1
|
Banstola A, Lin ZT, Li Y, Wu MX. PhotoChem Interplays: Lighting the Way for Drug Delivery and Diagnosis. Adv Drug Deliv Rev 2025; 219:115549. [PMID: 39986440 PMCID: PMC11903148 DOI: 10.1016/j.addr.2025.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/23/2024] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Light, a non-invasive tool integrated with cutting-edge nanotechnologies, has driven transformative advancements in imaging-based diagnosis and drug delivery for cancer and bacterial treatments. This review discusses recent progress in these areas, beginning with emerging imaging technologies. Unlike traditional photosensors activated by visible light, alternative energy sources such as near-infrared (NIR) light, X-rays, and ultrasound have been extensively investigated to activate various photosensors, achieving high sensitivity, wavelength versatility, and spatial resolution for deep-tissue imaging. Moreover, to address challenges like tissue autofluorescence in real-time fluorescence imaging, afterglow luminescent nanoparticles are being developed by integrating these alternative energy sources for real-time imaging and sensing in deep tissue for precise cancer diagnosis and treatment beyond superficial tissues. In addition to deep tissue imaging, light-responsive nanomedicines are revolutionizing anticancer and antimicrobial phototherapy by enabling spatially and temporally controlled drug release. These smart nanoparticles are engineered to release therapeutic cargo at target sites in response to microenvironmental cues specific to tumors or infections. In anticancer phototherapy, these nanoparticles facilitate controlled drug release via photoisomerization, photothermal, and photodynamic processes. To enhance circulation time and specific targeting, biomimetic nanoparticles, which mimic natural anti-tumor responses by our body, have attracted increasing attention. In antimicrobial phototherapy, research has been focused on the chemical modification of the photosensitizer to enable targeted drug delivery. An intriguing strategy has recently emerged involving the development of "pro-photosensitizers" that are specifically activated within bacterial cells upon light irradiation, offering a high margin of safety. These advancements leverage photochemical reactions and nanotechnology to enhance precision therapy and diagnosis in addressing critical health challenges.
Collapse
Affiliation(s)
- Asmita Banstola
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Zuan-Tao Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Yongli Li
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA.
| |
Collapse
|
2
|
Jiang P, Ding B, Yao J, Zhou L, He Z, Huang Z, Yin C, Tian H, Ma X. Thermal Modulation of Exciton Recombination for High-Temperature Ultra-Long Afterglow. Angew Chem Int Ed Engl 2025; 64:e202421036. [PMID: 39681517 DOI: 10.1002/anie.202421036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Developing smart materials with tunable high-temperature afterglow (HTA) luminescence remains a formidable challenge. This study presents a metal-free doping system using boric acid as matrix and polycyclic aromatic hydrocarbons as dopants. This composition achieves dynamically tunable afterglow combining a bright blue HTA lasting for over ten seconds even at 150 °C and an ultra-long yellow room-temperature phosphorescence below 110 °C. The observed HTA is attributed to the thermally released exciton recombination within the dopant molecules, which shows excellent temperature tolerance compared to traditional triplet related phosphorescence and thermally activated delayed fluorescence. The planarity of dopants is extensively investigated playing a pivotal role in modulating Dexter electron transfer (ET) for capturing released electrons and thereby affecting the overall performance of tunable HTA. This work provides an efficient and universal doping strategy to engineer tunable HTA through the synergistic action of thermally releasing electrons, Dexter ET and exciton recombination.
