, Department of Physics and Astronomy, Albuquerque, New Mexico, United States
| | - Nikhil Sain
- University of New Mexico, Department of Physics and Astronomy, Albuquerque, New Mexico, United States
| | - Tonmoy Chakraborty
- University of New Mexico, Department of Physics and Astronomy, Albuquerque, New Mexico, United States
- University of New Mexico, Comprehensive Cancer Center, Albuquerque, New Mexico, United States
| |
Collapse
|
4
|
Wang LM, Kim J, Han KY. Highly sensitive volumetric single-molecule imaging. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3805-3814. [PMID: 39224784 PMCID: PMC11366074 DOI: 10.1515/nanoph-2024-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Volumetric subcellular imaging has long been essential for studying structures and dynamics in cells and tissues. However, due to limited imaging speed and depth of field, it has been challenging to perform live-cell imaging and single-particle tracking. Here we report a 2.5D fluorescence microscopy combined with highly inclined illumination beams, which significantly reduce not only the image acquisition time but also the out-of-focus background by ∼2-fold compared to epi-illumination. Instead of sequential z-scanning, our method projects a certain depth of volumetric information onto a 2D plane in a single shot using multi-layered glass for incoherent wavefront splitting, enabling high photon detection efficiency. We apply our method to multi-color immunofluorescence imaging and volumetric super-resolution imaging, covering ∼3-4 µm thickness of samples without z-scanning. Additionally, we demonstrate that our approach can substantially extend the observation time of single-particle tracking in living cells.
Collapse
Affiliation(s)
- Le-Mei Wang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Jiah Kim
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
5
|
Dibaji H, Kazemi Nasaban Shotorban A, Grattan RM, Lucero S, Schodt DJ, Lidke KA, Petruccelli J, Lidke DS, Liu S, Chakraborty T. Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy. Nat Commun 2024; 15:5019. [PMID: 38866746 PMCID: PMC11169345 DOI: 10.1038/s41467-024-49291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Rapid, high-resolution volumetric imaging without moving heavy objectives or disturbing delicate samples remains challenging. Pupil-matched remote focusing offers a promising solution for high NA systems, but the fluorescence signal's incoherent and unpolarized nature complicates its application. Thus, remote focusing is mainly used in the illumination arm with polarized laser light to improve optical coupling. Here, we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light, lets them pass through the remote focusing module separately, and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks with an axial range of 70 μm and camera-limited acquisition speed. Owing to its general nature, we believe this technique will find its application in many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging, such as confocal, 2-photon, and light sheet variants.
Collapse
Affiliation(s)
- Hassan Dibaji
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | | | - Rachel M Grattan
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Shayna Lucero
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - David J Schodt
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jonathan Petruccelli
- Department of Physics, University at Albany-State University of NewYork, Albany, NY, USA
| | - Diane S Lidke
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Sheng Liu
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Tonmoy Chakraborty
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA.
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Dibaji H, Nasaban Shotorban AK, Grattan RM, Lucero S, Schodt DJ, Lidke KA, Petruccelli J, Lidke DS, Liu S, Chakraborty T. Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556729. [PMID: 38659774 PMCID: PMC11042218 DOI: 10.1101/2023.09.07.556729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The ability to image at high speeds is necessary for biological imaging to capture fast-moving or transient events or to efficiently image large samples. However, due to the lack of rigidity of biological specimens, carrying out fast, high-resolution volumetric imaging without moving and agitating the sample has been a challenging problem. Pupil-matched remote focusing has been promising for high NA imaging systems with their low aberrations and wavelength independence, making it suitable for multicolor imaging. However, owing to the incoherent and unpolarized nature of the fluorescence signal, manipulating this emission light through remote focusing is challenging. Therefore, remote focusing has been primarily limited to the illumination arm, using polarized laser light to facilitate coupling in and out of the remote focusing optics. Here, we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light, lets them pass through the remote focusing module separately, and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks with an axial range of 70 μm and camera-limited acquisition speed. Owing to its general nature, we believe this technique will find its application in many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging, such as confocal, 2-photon, and light sheet variants.
