1
|
Shek RCM, Li PSN, Leung SCM, Chu HT, Hioe F, Tang VWL, Lui YH, Lam LRS, Ng JHY, Wong RTS, Yau MCY, Lam JYW, Siu GKH. A Novel Digital PCR Assay for Accurate Detection and Differentiation of Focal and Non-Focal Subtypes of Mesenchymal-Epithelial Transition ( MET) Gene Amplification in Lung Cancer. Cancers (Basel) 2025; 17:811. [PMID: 40075658 PMCID: PMC11898889 DOI: 10.3390/cancers17050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Mesenchymal-epithelial transition (MET) gene amplification is a critical biomarker in non-small cell lung cancer (NSCLC), significantly influencing treatment decisions and prognostic evaluations. However, current detection methods such as fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) have limitations in speed, cost, and specificity, particularly when distinguishing between focal MET amplification and MET polysomy. METHODS This study introduces a novel digital PCR (dPCR) assay designed not only to detect MET amplification but also to differentiate between its focal and non-focal subtypes. The assay was evaluated against established FISH and targeted NGS panels using 55 NSCLC samples with known MET amplification statuses (26 positive and 29 negative) confirmed by FISH and NGS. Results The dPCR assay demonstrated high sensitivity (96.0%) and specificity (96.7%), achieving 100% concordance with FISH in differentiating focal MET amplification from MET polysomy. Additionally, the assay exhibited excellent precision, accuracy, and linearity (R2 = 1.00) in MET copy number quantification, surpassing NGS in diagnostic performance. Offering a robust, cost-effective, and efficient alternative to FISH, the dPCR assay significantly reduces the turnaround time (3 h versus 2 days) and provides a quantitative and objective method for MET amplification detection and subtype differentiation. This makes it suitable for clinical laboratories with limited molecular expertise. CONCLUSIONS This study highlights the potential of the dPCR assay to complement existing molecular diagnostic techniques, delivering reliable and actionable results for MET-targeted therapy selection in NSCLC patients and thereby advancing precision oncology.
Collapse
Affiliation(s)
- Raymond C. M. Shek
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Peggy S. N. Li
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Shelley C. M. Leung
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - H. T. Chu
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - F. Hioe
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Victor W. L. Tang
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Y. H. Lui
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Larry R. S. Lam
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Joshua H. Y. Ng
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Raiden T. S. Wong
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Miranda C. Y. Yau
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Jimmy Y. W. Lam
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Gilman K. H. Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
2
|
Alidousty C, Becker A, Binot E, Hillmer AM, Merkelbach-Bruse S, Budde B, Bäßmann I, Rappl G, Wolf J, Eich ML, Noh KW, Buettner R, Schultheis AM. Frequency and functional characterization of fusion genes in squamous cell carcinoma of the lung. Gene 2024; 895:148018. [PMID: 37981082 DOI: 10.1016/j.gene.2023.148018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION In contrast to lung adenocarcinoma (LUAD), targetable genetic alterations are less frequently detected in squamous cell carcinoma of the lung (LUSC). Over the last years, gene fusions have become promising targets in many solid cancers. Here, we analysed a cohort of LUSC, identified recurrent fusion genes and functionally characterised these tumour genomes. METHODS A subset of 1608 squamous cell carcinomas of the lung was analysed by means of the FusionPlex® Lung Panel to identify potentially targetable gene fusions using targeted next-generation sequencing. Cases harbouring recurrent gene fusions were further analysed using FISH, Cytoscan HD arrays and cell culture experiments. RESULTS We found both, known and novel gene fusions in about 3 % of the cases. Known fusions occurring in lung cancer included ALK::EML4, EGFRvIII, EZR::ROS1 and FGFR3::TACC. We further identified recurrent gene fusions of currently unknown biological function, involving EGFR::VSTM2A and NSD3::FGFR1 and showed that the occurrence of the EGFR::VSTM2A fusion is accompanied by high-level amplification of EGFR. Our analyses further revealed that the genomes of these LUSC patients are chromosomally unstable, which leads us to believe that such non-actionable genomic rearrangements may be a result of "chromosomal chaos" most probably not representing exclusive cancer-driving genes in this cancer entity. CONCLUSIONS We emphasise that caution should be taken when novel fusions are found and that the appearance of new gene fusions should always be interpreted in the molecular context of the respective disease.