Collapse
Affiliation(s)
- Ping Jiang
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Bingbing Ding
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jiayi Yao
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Lei Zhou
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhenyi He
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zizhao Huang
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Chenjia Yin
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - He Tian
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiang Ma
- Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
3
|
Kim SJ, Kim M, Yang SM, Park K, Hahn SK. Strain-Programmed Adhesive Patch for Accelerated Photodynamic Wound Healing. Adv Healthc Mater 2024; 13:e2401159. [PMID: 38822543 DOI: 10.1002/adhm.202401159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Indexed: 06/03/2024]
Abstract
As an alternative to tissue adhesives, photochemical tissue bonding is investigated for advanced wound healing. However, these techniques suffer from relatively slow wound healing with bleeding and bacterial infections. Here, the versatile attributes of afterglow luminescent particles (ALPs) embedded in dopamine-modified hyaluronic acid (HA-DOPA) patches for accelerated wound healing are presented. ALPs enhance the viscoelastic properties of the patches, and the photoluminescence and afterglow luminescence of ALPs maximize singlet oxygen generation and collagen fibrillogenesis for effective healing in the infected wounds. The patches are optimized to achieve the strong and rapid adhesion in the wound sites. In addition, the swelling and shrinking properties of adhesive patches contribute to a nonlinear behavior in the wound recovery, playing an important role as a strain-programmed patch. The protective patch prevents secondary infection and skin adhesion, and the patch seamlessly detaches during wound healing, enabling efficient residue clearance. In vitro, in vivo, and ex vivo model tests confirm the biocompatibility, antibacterial effect, hemostatic capability, and collagen restructuring for the accelerated wound healing. Taken together, this research collectively demonstrates the feasibility of HA-DOPA/ALP patches as a versatile and promoting solution for advanced accelerated wound healing, particularly in scenarios involving bleeding and bacterial infections.
Collapse
Affiliation(s)
- Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Mungu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seung Min Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Kwanghyeon Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
4
|
Du J, Wang X, Sun S, Wu Y, Jiang K, Li S, Lin H. Pushing Trap-Controlled Persistent Luminescence Materials toward Multi-Responsive Smart Platforms: Recent Advances, Mechanism, and Frontier Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314083. [PMID: 39003611 DOI: 10.1002/adma.202314083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Smart stimuli-responsive persistent luminescence materials, combining the various advantages and frontier applications prospects, have gained booming progress in recent years. The trap-controlled property and energy storage capability to respond to external multi-stimulations through diverse luminescence pathways make them attractive in emerging multi-responsive smart platforms. This review aims at the recent advances in trap-controlled luminescence materials for advanced multi-stimuli-responsive smart platforms. The design principles, luminescence mechanisms, and representative stimulations, i.e., thermo-, photo-, mechano-, and X-rays responsiveness, are comprehensively summarized. Various emerging multi-responsive hybrid systems containing trap-controlled luminescence materials are highlighted. Specifically, temperature dependent trapping and de-trapping performance is discussed, from extreme-low temperature to ultra-high temperature conditions. Emerging applications and future perspectives are briefly presented. It is hoped that this review would provide new insights and guidelines for the rational design and performance manipulation of multi-responsive materials for advanced smart platforms.
Collapse
Affiliation(s)
- Jiaren Du
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomeng Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yongjian Wu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai Jiang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
5
|
Shang R, Yang F, Gao G, Luo Y, You H, Dong L. Bioimaging and prospects of night pearls-based persistence phosphors in cancer diagnostics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230124. [PMID: 39175886 PMCID: PMC11335470 DOI: 10.1002/exp.20230124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 08/24/2024]
Abstract
Inorganic persistent phosphors feature great potential for cancer diagnosis due to the long luminescence lifetime, low background scattering, and minimal autofluorescence. With the prominent advantages of near-infrared light, such as deep penetration, high resolution, low autofluorescence, and tissue absorption, persistent phosphors can be used for deep bioimaging. We focus on highlighting inorganic persistent phosphors, emphasizing the synthesis methods and applications in cancer diagnostics. Typical synthetic methods such as the high-temperature solid state, thermal decomposition, hydrothermal/solvothermal, and template methods are proposed to obtain small-size phosphors for biological organisms. The luminescence mechanisms of inorganic persistent phosphors with different excitation are discussed and effective matrixes including galliumate, germanium, aluminate, and fluoride are explored. Finally, the current directions where inorganic persistent phosphors can continue to be optimized and how to further overcome the challenges in cancer diagnosis are summarized.