Collapse
|
7
|
Pribošek J, Bainschab M, Sasaki T. Varifocal MEMS mirrors for high-speed axial focus scanning: a review. MICROSYSTEMS & NANOENGINEERING 2023; 9:135. [PMID: 37900975 PMCID: PMC10603115 DOI: 10.1038/s41378-022-00481-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 10/31/2023]
Abstract
Recent advances brought the performance of MEMS-based varifocal mirrors to levels comparable to conventional ultra-high-speed focusing devices. Varifocal mirrors are becoming capable of high axial resolution exceeding 300 resolvable planes, can achieve microsecond response times, continuous operation above several hundred kHz, and can be designed to combine focusing with lateral steering in a single-chip device. This survey summarizes the past 50 years of scientific progress in varifocal MEMS mirrors, providing the most comprehensive study in this field to date. We introduce a novel figure of merit for varifocal mirrors on the basis of which we evaluate and compare nearly all reported devices from the literature. At the forefront of this review is the analysis of the advantages and shortcomings of various actuation technologies, as well as a systematic study of methods reported to enhance the focusing performance in terms of speed, resolution, and shape fidelity. We believe this analysis will fuel the future technological development of next-generation varifocal mirrors reaching the axial resolution of 1000 resolvable planes.
Collapse
|
8
|
DIBAJI HASSAN, SHOTORBAN ALIKAZEMINASABAN, HABIBI MAHSA, GRATTAN RACHELM, LUCERO SHAYNA, SCHODT DAVIDJ, LIDKE KEITHA, PETRUCCELLI JONATHAN, LIDKE DIANES, LIU SHENG, CHAKRABORTY TONMOY. Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy. RESEARCH SQUARE 2023:rs.3.rs-3338831. [PMID: 37886461 PMCID: PMC10602066 DOI: 10.21203/rs.3.rs-3338831/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The ability to image at high speeds is necessary in biological imaging to capture fast-moving or transient events or to efficiently image large samples. However, due to the lack of rigidity of biological specimens, carrying out fast, high-resolution volumetric imaging without moving and agitating the sample has been a challenging problem. Pupil-matched remote focusing has been promising for high NA imaging systems with their low aberrations and wavelength independence, making it suitable for multicolor imaging. However, owing to the incoherent and unpolarized nature of the fluorescence signal, manipulating this emission light through remote focusing is challenging. Therefore, remote focusing has been primarily limited to the illumination arm, using polarized laser light for facilitating coupling in and out of the remote focusing optics. Here we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light and lets them pass through the remote focusing module separately and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks, with an axial range of 70 μm and camera limited acquisition speed. Owing to its general nature, we believe this technique will find its application to many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging such as confocal, 2-photon, and light sheet variants.
