1
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
2
|
Zhao K, Zeng Z, He Y, Zhao R, Niu J, Sun H, Li S, Dong J, Jing Z, Zhou J. Recent advances in targeted therapy for inflammatory vascular diseases. J Control Release 2024; 372:730-750. [PMID: 38945301 DOI: 10.1016/j.jconrel.2024.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Vascular diseases constitute a significant contributor to worldwide mortality rates, placing a substantial strain on healthcare systems and socio-economic aspects. They are closely associated with inflammatory responses, as sustained inflammation could impact endothelial function, the release of inflammatory mediators, and platelet activation, thus accelerating the progression of vascular diseases. Consequently, directing therapeutic efforts towards mitigating inflammation represents a crucial approach in the management of vascular diseases. Traditional anti-inflammatory medications may have extensive effects on multiple tissues and organs when absorbed through the bloodstream. Conversely, treatments targeting inflammatory vascular diseases, such as monoclonal antibodies, drug-eluting stents, and nano-drugs, can achieve more precise effects, including precise intervention, minimal non-specific effects, and prolonged efficacy. In addition, personalized therapy is an important development trend in targeted therapy for inflammatory vascular diseases. Leveraging advanced simulation algorithms and clinical trial data, treatment strategies are gradually being personalized based on patients' genetic, biomarker, and clinical profiles. It is expected that the application of precision medicine in the field of vascular diseases will have a broader future. In conclusion, targeting therapies offer enhanced safety and efficacy compared to conventional medications; investigating novel targeting therapies and promoting clinical transformation may be a promising direction in improving the prognosis of patients with inflammatory vascular diseases. This article reviews the pathogenesis of inflammatory vascular diseases and presents a comprehensive overview of the potential for targeted therapies in managing this condition.
Collapse
Affiliation(s)
- Kaiwen Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Zan Zeng
- Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yuzhen He
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Rong Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jinzhu Niu
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Huiying Sun
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Shuangshuang Li
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Dong
- Department of Vascular Surgery, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zaiping Jing
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhou
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China; Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China.
| |
Collapse
|
3
|
Li S, Wang Q, Duan X, Pei Z, He Z, Guo W, Han L. A glutathione-responsive PEGylated nanogel with doxorubicin-conjugation for cancer therapy. J Mater Chem B 2023; 11:11612-11619. [PMID: 38038224 DOI: 10.1039/d3tb01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The complexity, degradability, and stability of drug delivery systems are crucial factors for clinical application. Herein, a glutathione (GSH)-responsive polyethylene glycol (PEG)ylated nanogel conjugated with doxorubicin (Dox) was prepared based on a linker with disulfide bonds, PEG, and Dox using a one-pot method. FT-IR and UV-vis analyses confirmed that all raw materials were incorporated in the Dox-conjugated nanogel structure. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that the particle size of the Dox-conjugated nanogel was at the nanoscale and could be responsively disrupted in high GSH concentration. The in vitro accumulative Dox release rate from the nanogel reached 88% in PBS with 5 mg mL-1 GSH on day 4. Moreover, H22 cell viability and apoptosis experiments revealed that the nanogel effectively inhibited tumor cell growth. In vivo tracking and cell uptake experiments demonstrated that the nanogel accumulated and persisted in tumor tissues for 5 days and was distributed into cell nuclei at 6 h. Furthermore, H22-bearing mice experiments showed that the tumor size of the Dox-conjugated nanogel group was the smallest (287 mm3) compared to that of the free Dox (558 mm3) and 0.9% NaCl (2700 mm3) groups. Meanwhile, the body weight of mice as well as the H&E and TUNEL tissue section staining of organs and tumor tissues from the mice illustrated that the nanogel could significantly prevent side effects and induce tumor cell apoptosis. Taken together, compared with free Dox, the Dox-conjugated nanogel exhibited higher therapeutic efficacy and lower side effects in normal tissues, making it a potential novel nanomedicine for cancer.
Collapse
Affiliation(s)
- Shufen Li
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Qiang Wang
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
| | - Xiao Duan
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, 046000, China
| | - Zhen Pei
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Zhipeng He
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Wei Guo
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Lingna Han
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
4
|
Mi Z, Zhou W, Yang H, Cao L, Li M, Zhou Y. Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane. Phys Chem Chem Phys 2023; 25:22055-22062. [PMID: 37556228 DOI: 10.1039/d3cp01722b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse (I), bubble diameter (D) and arrays. The results show that all three factors can control the transport depth (ΔDPM) of PTX. For a fixed D, the ΔDPM grows exponentially with I, ΔDPM ∼ exp (I), and eventually reaches a critical depth. But the depth, ΔDPM, can be adjusted linearly in a wider range of D. This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined via recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells.
Collapse
Affiliation(s)
- Zhou Mi
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenyu Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Hong Yang
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Luoxia Cao
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Ming Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Yang Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| |
Collapse
|
5
|
Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics. Biosens Bioelectron 2023; 223:114966. [PMID: 36580816 DOI: 10.1016/j.bios.2022.114966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Effective isolation and in-depth analysis of Circulating Tumour Cells (CTCs) are greatly needed in diagnosis, prognosis and monitoring of the therapeutic response of cancer patients but have not been completely fulfilled by conventional approaches. The rarity of CTCs and the lack of reliable biomarkers to distinguish them from peripheral blood cells have remained outstanding challenges for their clinical implementation. Herein, we developed a high throughput Static Droplet Microfluidic (SDM) device with 38,400 chambers, capable of isolating and classifying the number of metabolically active CTCs in peripheral blood at single-cell resolution. Owing to the miniaturisation and compartmentalisation capability of our device, we first demonstrated the ability to precisely measure the lactate production of different types of cancer cells inside 125 pL droplets at single-cell resolution. Furthermore, we compared the metabolomic activity of leukocytes from healthy donors to cancer cells and showed the ability to differentiate them. To further prove the clinical relevance, we spiked cancer cell lines in human healthy blood and showed the possibility to detect the cancer cells from leukocytes. Lastly, we tested the workflow on 8 preclinical mammary mouse models including syngeneic 67NR (non-metastatic) and 4T1.2 (metastatic) models with Triple-Negative Breast Cancer (TNBC) as well as transgenic mouses (12-week-old MMTV-PyMT). The results have shown the ability to precisely distinguish metabolically active CTCs from the blood using the proposed SDM device. The workflow is simple and robust which can eliminate the need for specialised equipment and expertise required for single-cell analysis of CTCs and facilitate on-site metabolic screening of cancer cells.
Collapse
|