1
|
Yan Z, Wu Y, Bao T, Ban Y, Zhang L, Wan Y, Li SQ, Xie Y, Chen Y, Yan X. Dramatically Prolonged Photoexcited Carrier Lifetimes in Group-III Monochalcogenide Heterostructures through Stacking Modulation. J Phys Chem Lett 2025; 16:4286-4295. [PMID: 40265702 DOI: 10.1021/acs.jpclett.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Modulating the carrier dynamics to achieve the effective separation of photoexcited carriers is crucial for enhancing photoelectric conversion efficiency and advancing high-performance optoelectronic devices. A prototype group-III monochalcogenide heterostructure, GaSe/GaTe, has been proposed to exhibit a superior light-harvesting capability and highly tunable charge separation characteristics via nonadiabatic molecular dynamics (NAMD) simulations. The significant influence of stacking patterns on carrier dynamics is revealed, with electron (hole) transfer occurring within 97 (40) to 390 (126) fs, while the carrier lifetime is dramatically prolonged from 12 to 213 ns, facilitating effective electron-hole (e-h) pair separation. Notably, the AA' and A'A stacking configurations demonstrate remarkably extended carrier lifetimes of 213 and 161 ns, respectively, exceeding those observed in other 2D heterostructures. The weak nonadiabatic coupling and low-frequency phonon vibrational modes suppress e-h recombination, leading to a prolonged carrier lifetime. These findings offer atomic insights into stacking-dependent carrier dynamics, advancing 2D optoelectronic device design.
Collapse
Affiliation(s)
- Zixiao Yan
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
| | - Yifan Wu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
| | - TianQi Bao
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
| | - Yunxiao Ban
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
| | - Lichuan Zhang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
| | - Yangyang Wan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shi-Qi Li
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
| | - Yuee Xie
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
| | - Yuanping Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
| | - Xiaohong Yan
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
| |
Collapse
|
2
|
Zhu H, Chen Z, Zhang H, Dai J, Zhang J, Chen Z, Xiao S, He J. Orientation-Related Giant Third Harmonics Generation in Quasi-One-Dimensional ZrS 3 Crystals. J Phys Chem Lett 2025; 16:4173-4180. [PMID: 40249861 DOI: 10.1021/acs.jpclett.5c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Exploring strong nonlinear optical (NLO) response and high NLO anisotropy materials is crucial for nonlinear nanophotonic devices with a polarization function. Here, we report a quasi-one-dimensional (quasi-1D) ZrS3 nanobelt exhibiting ultrastrong third harmonics generation (THG) with a maximum third-order susceptibility (χ(3)) of 67.9 × 10-18 m2/V2 for a 24.3 nm thickness, which is approximately 3 orders of magnitude higher than most 2D materials. This thickness-dependent NLO coefficient (χ(3)) decreases from 4.88 × 10-18 to 1.14 × 10-18 m2/V2 with the variation in nanobelt thickness from 15.6 to 131 nm, which is explained by the phase matching confinement effect. More importantly, an anisotropic ratio of THG as large as 61.5 is confirmed, with the b-axis being the high THG polarization orientation. This orientation-dependent giant THG in quasi-1D ZrS3 crystals will provide potential for the development of future nonlinear nanophotonics with a polarization function.
Collapse
Affiliation(s)
- Haixia Zhu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Zhaozhe Chen
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Hua Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Jin Dai
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Jie Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
3
|
Zhou H, Ni X, Lou B, Fan S, Cao Y, Tang H. Control of Chirality and Directionality of Nonlinear Metasurface Light Source via Moiré Engineering. PHYSICAL REVIEW LETTERS 2025; 134:043801. [PMID: 39951597 DOI: 10.1103/physrevlett.134.043801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/19/2024] [Indexed: 02/16/2025]
Abstract
Metasurfaces have revolutionized nonlinear and quantum light manipulation in the past decade, enabling the design of materials that can tune polarization, frequency, and direction of light simultaneously. However, tuning of metasurfaces is traditionally achieved by changing their microscopic structure, which does not allow in situ tuning and dynamic optimization of the metasurfaces. In this Letter, we explore the concept of twisted bilayer and tetralayer nonlinear metasurfaces, which offer rich tunability in its effective nonlinear susceptibilities. Using gold-based metasurfaces, we demonstrate that a number of different singularities of nonlinear susceptibilities can exist in the parameter space of twist angle and interlayer gap between different twisted layers. At the singularities, reflected or transmitted light from the nonlinear process (such as second-harmonic generation) can either become circularly polarized (for C points), or entirely vanish (for V points). By further breaking symmetries of the system, we can independently tune all aspects of the reflected and transmitted nonlinear emission, achieving unidirectional emission with full-Poincaré polarization tunability, a dark state (V-V point), or any other bidirectional output. Our work paves the way for multidimensional control of polarization and directionality in nonlinear light sources, opening new avenues in ultrafast optics, optical communication, sensing, and quantum optics.