Collapse
Affiliation(s)
- HASSAN DIBAJI
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | - MAHSA HABIBI
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - RACHEL M GRATTAN
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - SHAYNA LUCERO
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - DAVID J. SCHODT
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - KEITH A. LIDKE
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - JONATHAN PETRUCCELLI
- Department of Physics, University at Albany–State University of NewYork,1400 Washington Avenue, Albany, NY 12222, USA
| | - DIANE S. LIDKE
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - SHENG LIU
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - TONMOY CHAKRABORTY
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
9
|
Marin Z, Wang X, Lin J, Borges H, Collison D, Dean KM. Autonomous Multiscale Axially Swept Light-sheet Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:997. [PMID: 37613633 DOI: 10.1093/micmic/ozad067.500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Zach Marin
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoding Wang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinlong Lin
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hazel Borges
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dax Collison
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Kim J. Recent advances in oblique plane microscopy. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2317-2334. [PMID: 39633752 PMCID: PMC11501266 DOI: 10.1515/nanoph-2023-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/10/2023] [Indexed: 12/07/2024]
Abstract
Oblique plane microscopy (OPM) directly captures object information in a plane tilted from the focal plane of the objective lens without the need for slow z-stack acquisition. This unconventional widefield imaging approach is made possible by using a remote focusing principle that eliminates optical aberrations for object points beyond the focal plane. Together with oblique lightsheet illumination, OPM can make conventional lightsheet imaging fully compatible with standard biological specimens prepared on microscope slides. OPM is not only an excellent high-speed volumetric imaging platform by sweeping oblique lightsheet illumination without mechanically moving either the sample or objective lens in sample space, but also provides a solution for direct oblique plane imaging along any orientation of interest on the sample in a single shot. Since its first demonstration in 2008, OPM has continued to evolve into an advanced microscope platform for biological, medical, and materials science applications. In recent years, many technological advances have been made in OPM with the goal of super-resolution, fast volumetric imaging, and a large imaging field of view, etc. This review gives an overview of OPM's working principle and imaging performance and introduces recent technical developments in OPM methods and applications. OPM has strong potential in a variety of research fields, including cellular and developmental biology, clinical diagnostics in histology and ophthalmology, flow cytometry, microfluidic devices, and soft materials.
Collapse
Affiliation(s)
- Jeongmin Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
11
|
A Compact Two-Dimensional Varifocal Scanning Imaging Device Actuated by Artificial Muscle Material. Biomimetics (Basel) 2023; 8:biomimetics8010120. [PMID: 36975350 PMCID: PMC10046869 DOI: 10.3390/biomimetics8010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
This paper presents a compact two-dimensional varifocal-scanning imaging device, with the capability of continuously variable focal length and a large scanning range, actuated by artificial muscle material. The varifocal function is realized by the principle of laterally shifting cubic phase masks and the scanning function is achieved by the principle of the decentered lens. One remarkable feature of these two principles is that both are based on the lateral displacements perpendicular to the optical axis. Artificial muscle material is emerging as a good choice of soft actuators capable of high strain, high efficiency, fast response speed, and light weight. Inspired by the artificial muscle, the dielectric elastomer is used as an actuator and produces the lateral displacements of the Alvarez lenses and the decentered lenses. A two-dimensional varifocal scanning imaging device prototype was established and validated through experiments to verify the feasibility of the proposed varifocal-scanning device. The results showed that the focal length variation of the proposed varifocal scanning device is up to 4.65 times higher (31.6 mm/6.8 mm), and the maximum scanning angle was 26.4°. The rise and fall times were 110 ms and 185 ms, respectively. Such a varifocal scanning device studied here has the potential to be used in consumer electronics, endoscopy, and microscopy in the future.
Collapse
|
12
|
Efficient 3D light-sheet imaging of very large-scale optically cleared human brain and prostate tissue samples. Commun Biol 2023; 6:170. [PMID: 36781939 PMCID: PMC9925784 DOI: 10.1038/s42003-023-04536-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
The ability to image human tissue samples in 3D, with both cellular resolution and a large field of view (FOV), can improve fundamental and clinical investigations. Here, we demonstrate the feasibility of light-sheet imaging of ~5 cm3 sized formalin fixed human brain and up to ~7 cm3 sized formalin fixed paraffin embedded (FFPE) prostate cancer samples, processed with the FFPE-MASH protocol. We present a light-sheet microscopy prototype, the cleared-tissue dual view Selective Plane Illumination Microscope (ct-dSPIM), capable of fast 3D high-resolution acquisitions of cm3 scale cleared tissue. We used mosaic scans for fast 3D overviews of entire tissue samples or higher resolution overviews of large ROIs with various speeds: (a) Mosaic 16 (16.4 µm isotropic resolution, ~1.7 h/cm3), (b) Mosaic 4 (4.1 µm isotropic resolution, ~ 5 h/cm3) and (c) Mosaic 0.5 (0.5 µm near isotropic resolution, ~15.8 h/cm3). We could visualise cortical layers and neurons around the border of human brain areas V1&V2, and could demonstrate suitable imaging quality for Gleason score grading in thick prostate cancer samples. We show that ct-dSPIM imaging is an excellent technique to quantitatively assess entire MASH prepared large-scale human tissue samples in 3D, with considerable future clinical potential.