Collapse
Affiliation(s)
- Ruipu Shang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Feifei Yang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
| | - Ge Gao
- Division of Physical Science and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA Institute for Frontier Medical TechnologyCollege of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiChina
| | - Hongpeng You
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Lile Dong
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
6
|
Samadder P, Naim K, Sahoo SC, Neelakandan PP. Surface coating induced room-temperature phosphorescence in flexible organic single crystals. Chem Sci 2024; 15:9258-9265. [PMID: 38903241 PMCID: PMC11186325 DOI: 10.1039/d4sc01708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Materials exhibiting room temperature phosphorescence (RTP) are in high demand for signage, information encryption, sensing, and biological imaging. Due to weak spin-orbit coupling and other non-radiative processes that effectively quench the triplet excited states, RTP is sparsely observed in organic materials. Although the incorporation of a heavy atom through covalent or non-covalent modification circumvents these drawbacks, heavy-atom-containing materials are undesirable because of their deleterious side effects. Here, we designed and synthesized a new naphthalidenimine-boron complex as a coating material for the single crystals of 4,4'-dimethoxybenzophenone. The coated surface was observed to exhibit yellowish-green phosphorescence with ms lifetimes at ambient conditions through Förster resonance energy transfer (FRET). Importantly, the mechanical flexibility of the single crystals was observed to be retained after coating. The fluorescence-phosphorescence dual emission was utilised for colour-tunable optical waveguiding and anti-counterfeiting applications. As organic single crystals that can sustain mechanical deformations are emerging as the next-generation materials for electronic device fabrication, the flexible RTP organic crystals showing colour-tuneable optical waveguiding could be omnipotent in electronics.
Collapse
Affiliation(s)
- Prodipta Samadder
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali 140306 India
| | - Khalid Naim
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali 140306 India
| | | | - Prakash P Neelakandan
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali 140306 India
| |
Collapse
|
7
|
Yaron JR, Gosangi M, Pallod S, Rege K. In situ light-activated materials for skin wound healing and repair: A narrative review. Bioeng Transl Med 2024; 9:e10637. [PMID: 38818119 PMCID: PMC11135152 DOI: 10.1002/btm2.10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 06/01/2024] Open
Abstract
Dermal wounds are a major global health burden made worse by common comorbidities such as diabetes and infection. Appropriate wound closure relies on a highly coordinated series of cellular events, ultimately bridging tissue gaps and regenerating normal physiological structures. Wound dressings are an important component of wound care management, providing a barrier against external insults while preserving the active reparative processes underway within the wound bed. The development of wound dressings with biomaterial constituents has become an attractive design strategy due to the varied functions intrinsic in biological polymers, such as cell instructiveness, growth factor binding, antimicrobial properties, and tissue integration. Using photosensitive agents to generate crosslinked or photopolymerized dressings in situ provides an opportunity to develop dressings rapidly within the wound bed, facilitating robust adhesion to the wound bed for greater barrier protection and adaptation to irregular wound shapes. Despite the popularity of this fabrication approach, relatively few experimental wound dressings have undergone preclinical translation into animal models, limiting the overall integrity of assessing their potential as effective wound dressings. Here, we provide an up-to-date narrative review of reported photoinitiator- and wavelength-guided design strategies for in situ light activation of biomaterial dressings that have been evaluated in preclinical wound healing models.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
| | - Mallikarjun Gosangi
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Shubham Pallod
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
- Chemical Engineering, Arizona State UniversityTempeArizonaUSA
| |
Collapse
|
8
|
