1
|
Attygalle AD, Chan JKC, Coupland SE, Du MQ, Ferry JA, de Jong D, Gratzinger D, Lim MS, Nicolae A, Ott G, Rosenwald A, Schuh A, Siebert R. What is new in the 5th edition of the World Health Organization classification of mature B and T/NK cell tumors and stromal neoplasms? J Hematop 2024; 17:71-89. [PMID: 38683440 DOI: 10.1007/s12308-024-00585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
The classification of tumors is essential in the diagnosis and clinical management of patients with malignant neoplasms. The World Health Organization (WHO) provides a globally applicable classification scheme of neoplasms and it was updated several times. In this review, we briefly outline the cornerstones of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours on lymphoid neoplasms. As is adopted throughout the 5th edition of the WHO classification of tumors of all organ systems, entities are listed by a hierarchical system. For the first time, tumor-like lesions have been included in the classification, and modifications of nomenclature for some entities, revisions of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities are presented along with mesenchymal lesions specific to the stroma of lymph nodes and the spleen. In addition to specific outlines on constitutional and somatic genetic changes associated with given entities, a separate chapter on germline predisposition syndromes related to hematologic neoplasms has been added.
Collapse
Affiliation(s)
- Ayoma D Attygalle
- Department of Histopathology, The Royal Marsden Hospital, London, SW3 6JJ, UK
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ISMIB, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Daphne de Jong
- Department of Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alina Nicolae
- Department of Pathology, Hautepierre, University Hospital of Strasbourg, Strasbourg, France
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Auerbachstr. 110, 70376, Stuttgart, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Cancer Center Mainfranken, Würzburg, Germany
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
EBV-positive follicular lymphoma and concurrent EBV-negative diffuse large B-cell lymphoma illustrating branched evolution model and “Hit and Run” hypothesis. J Hematop 2022. [DOI: 10.1007/s12308-022-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
3
|
Saft L, Perdiki-Grigoriadi M, Rassidakis G. Intracerebral manifestation of iatrogenic, immunodeficiency-associated polymorphic B-LPD with morphology mimicking Hodgkin lymphoma: a case report and literature review. J Hematop 2022; 15:13-19. [PMID: 35261687 PMCID: PMC8895695 DOI: 10.1007/s12308-021-00478-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
Iatrogenic immunodeficiency-associated lymphoproliferative disorders (IA-LPD) may arise in patients treated with immunosuppressive drugs for autoimmune disease or other conditions. Polymorphic EBV-positive B-lymphoproliferations often have features mimicking Hodgkin lymphoma and typically a self-limited, indolent course. We present an unusual case with isolated, intracerebral manifestation of polymorphic B-LPD with features of classic Hodgkin-lymphoma in an immunosuppressed patient treated with methotrexate and infliximab, including clinical-radiological features and a detailed description of morphological findings, together with a literature review on reported cases of primary CNS manifestation of cHL and IA-LPD with Hodgkin-like morphology. The patient achieved complete remission following neurosurgery with gross total tumor resection and drug withdrawal without any additional treatment. Post-operative staging revealed no evidence for focal relapse or systemic disease during the 18 months follow-up period. Among the previously reported 24 cases of primary, isolated Hodgkin lymphoma in the central nervous system, three similar cases of iatrogenic, IA-LPDs were identified and are discussed here. Polymorphic B-LPD are destructive lesions with a range of morphologic features and disease manifestations. It is clinically important to recognize the spectrum of proliferations with features of classic Hodgkin lymphoma in immunodeficiency, iatrogenic settings, because they are likely to impact the choice of treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12308-021-00478-0.
Collapse
Affiliation(s)
- Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital and Institute, Solna, Stockholm, Sweden
| | | | - Georgios Rassidakis
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital and Institute, Solna, Stockholm, Sweden
| |
Collapse
|
4
|
Rathore S, Varshney A, Mohan S, Dahiya P. An innovative approach of bioremediation in enzymatic degradation of xenobiotics. Biotechnol Genet Eng Rev 2022; 38:1-32. [PMID: 35081881 DOI: 10.1080/02648725.2022.2027628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Worldwide, environmental pollution due to a complex mixture of xenobiotics has become a serious concern. Several xenobiotic compounds cause environmental contamination due to their severe toxicity, prolonged exposure, and limited biodegradability. From the past few decades, microbial-assisted degradation (bioremediation) of xenobiotic pollutants has evolved as the most effective, eco-friendly, and valuable approach. Microorganisms have unique metabolism, the capability of genetic modification, diversity of enzymes, and various degradation pathways necessary for the bioremediation process. Microbial xenobiotic degradation is effective but a slow process that limits its application in bioremediation. However, the study of microbial enzymes for bioremediation is gaining global importance. Microbial enzymes have a huge ability to transform contaminants into non-toxic forms and thereby reduce environmental pollution. Recently, various advanced techniques, including metagenomics, proteomics, transcriptomics, metabolomics are effectively utilized for the characterization, metabolic machinery, new proteins, metabolic genes of microorganisms involved in the degradation process. These advanced molecular techniques provide a thorough understanding of the structural and functional aspects of complex microorganisms. This review gives a brief note on xenobiotics and their impact on the environment. Particular attention will be devoted to the class of pollutants and the enzymes such as cytochrome P450, dehydrogenase, laccase, hydrolase, protease, lipase, etc. capable of converting these pollutants into innocuous products. This review attempts to deliver knowledge on the role of various enzymes in the biodegradation of xenobiotic pollutants, along with the use of advanced technologies like recombinant DNA technology and Omics approaches to make the process more robust and effective.