Collapse
|
13
|
Hung ST, Llobet Rosell A, Jurriens D, Siemons M, Soloviev O, Kapitein LC, Grußmayer K, Neukomm LJ, Verhaegen M, Smith C. Adaptive optics in single objective inclined light sheet microscopy enables three-dimensional localization microscopy in adult Drosophila brains. Front Neurosci 2022; 16:954949. [PMID: 36278016 PMCID: PMC9583434 DOI: 10.3389/fnins.2022.954949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) enables the high-resolution visualization of organelle structures and the precise localization of individual proteins. However, the expected resolution is not achieved in tissue as the imaging conditions deteriorate. Sample-induced aberrations distort the point spread function (PSF), and high background fluorescence decreases the localization precision. Here, we synergistically combine sensorless adaptive optics (AO), in-situ 3D-PSF calibration, and a single-objective lens inclined light sheet microscope (SOLEIL), termed (AO-SOLEIL), to mitigate deep tissue-induced deteriorations. We apply AO-SOLEIL on several dSTORM samples including brains of adult Drosophila. We observed a 2x improvement in the estimated axial localization precision with respect to widefield without aberration correction while we used synergistic solution. AO-SOLEIL enhances the overall imaging resolution and further facilitates the visualization of sub-cellular structures in tissue.
Collapse
Affiliation(s)
- Shih-Te Hung
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Daphne Jurriens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Marijn Siemons
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Oleg Soloviev
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Kristin Grußmayer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Lukas J. Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Michel Verhaegen
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Carlas Smith
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
- *Correspondence: Carlas Smith
| |
Collapse
|
14
|
Isotropic imaging across spatial scales with axially swept light-sheet microscopy. Nat Protoc 2022; 17:2025-2053. [PMID: 35831614 PMCID: PMC10111370 DOI: 10.1038/s41596-022-00706-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Light-sheet fluorescence microscopy is a rapidly growing technique that has gained tremendous popularity in the life sciences owing to its high-spatiotemporal resolution and gentle, non-phototoxic illumination. In this protocol, we provide detailed directions for the assembly and operation of a versatile light-sheet fluorescence microscopy variant, referred to as axially swept light-sheet microscopy (ASLM), that delivers an unparalleled combination of field of view, optical resolution and optical sectioning. To democratize ASLM, we provide an overview of its working principle and applications to biological imaging, as well as pragmatic tips for the assembly, alignment and control of its optical systems. Furthermore, we provide detailed part lists and schematics for several variants of ASLM that together can resolve molecular detail in chemically expanded samples, subcellular organization in living cells or the anatomical composition of chemically cleared intact organisms. We also provide software for instrument control and discuss how users can tune imaging parameters to accommodate diverse sample types. Thus, this protocol will serve not only as a guide for both introductory and advanced users adopting ASLM, but as a useful resource for any individual interested in deploying custom imaging technology. We expect that building an ASLM will take ~1-2 months, depending on the experience of the instrument builder and the version of the instrument.