Collapse
Affiliation(s)
- Huanyu Zhou
- University of California at Berkeley, Department of Electrical Engineering and Computer Science, Berkeley, California 94720, USA
| | - Xueqi Ni
- National University of Singapore, Department of Physics, Singapore 119077
| | - Beicheng Lou
- Stanford University, Department of Applied Physics and Ginzton Laboratory, Stanford, California 94305, USA
| | - Shanhui Fan
- Stanford University, Department of Applied Physics and Ginzton Laboratory, Stanford, California 94305, USA
| | - Yuan Cao
- University of California at Berkeley, Department of Electrical Engineering and Computer Science, Berkeley, California 94720, USA
| | - Haoning Tang
- University of California at Berkeley, Department of Electrical Engineering and Computer Science, Berkeley, California 94720, USA
- Harvard University, School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
4
|
Tan Z, Dong J, Liu Y, Luo Q, Li Z, Yun T, Jiang T, Cheng X, Huang D. Nonlinear optics of graphitic carbon allotropes: from 0D to 3D. NANOSCALE 2025; 17:1171-1212. [PMID: 39630118 DOI: 10.1039/d4nr03467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The dimensionality of materials fundamentally influences their electronic and optical properties, presenting a complex interplay with nonlinear optical (NLO) characteristics that remains largely unexplored. In this review, we focus on the influence of dimensionality on the NLO properties of graphitic allotropes, ranging from 0D fullerenes, 1D carbon nanotubes, and 2D graphene, to 3D graphite, all of which share a consistent sp2 hybridized chemical bonding structure. We examine the distinct physical and NLO properties across these dimensions, underscoring the profound impact of dimensionality. Notably, dimension-specific physical phenomena, such as Luttinger liquid in 1D and Landau quantization in 2D, play a significant role in shaping NLO phenomena. Finally, we explore the promising potential of NLO properties in systems with mixed dimensionalities, setting the stage for future breakthroughs and innovative applications.
Collapse
Affiliation(s)
- Zhengyang Tan
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Jiakai Dong
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yang Liu
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Qi Luo
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Zhengyang Li
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Tiantian Yun
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Tao Jiang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xinbin Cheng
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
| | - Di Huang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Song G, Hong H, Ma C, Hao H, Yan S, Zhang Y, Liu K, Tong L, Zhang J. Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures. J Am Chem Soc 2025; 147:473-479. [PMID: 39731566 DOI: 10.1021/jacs.4c11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering. It is found that the modulation of in-plane and out-of-plane SHG susceptibility components by stacking few-layer graphene is essential in producing giant SHG response in twisted multilayer graphene. Giant SHG intensity in twisted multilayer graphene is observed, reaching nearly 10 times that of monolayer MoS2 under 1064 nm excitation, which significantly outperformed graphene structures reported to date. Our findings present a facile and effective approach to enhance SHG in graphene structures, showing promise for future application of graphene in second harmonic nanophotonic devices as well as prospects for the study of SHG among two-dimensional (2D) structures in general.
Collapse
Affiliation(s)
- Ge Song
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - He Hao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuowen Yan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Du L, Huang Z, Zhang J, Ye F, Dai Q, Deng H, Zhang G, Sun Z. Nonlinear physics of moiré superlattices. NATURE MATERIALS 2024; 23:1179-1192. [PMID: 39215154 DOI: 10.1038/s41563-024-01951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Nonlinear physics is one of the most important research fields in modern physics and materials science. It offers an unprecedented paradigm for exploring many fascinating physical phenomena and realizing diverse cutting-edge applications inconceivable in the framework of linear processes. Here we review the recent theoretical and experimental progress concerning the nonlinear physics of synthetic quantum moiré superlattices. We focus on the emerging nonlinear electronic, optical and optoelectronic properties of moiré superlattices, including but not limited to the nonlinear anomalous Hall effect, dynamically twistable harmonic generation, nonlinear optical chirality, ultralow-power-threshold optical solitons and spontaneous photogalvanic effect. We also present our perspectives on the future opportunities and challenges in this rapidly progressing field, and highlight the implications for advances in both fundamental physics and technological innovations.