Collapse
Affiliation(s)
| | - Ayushi Varshney
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Sumedha Mohan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Praveen Dahiya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|
5
|
Ohmoto A, Fuji S. Clinical features and treatment strategies for post-transplant and iatrogenic immunodeficiency-associated lymphoproliferative disorders. Blood Rev 2021; 49:100807. [PMID: 33579543 DOI: 10.1016/j.blre.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
A specific category termed immunodeficiency-associated lymphoproliferative disorders (LPD) exists in the 2016 revised WHO classification concerning lymphoid neoplasms. This category is defined by etiology and includes LPD developing in association with organ transplantation or immunosuppressive/immunomodulatory agents including methotrexate. The functional mechanism is chiefly explained by the autonomous proliferation of Epstein-Barr virus (EBV)-infected lymphocytes induced by host-immune suppression. This category ranges from reactive lymphocyte hyperplasia to monomorphic lymphoma. Its clinical behavior varies depending on host immunity and pathological features; pathological confirmation by biopsy is thus important for deciding treatment strategies. Owing to the spontaneous regression observed in some patients, uniform chemotherapy is not recommended. The main initial treatment options include the reduction in immunosuppressive drugs, immunotherapy with the anti-CD20 antibody rituximab, chemotherapy, or a combination of these. Other novel treatments such as adoptive immunotherapy with EBV-specific cytotoxic T cells, could be an alternative for relapsed/refractory diseases in clinical trials.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Division of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 1358550, Japan
| | - Shigeo Fuji
- Department of Hematology, Osaka International Cancer Institute, Osaka 5418567, Japan.
| |
Collapse
|
6
|
In-depth characterization of the tumor microenvironment in central nervous system lymphoma reveals implications for immune-checkpoint therapy. Cancer Immunol Immunother 2020; 69:1751-1766. [PMID: 32335702 DOI: 10.1007/s00262-020-02575-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare type of non-Hodgkin lymphoma with an aggressive clinical course. To investigate the potential of immune-checkpoint therapy, we retrospectively studied the tumor microenvironment (TME) using high-plex immunohistochemistry in 22 PCNSL and compared to 7 secondary CNS lymphomas (SCNSL) and 7 "other" CNSL lymphomas with the presence of the Epstein-Barr virus and/or compromised immunity. The TME in PCNSL was predominantly composed of CD8+ cytotoxic T cells and CD163+ phagocytes. Despite molecular differences between PCNSL and SCNSL, the cellular composition and the functional spectrum of cytotoxic T cells were similar. But cytotoxic T cell activation was significantly influenced by pre-biopsy corticosteroids intake, tumor expression of PD-L1 and the presence of EBV. The presence of low numbers of CD8+ T cells and geographic-type necrosis each predicted inferior outcome in PCNSL. Both M1-like (CD68 + CD163low) and M2-like (CD68 + CD163high) phagocytes were identified, and an increased ratio of M1-like/M2-like phagocytes was associated with a better survival. PD-L1 was expressed in lymphoma cells in 28% of cases, while PD1 was expressed in only 0.4% of all CD8+ T cells. TIM-3, a marker for T cell exhaustion, was significantly more expressed in CD8posPD-1pos T cells compared to CD8posPD-1neg T cells, and a similar increased expression was observed in M2-like pro-tumoral phagocytes. In conclusion, the clinical impact of TME composition supports the use of immune-checkpoint therapies in PCNSL. Based on observed differences in immune-checkpoint expression, combinations that boost cytotoxic T cell activation (by blocking TIM-3 or TGFBR1) prior to the administration of PD-L1 inhibition could be of interest.
Collapse
|