Collapse
|
15
|
Dibaji H, Prince MNH, Yi Y, Zhao H, Chakraborty T. Axial scanning of dual focus to improve light sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4990-5003. [PMID: 36187249 PMCID: PMC9484433 DOI: 10.1364/boe.464292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Axially swept light sheet microscopy (ASLM) is an emerging technique that enables isotropic, subcellular resolution imaging with high optical sectioning capability over a large field-of-view (FOV). Due to its versatility across a broad range of immersion media, it has been utilized to image specimens that may range from live cells to intact chemically cleared organs. However, because of its design, the performance of ASLM-based microscopes is impeded by a low detection signal and the maximum achievable frame-rate for full FOV imaging. Here we present a new optical concept that pushes the limits of ASLM further by scanning two staggered light sheets and simultaneously synchronizing the rolling shutter of a scientific camera. For a particular peak-illumination-intensity, this idea can make ASLMs image twice as fast without compromising the detection signal. Alternately, for a particular frame rate our method doubles the detection signal without requiring to double the peak-illumination-power, thereby offering a gentler illumination scheme compared to tradition single-focus ASLM. We demonstrate the performance of our instrument by imaging fluorescent beads and a PEGASOS cleared-tissue mouse brain.
Collapse
Affiliation(s)
- Hassan Dibaji
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Md Nasful Huda Prince
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yating Yi
- Chinese Institute for Brain Research, Bejing 102206, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Bejing 102206, China
| | - Tonmoy Chakraborty
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87102, USA
| |
Collapse
|
16
|
Mac KD, Qureshi MM, Na M, Chang S, Eom TJ, Je HS, Kim YR, Kwon HS, Chung E. Fast volumetric imaging with line-scan confocal microscopy by electrically tunable lens at resonant frequency. OPTICS EXPRESS 2022; 30:19152-19164. [PMID: 36221700 PMCID: PMC9363030 DOI: 10.1364/oe.450745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/20/2023]
Abstract
In microscopic imaging of biological tissues, particularly real-time visualization of neuronal activities, rapid acquisition of volumetric images poses a prominent challenge. Typically, two-dimensional (2D) microscopy can be devised into an imaging system with 3D capability using any varifocal lens. Despite the conceptual simplicity, such an upgrade yet requires additional, complicated device components and usually suffers from a reduced acquisition rate, which is critical to properly document rapid neurophysiological dynamics. In this study, we implemented an electrically tunable lens (ETL) in the line-scan confocal microscopy (LSCM), enabling the volumetric acquisition at the rate of 20 frames per second with a maximum volume of interest of 315 × 315 × 80 µm3. The axial extent of point-spread-function (PSF) was 17.6 ± 1.6 µm and 90.4 ± 2.1 µm with the ETL operating in either stationary or resonant mode, respectively, revealing significant depth axial penetration by the resonant mode ETL microscopy. We further demonstrated the utilities of the ETL system by volume imaging of both cleared mouse brain ex vivo samples and in vivo brains. The current study showed a successful application of resonant ETL for constructing a high-performance 3D axially scanning LSCM (asLSCM) system. Such advances in rapid volumetric imaging would significantly enhance our understanding of various dynamic biological processes.
Collapse
Affiliation(s)
- Khuong Duy Mac
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | | | - Myeongsu Na
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080 Seoul, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080 Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080 Seoul, Republic of Korea
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Engineering Research Center (ERC) for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road 169857, Singapore
- Advanced Bioimaging Center, Academia, Ngee Ann Kongsi Discovery Tower Level 10, 20 College Road, 169855, Singapore
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
17
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
18
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
19
|
Abstract
Electro-responsive actuators (ERAs) hold great promise for cutting-edge applications in e-skins, soft robots, unmanned flight, and in vivo surgery devices due to the advantages of fast response, precise control, programmable deformation, and the ease of integration with control circuits. Recently, considering the excellent physical/chemical/mechanical properties (e.g., high carrier mobility, strong mechanical strength, outstanding thermal conductivity, high specific surface area, flexibility, and transparency), graphene and its derivatives have emerged as an appealing material in developing ERAs. In this review, we have summarized the recent advances in graphene-based ERAs. Typical the working mechanisms of graphene ERAs have been introduced. Design principles and working performance of three typical types of graphene ERAs (e.g., electrostatic actuators, electrothermal actuators, and ionic actuators) have been comprehensively summarized. Besides, emerging applications of graphene ERAs, including artificial muscles, bionic robots, human-soft actuators interaction, and other smart devices, have been reviewed. At last, the current challenges and future perspectives of graphene ERAs are discussed.