Collapse
Affiliation(s)
- Christina Alidousty
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany; Network Genomic Medicine, Cologne, Germany
| | - Arvid Becker
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Elke Binot
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Axel M Hillmer
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany; Network Genomic Medicine, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert Koch Strasse 21, 50931 Cologne, Germany
| | - Sabine Merkelbach-Bruse
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany; Network Genomic Medicine, Cologne, Germany
| | - Birgit Budde
- Cologne Center for Genomics, Medical Faculty of the University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Ingelore Bäßmann
- Cologne Center for Genomics, Medical Faculty of the University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Gunter Rappl
- Center for Molecular Medicine Cologne, University of Cologne, Robert Koch Strasse 21, 50931 Cologne, Germany
| | - Jürgen Wolf
- Lung Cancer Group Cologne, Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Marie-Lisa Eich
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Ka-Won Noh
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany
| | - Reinhard Buettner
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany; Network Genomic Medicine, Cologne, Germany; Lung Cancer Group Cologne, Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Anne Maria Schultheis
- University Hospital and Medical Faculty, University of Cologne, Institute of Pathology, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
3
|
Yang M, Mandal E, Liu FX, O’Hara RM, Lesher B, Sanborn RE. Non-small cell lung cancer with MET amplification: review of epidemiology, associated disease characteristics, testing procedures, burden, and treatments. Front Oncol 2024; 13:1241402. [PMID: 38273845 PMCID: PMC10808753 DOI: 10.3389/fonc.2023.1241402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Mesenchymal-epidermal transition factor gene amplification (METamp) is being investigated as a therapeutic target in advanced non-small cell lung cancer (NSCLC). We reviewed the epidemiology and disease characteristics associated with primary and secondary METamp, as well as the testing procedures used to identify METamp, in advanced NSCLC. Economic and humanistic burdens, and the practice patterns and treatments under investigation for METamp were also examined. Methods Embase and Medline (via ProQuest), ClinicalTrials.gov, and Cochrane Controlled Register of Trials (2015-2022) were systematically searched. Conference abstracts were searched via Embase and conference proceedings websites (2020-2022). The review focused on evidence from the United States; global evidence was included for identified evidence gaps. Results The median rate of primary METamp in NSCLC across the references was 4.8% (n=4 studies) and of secondary METamp (epidermal growth factor receptor [EGFR]-mutant NSCLC) was 15% (n=10). Next-generation sequencing (NGS; n=12) and/or fluorescence in situ hybridization (FISH; n=11) were most frequently used in real-world studies and FISH testing most frequently used in clinical trials (n=9/10). METamp definitions varied among clinical trials using ISH/FISH testing (MET to chromosome 7 centromere ratio of ≥1.8 to ≥3.0; or gene copy number [GCN] ≥5 to ≥10) and among trials using NGS (tissue testing: GCN ≥6; liquid biopsy: MET copy number ≥2.1 to >5). Limited to no data were identified on the economic and humanistic burdens, and real-world treatment of METamp NSCLC. Promising preliminary results from trials enrolling patients with EGFR-mutated, METamp advanced NSCLC progressing on an EGFR-tyrosine kinase inhibitor (TKI) were observed with MET-TKIs (i.e., tepotinib, savolitinib, and capmatinib) in combination with EGFR-TKIs (i.e., gefitinib and osimertinib). For metastatic NSCLC and high-level METamp, monotherapy with capmatinib, crizotinib, and tepotinib are recommended in the 2022 published NSCLC NCCN Guidelines. Conclusion Primary METamp occurs in approximately 5% of NSCLC cases, and secondary METamp in approximately 15% of cases previously treated with an EGFR inhibitor. Variability in testing methods (including ISH/FISH and NGS) and definitions were observed. Several treatments are promising in treating METamp NSCLC. Additional studies evaluating the clinical, economic, and humanistic burdens are needed.