Yang Y, Badloe T, Song D, Park S, Rho J. Building an optics and photonics research ecosystem in South Korea: Collaborative innovation between academia and industry. LIGHT, SCIENCE & APPLICATIONS 2023; 12:289. [PMID: 38044357 PMCID: PMC10694129 DOI: 10.1038/s41377-023-01332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Duheon Song
- Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, Republic of Korea
- School of System Semiconductor Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seongjin Park
- Pohang Iron and Steel Company (POSCO), Pohang, 37859, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| |
Collapse
|
9
|
Chen X, Li M, Ge L, Liu S, Lv W, Yu Y, Tang Y, Han C, Li M, Tao Y, Xu L, Chen R. Ultralong Red Room-Temperature Phosphorescence of 2D Organic-Inorganic Metal Halide Perovskites for Afterglow Red LEDs and X-ray Scintillation Applications. Inorg Chem 2023; 62:16538-16546. [PMID: 37737143 DOI: 10.1021/acs.inorgchem.3c02380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Organic-inorganic metal hybrid perovskites (OIHPs) have emerged as a promising class of materials for next-generation optoelectronic applications. However, the realization of red and near-infrared (NIR) room-temperature phosphorescence (RTP) in these materials remains limited. In this study, a very strong red RTP emission centered at 610 nm is achieved by doping Mn2+ ions into Cd-based 2D OIHPs. Notably, the optimized B-EACC:Mn2+ exhibited a high quantum yield of 44.11%, an ultralong lifetime of up to 378 ms, and excellent stability against high temperatures and various solvents, surpassing most reported counterparts of 2D OIHPs. Moreover, the B-EACC:Mn2+ can be used as a red emitter for coating an ultraviolet light-emitting diode chip, exhibiting an observable afterglow to the naked eye for approximately 4 s. In addition, the B-EACC:Mn2+ demonstrates interesting characteristics under X-ray excitation, exhibiting X-ray response at radiation doses in the range of 34.75-278 μGy s-1. This work suggests the infinite possibility of doping guest ions to realize red RTP in 2D OIHPs, promoting the development of long-persistent phosphorescent emitters for multifunctional light-emitting applications.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Min Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lei Ge
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Siyu Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Wenzhen Lv
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yihang Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ying Tang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Chaofei Han
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Mingguang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ligang Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
10
|
Han HH, Kim SJ, Kim J, Park W, Kim C, Kim H, Hahn SK. Bimetallic Hyaluronate-Modified Au@Pt Nanoparticles for Noninvasive Photoacoustic Imaging and Photothermal Therapy of Skin Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11609-11620. [PMID: 36847648 DOI: 10.1021/acsami.3c01858] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although spherical gold (Au) nanoparticles have remarkable photothermal conversion efficiency and photostability, their weak absorption in the near-infrared (NIR) region and poor penetration into deep tissues have limited further applications to NIR light-mediated photoacoustic (PA) imaging and noninvasive photothermal cancer therapy. Here, we developed bimetallic hyaluronate-modified Au-platinum (HA-Au@Pt) nanoparticles for noninvasive cancer theranostics by NIR light-mediated PA imaging and photothermal therapy (PTT). The growth of Pt nanodots on the surface of spherical Au nanoparticles enhanced the absorbance in the NIR region and broadened the absorption bandwidth of HA-Au@Pt nanoparticles by the surface plasmon resonance (SPR) coupling effect. In addition, HA facilitated the transdermal delivery of HA-Au@Pt nanoparticles through the skin barrier and enabled clear tumor-targeted PA imaging. Compared to conventional PTT via injection, HA-Au@Pt nanoparticles were noninvasively delivered into deep tumor tissues and completely ablated the targeted tumor tissues by NIR light irradiation. Taken together, we could confirm the feasibility of HA-Au@Pt nanoparticles as a NIR light-mediated biophotonic agent for noninvasive skin cancer theranostics.
Collapse
Affiliation(s)
- Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Jiwoong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Wonchan Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Hyemin Kim
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| |
Collapse
|