Collapse
|
20
|
Jannasch A, Szilagyi SA, Burmeister M, Davis QT, Hermsdorf GL, De S, Schäffer E. Fast 3D imaging of giant unilamellar vesicles using reflected light-sheet microscopy with single molecule sensitivity. J Microsc 2021; 285:40-51. [PMID: 34786705 DOI: 10.1111/jmi.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Observation of highly dynamic processes inside living cells at the single molecule level is key for a better understanding of biological systems. However, imaging of single molecules in living cells is usually limited by the spatial and temporal resolution, photobleaching and the signal-to-background ratio. To overcome these limitations, light-sheet microscopes with thin selective plane illumination, for example, in a reflected geometry with a high numerical aperture imaging objective, have been developed. Here, we developed a reflected light-sheet microscope with active optics for fast, high contrast, two-colour acquisition of z -stacks. We demonstrate fast volume scanning by imaging a two-colour giant unilamellar vesicle (GUV) hemisphere. In addition, the high contrast enabled the imaging and tracking of single lipids in the GUV cap. The enhanced reflected scanning light-sheet microscope enables fast 3D scanning of artificial membrane systems and potentially live cells with single-molecule sensitivity and thereby could provide quantitative and molecular insight into the operation of cells.
Collapse
Affiliation(s)
- Anita Jannasch
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Sven A Szilagyi
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany.,Max Planck Institute for Solid State Physics, Heisenbergstrasse 1, Stuttgart, Germany
| | - Moritz Burmeister
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Q Tyrell Davis
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany.,School of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland, UK
| | - Gero L Hermsdorf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Suman De
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Broomhall, Sheffield, UK
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| |
Collapse
|
21
|
Liu Y, Rollins AM, Jenkins MW. CompassLSM: axially swept light-sheet microscopy made simple. BIOMEDICAL OPTICS EXPRESS 2021; 12:6571-6589. [PMID: 34745757 PMCID: PMC8547981 DOI: 10.1364/boe.440292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Axially swept light-sheet microscopy (ASLM) is an effective method of generating a uniform light sheet across a large field of view (FOV). However, current ASLM designs are more complicated than conventional light-sheet systems, limiting their adaptation in less experienced labs. By eliminating difficult-to-align components and reducing the total number of components, we show that high-performance ASLM can be accomplished much simpler than existing designs, requiring less expertise and effort to construct, align, and operate. Despite the high simplicity, our design achieved 3.5-µm uniform optical sectioning across a >6-mm FOV, surpassing existing light-sheet designs with similar optical sectioning. With well-corrected chromatic aberration, multi-channel fluorescence imaging can be performed without realignment. This manuscript provides a comprehensive tutorial on building the system and demonstrates the imaging performance with optically cleared whole-mount tissue samples.
Collapse
Affiliation(s)
- Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Wright T, Sparks H, Paterson C, Dunsby C. Video-rate remote refocusing through continuous oscillation of a membrane deformable mirror. JPHYS PHOTONICS 2021; 3:045004. [PMID: 34693207 PMCID: PMC8523955 DOI: 10.1088/2515-7647/ac29a2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023] Open
Abstract
This paper presents the use of a deformable mirror (DM) configured to rapidly refocus a microscope employing a high numerical aperture (NA) objective lens. An Alpao DM97-15 membrane DM was used to refocus a 40×/0.80 NA water-immersion objective through a defocus range of -50-50 μm at 26.3 sweeps s-1. We achieved imaging with a mean Strehl metric of >0.6 over a field of view in the sample of 200 × 200 μm2 over a defocus range of 77 μm. We describe an optimisation procedure where the mirror is swept continuously in order to avoid known problems of hysteresis associated with the membrane DM employed. This work demonstrates that a DM-based refocusing system could in the future be used in light-sheet fluorescence microscopes to achieve video-rate volumetric imaging.