Collapse
Affiliation(s)
- Mo Yang
- North America Evidence and Value Development, North America Medical Affairs, EMD Serono, Inc., Rockland, MA, United States, an affiliate of Merck KGaA
| | - Erin Mandal
- Evidence and Access, OPEN Health, Parsippany, NJ, United States
| | - Frank X. Liu
- North America Evidence and Value Development, North America Medical Affairs, EMD Serono, Inc., Rockland, MA, United States, an affiliate of Merck KGaA
| | - Richard M. O’Hara
- North America Evidence and Value Development, North America Medical Affairs, EMD Serono, Inc., Rockland, MA, United States, an affiliate of Merck KGaA
| | - Beth Lesher
- Evidence and Access, OPEN Health, Parsippany, NJ, United States
| | - Rachel E. Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| |
Collapse
|
4
|
Brazel D, Nagasaka M. The development of amivantamab for the treatment of non-small cell lung cancer. Respir Res 2023; 24:256. [PMID: 37880647 PMCID: PMC10601226 DOI: 10.1186/s12931-023-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) patients with sensitizing oncogenic driver mutations benefit from targeted therapies. Tyrosine kinase inhibitors are highly effective against classic sensitizing epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletions and exon 21 L858R point mutations. Conversely, EGFR exon 20 insertions (exon20ins) are resistant to the traditional EGFR tyrosine kinase inhibitors (TKIs). In May 2021, the US Federal Drug Administration (FDA) provided accelerated approval to amivantamab (Rybrevant) in adults with locally advanced or metastatic NSCLC with EGFR exon20ins after treatment with platinum-based chemotherapy. Amivantamab was the first EGFR/MET bispecific antibody to be approved specifically for EGFR exon20ins where there was an unmet need. Furthermore, amivantamab is being evaluated in additional settings such as post osimertinib in sensitizing EGFR mutations as well as in MET altered NSCLC. Here we discuss amivantamab in regard to its mechanism of action, preclinical and clinical data, and clinical impact for patients with EGFR exon20ins NSCLC and beyond.
Collapse
Affiliation(s)
| | - Misako Nagasaka
- University of California Irvine Department of Medicine, Orange, CA, USA.
- Chao Family Comprehensive Cancer Center, Orange, CA, USA.
- St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
5
|
Chu CY, Lin CY, Lin CC, Li CF, Wu SY, Tsai JS, Yang SC, Chen CW, Lin CY, Chang CC, Yen YT, Tseng YL, Su PL, Su WC. Effect of BIM expression on the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Sci Rep 2023; 13:3943. [PMID: 36894581 PMCID: PMC9998621 DOI: 10.1038/s41598-023-30565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
The role of Programmed Cell Death Ligand 1 (PD-L1) expression in predicting epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKIs) efficacy remains controversial. Recent studies have highlighted that tumor-intrinsic PD-L1 signaling can be modulated by STAT3, AKT, MET oncogenic pathway, epithelial-mesenchymal transition, or BIM expression. This study aimed to investigate whether these underlying mechanisms affect the prognostic role of PD-L1. We retrospectively enrolled patients with EGFR mutant advanced stage NSCLC who received first-line EGFR-TKI between January 2017 and June 2019, the treatment efficacy of EGFR-TKI was assessed. Kaplan-Meier analysis of progression-free survival (PFS) revealed that patients with high BIM expression had shorter PFS, regardless of PD-L1 expression. This result was also supported by the COX proportional hazard regression analysis. In vitro, we further proved that the knockdown of BIM, instead of PDL1, induced more cell apoptosis following gefitinib treatment. Our data suggest that among the pathways affecting tumor-intrinsic PD-L1 signaling, BIM is potentially the underlying mechanism that affects the role of PD-L1 expression in predicting response to EGFR TKI and mediates cell apoptosis under treatment with gefitinib in EGFR-mutant NSCLC. Further prospective studies are required to validate these results.