Collapse
Affiliation(s)
- Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhang
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Fangwei Ye
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Deng
- Physics Department, University of Michigan, Ann Arbor, MI, USA
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Songshan-Lake Materials Laboratory, Dongguan, China.
| | - Zhipei Sun
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
| |
Collapse
|
7
|
Park S, Yu J, Boehm G, Belkin MA, Lee J. Electrically tunable third-harmonic generation using intersubband polaritonic metasurfaces. LIGHT, SCIENCE & APPLICATIONS 2024; 13:169. [PMID: 39019860 PMCID: PMC11254926 DOI: 10.1038/s41377-024-01517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 06/30/2024] [Indexed: 07/19/2024]
Abstract
Nonlinear intersubband polaritonic metasurfaces, which integrate giant nonlinear responses derived from intersubband transitions of multiple quantum wells (MQWs) with plasmonic nanoresonators, not only facilitate efficient frequency conversion at pump intensities on the order of few tens of kW cm-2 but also enable electrical modulation of nonlinear responses at the individual meta-atom level and dynamic beam manipulation. The electrical modulation characteristics of the magnitude and phase of the nonlinear optical response are realized through Stark tuning of the resonant intersubband nonlinearity. In this study, we report, for the first time, experimental implementations of electrical modulation characteristics of mid-infrared third-harmonic generation (THG) using an intersubband polaritonic metasurface based on MQW with electrically tunable third-order nonlinear response. Experimentally, we achieved a 450% modulation depth of the THG signal, 86% suppression of zero-order THG diffraction tuning based on local phase tuning exceeding 180 degrees, and THG beam steering using phase gradients. Our work proposes a new route for electrically tunable flat nonlinear optical elements with versatile functionalities.
Collapse
Affiliation(s)
- Seongjin Park
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jaeyeon Yu
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Gerhard Boehm
- Walter Schottky Institute, Technical University of Munich, Garching, Germany
| | - Mikhail A Belkin
- Walter Schottky Institute, Technical University of Munich, Garching, Germany
| | - Jongwon Lee
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
8
|
Kuang X, Pantaleón Peralta PA, Angel Silva-Guillén J, Yuan S, Guinea F, Zhan Z. Optical properties and plasmons in moiré structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:173001. [PMID: 38232397 DOI: 10.1088/1361-648x/ad1f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.
Collapse
Affiliation(s)
- Xueheng Kuang
- Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, People's Republic of China
| | | | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
| | - Zhen Zhan
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
9
|
Ning T, Zhao L, Huo Y, Cai Y, Ren Y. Giant enhancement of second harmonic generation from monolayer 2D materials placed on photonic moiré superlattice. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4009-4016. [PMID: 39635636 PMCID: PMC11501670 DOI: 10.1515/nanoph-2023-0124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/29/2023] [Indexed: 12/07/2024]
Abstract
We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10-1 at a relatively low intensity of fundamental light 1 kW/cm2, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics.
Collapse
Affiliation(s)
- Tingyin Ning
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan250358, China
| | - Lina Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan250358, China
| | - Yanyan Huo
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan250358, China
| | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan250358, China
| | - Yingying Ren
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan250358, China
| |
Collapse
|
10
|
Xing F, Ji G, Li Z, Zhong W, Wang F, Liu Z, Xin W, Tian J. Preparation, properties and applications of two-dimensional superlattices. MATERIALS HORIZONS 2023; 10:722-744. [PMID: 36562255 DOI: 10.1039/d2mh01206e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.
Collapse
Affiliation(s)
- Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Feiyue Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhibo Liu
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Jianguo Tian
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Zhu S, Duan R, Chen W, Wang F, Han J, Xu X, Wu L, Ye M, Sun F, Han S, Zhao X, Tan CS, Liang H, Liu Z, Wang QJ. Ultrastrong Optical Harmonic Generations in Layered Platinum Disulfide in the Mid-Infrared. ACS NANO 2023; 17:2148-2158. [PMID: 36706067 DOI: 10.1021/acsnano.2c08147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonlinear optical activities (e.g., harmonic generations) in two-dimensional (2D) layered materials have attracted much attention due to the great promise in diverse optoelectronic applications such as nonlinear optical modulators, nonreciprocal optical device, and nonlinear optical imaging. Exploration of nonlinear optical response (e.g., frequency conversion) in the infrared, especially the mid-infrared (MIR) region, is highly desirable for ultrafast MIR laser applications ranging from tunable MIR coherent sources, MIR supercontinuum generation, and MIR frequency-comb-based spectroscopy to high harmonic generation. However, nonlinear optical effects in 2D layered materials under MIR pump are rarely reported, mainly due to the lack of suitable 2D layered materials. Van der Waals layered platinum disulfide (PtS2) with a sizable bandgap from the visible to the infrared region is a promising candidate for realizing MIR nonlinear optical devices. In this work, we investigate the nonlinear optical properties including third-and fifth-harmonic generation (THG and FHG) in thin layered PtS2 under infrared pump (1550-2510 nm). Strikingly, the ultrastrong third-order nonlinear susceptibility χ(3)(-3ω;ω,ω,ω) of thin layered PtS2 in the MIR region was estimated to be over 10-18 m2/V2, which is about one order of that in traditional transition metal chalcogenides. Such excellent performance makes air-stable PtS2 a potential candidate for developing next-generation MIR nonlinear photonic devices.