Collapse
Affiliation(s)
- Terry Wright
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Hugh Sparks
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Carl Paterson
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Centre for Pathology, Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
23
|
Zhao P, Li Y, Zappe H. Accelerated electrowetting-based tunable fluidic lenses. OPTICS EXPRESS 2021; 29:15733-15746. [PMID: 33985269 DOI: 10.1364/oe.423460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
One of the limitations in the application of electrowetting-based tunable fluidic lenses is their slow response time. We consider here two approaches for enhancing the response speed of tunable fluidic lenses: optimization of the properties of the fluids employed and modification of the time-dependent actuation voltages. Using a tubular optofluidic configuration, it is shown through simulations how one may take advantage of the interplay between liquid viscosities and surface tension to reduce the actuation time. In addition, by careful designing the actuation pulses, the response speed of both overdamped and underdamped systems may be increased by over an order of magnitude, leading to response times of several ten milliseconds. These performance improvements may significantly enhance the applicability of tunable optofluidic-based components and systems.
Collapse
|
24
|
Zong W. New solution for fast axial scanning in fluorescence microscopy. LIGHT, SCIENCE & APPLICATIONS 2020; 9:199. [PMID: 33318466 PMCID: PMC7736891 DOI: 10.1038/s41377-020-00442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel technique based on the remote-focusing concept, using a galvanometer scanner combined with a self-fabricated "step mirror" or "tilted mirror" to transform fast lateral scanning into axial scanning, was reported as a new solution for fast, subcellular, 3D fluorescence imaging.
Collapse
Affiliation(s)
- Weijian Zong
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
25
|
Ersumo NT, Yalcin C, Antipa N, Pégard N, Waller L, Lopez D, Muller R. A micromirror array with annular partitioning for high-speed random-access axial focusing. LIGHT, SCIENCE & APPLICATIONS 2020; 9:183. [PMID: 33298828 PMCID: PMC7596532 DOI: 10.1038/s41377-020-00420-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 05/24/2023]
Abstract
Dynamic axial focusing functionality has recently experienced widespread incorporation in microscopy, augmented/virtual reality (AR/VR), adaptive optics and material processing. However, the limitations of existing varifocal tools continue to beset the performance capabilities and operating overhead of the optical systems that mobilize such functionality. The varifocal tools that are the least burdensome to operate (e.g. liquid crystal, elastomeric or optofluidic lenses) suffer from low (≈100 Hz) refresh rates. Conversely, the fastest devices sacrifice either critical capabilities such as their dwelling capacity (e.g. acoustic gradient lenses or monolithic micromechanical mirrors) or low operating overhead (e.g. deformable mirrors). Here, we present a general-purpose random-access axial focusing device that bridges these previously conflicting features of high speed, dwelling capacity and lightweight drive by employing low-rigidity micromirrors that exploit the robustness of defocusing phase profiles. Geometrically, the device consists of an 8.2 mm diameter array of piston-motion and 48-μm-pitch micromirror pixels that provide 2π phase shifting for wavelengths shorter than 1100 nm with 10-90% settling in 64.8 μs (i.e., 15.44 kHz refresh rate). The pixels are electrically partitioned into 32 rings for a driving scheme that enables phase-wrapped operation with circular symmetry and requires <30 V per channel. Optical experiments demonstrated the array's wide focusing range with a measured ability to target 29 distinct resolvable depth planes. Overall, the features of the proposed array offer the potential for compact, straightforward methods of tackling bottlenecked applications, including high-throughput single-cell targeting in neurobiology and the delivery of dense 3D visual information in AR/VR.
Collapse
Affiliation(s)
- Nathan Tessema Ersumo
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Cem Yalcin
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Nick Antipa
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Nicolas Pégard
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Laura Waller
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Daniel Lopez
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Rikky Muller
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA.
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|