Collapse
Affiliation(s)
- Song Zhu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Ruihuan Duan
- School of Material Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Nanyang Technological University, 637371, Singapore
| | - Wenduo Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Fakun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Jiayue Han
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiaodong Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin150001, P. R. China
| | - Lishu Wu
- School of Material Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Ming Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Fangyuan Sun
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Song Han
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiaoxu Zhao
- School of Material Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Chuan Seng Tan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Houkun Liang
- School of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan610064, P. R. China
| | - Zheng Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
- School of Material Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Nanyang Technological University, 637371, Singapore
| | - Qi Jie Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
12
|
Dhawan P, Saini A, Goel S, Tyagi N, Yadav H. A systematic study of the third-order nonlinear optical co-crystal of bis-((diisopropyl)ammonium) dichromate: X-ray, Hirshfeld surface, optical, and mechanical analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Kim YC, Yoo H, Nguyen VT, Lee S, Park JY, Ahn YH. High-Speed Imaging of Second-Harmonic Generation in MoS 2 Bilayer under Femtosecond Laser Ablation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1786. [PMID: 34361172 PMCID: PMC8308356 DOI: 10.3390/nano11071786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
We report an in situ characterization of transition-metal dichalcogenide (TMD) monolayers and twisted bilayers using a high-speed second-harmonic generation (SHG) imaging technique. High-frequency laser modulation and galvano scanning in the SHG imaging enabled a rapid identification of the crystallinity in the TMD, including the orientation and homogeneity with a speed of 1 frame/s. For a twisted bilayer MoS2, we studied the SHG peak intensity and angles as a function of the twist angle under a strong interlayer coupling. In addition, rapid SHG imaging can be used to visualize laser-induced ablation of monolayer and bilayer MoS2 in situ under illumination by a strong femtosecond laser. Importantly, we observed a characteristic threshold behavior; the ablation process occurred for a very short time duration once the preheating condition was reached. We investigated the laser thinning of the bilayer MoS2 with different twist angles. When the twist angle was 0°, the SHG decreased by approximately one-fourth of the initial intensity when one layer was removed. Conversely, when the twist angle was approximately 60° (the SHG intensity was suppressed), the SHG increased abruptly close to that of the nearby monolayer when one layer was removed. Precise layer-by-layer control was possible because of the unique threshold behavior of the laser-induced ablation.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Hoseong Yoo
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Van Tu Nguyen
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Soonil Lee
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Ji-Yong Park
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Yeong Hwan Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| |
Collapse
|
14
|
Debnath PC, Yeom DI. Ultrafast Fiber Lasers with Low-Dimensional Saturable Absorbers: Status and Prospects. SENSORS 2021; 21:s21113676. [PMID: 34070539 PMCID: PMC8198619 DOI: 10.3390/s21113676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022]
Abstract
Wide-spectral saturable absorption (SA) in low-dimensional (LD) nanomaterials such as zero-, one-, and two-dimensional materials has been proven experimentally with outstanding results, including low saturation intensity, deep modulation depth, and fast carrier recovery time. LD nanomaterials can therefore be used as SAs for mode-locking or Q-switching to generate ultrafast fiber laser pulses with a high repetition rate and short duration in the visible, near-infrared, and mid-infrared wavelength regions. Here, we review the recent development of emerging LD nanomaterials as SAs for ultrafast mode-locked fiber laser applications in different dispersion regimes such as anomalous and normal dispersion regimes of the laser cavity operating in the near-infrared region, especially at ~1550 nm. The preparation methods, nonlinear optical properties of LD SAs, and various integration schemes for incorporating LD SAs into fiber laser systems are introduced. In addition to these, externally (electrically or optically) controlled pulsed fiber laser behavior and other characteristics of various LD SAs are summarized. Finally, the perspectives and challenges facing LD SA-based mode-locked ultrafast fiber lasers are highlighted.
Collapse
Affiliation(s)
- Pulak Chandra Debnath
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea;
- Department of Physics, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Dong-Il Yeom
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea;
- Department of Physics, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-1937
| |
Collapse
|