Collapse
Affiliation(s)
- Chang-Yao Chu
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Shengli Road, North District, Tainan, 704, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Shengli Road, North District, Tainan, 704, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Shang-Yin Wu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jeng-Shiuan Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Shengli Road, North District, Tainan, 704, Taiwan
| | - Szu-Chun Yang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Shengli Road, North District, Tainan, 704, Taiwan
| | - Chian-Wei Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Shengli Road, North District, Tainan, 704, Taiwan
| | - Chia-Yin Lin
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chun Chang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Yen
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Lin Tseng
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lan Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Shengli Road, North District, Tainan, 704, Taiwan.
| | - Wu-Chou Su
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Dempke WCM, Reuther S, Hamid Z, Thoennissen NH. Oncogene alterations in non-small cell lung cancer-have we MET a new target? Transl Lung Cancer Res 2022; 11:1977-1981. [PMID: 36386451 PMCID: PMC9641042 DOI: 10.21037/tlcr-22-648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Wolfram C. M. Dempke
- University of Munich, Medical Clinic III, Campus Grosshadern, Munich, Germany;,Cord Blood Centre, Bratislava, Slovakia
| | - Susanne Reuther
- University of Munich, Medical Clinic III, Campus Grosshadern, Munich, Germany
| | | | - Nils H. Thoennissen
- University of Munich, Medical Clinic III, Campus Grosshadern, Munich, Germany;,Cord Blood Centre, Bratislava, Slovakia
| |
Collapse
|
7
|
Fan Y, Sun R, Wang Z, Zhang Y, Xiao X, Liu Y, Xin B, Xiong H, Lu D, Ma J. Detection of MET amplification by droplet digital PCR in peripheral blood samples of non-small cell lung cancer. J Cancer Res Clin Oncol 2022; 149:1667-1677. [PMID: 35583827 DOI: 10.1007/s00432-022-04048-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Mesenchymal-epithelial transition (MET) amplification is one of the mechanisms accounting for the resistance of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in lung cancer patients, as well as the poor prognosis. Fluorescence in situ hybridization (FISH) is the most widely used method for MET amplification detection. However, it is inapplicable when tissue samples were unavailable. Herein, we assessed the value of droplet digital PCR (ddPCR) in MET copy number gain (CNG) detection in non-small cell lung cancer (NSCLC) patients treated with EGFR-TKIs. MATERIALS AND METHODS A total of 103 cancer tissues and the paired peripheral blood samples from NSCLC patients were collected for MET CNG detection using ddPCR. In parallel, MET amplification in tissue samples was verified by FISH. Also, the relationships between MET CNG and EGFR T790M, as well as the EGFR-TKI resistance were also evaluated using Chi-square or Fisher's exact tests. RESULT The concordance rate of ddPCR and FISH in detecting MET CNG in tissue samples was 100% (102/102), and it was 94.17% (97/103) for ddPCR method in detecting the MET CNG among peripheral blood and tissue samples. No statistical difference was observed between MET amplification and EGFR T790M (p = 0.65), while MET amplification rate was significantly increased in patients with resistance to third generations of EGFR-TKIs as compared with patients with resistance to first/second EGFR-TKIs (p < 0.05). CONCLUSIONS ddPCR is an alternative method to detect MET CNG in both tissues and peripheral blood samples, which is of worthy in clinical promotion.
Collapse
Affiliation(s)
- Ying Fan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, Shanghai, China.,Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Rui Sun
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China
| | - Zhizhong Wang
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China
| | - Yuying Zhang
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Xiao Xiao
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Yizhe Liu
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Beibei Xin
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Hui Xiong
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, Shanghai, China. .,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, 400014, China.
| | - Jie Ma
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China. .,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China.
| |
Collapse
|
8
|
Middleton G, Robbins H, Andre F, Swanton C. A state-of-the-art review of stratified medicine in cancer: towards a future precision medicine strategy in cancer. Ann Oncol 2022; 33:143-157. [PMID: 34808340 DOI: 10.1016/j.annonc.2021.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Building on the success of targeted therapy in certain well-defined cancer genotypes, three platform studies-NCI-MATCH, LUNG-MAP and The National Lung Matrix Trial (NLMT)-have attempted to discover new genotype-matched therapies for people with cancer. PATIENTS AND METHODS We review the outputs from these platform studies. This review led us to propose a series of recommendations and considerations that we hope will inform future precision medicine programmes in cancer. RESULTS The three studies collectively screened over 13 000 patients. Across 37 genotype-matched cohorts, there have been 66/875 responders, with an overall response rate of 7.5%. Targeting copy number gain yielded 5/199 responses across nine biomarker-drug matched cohorts, with a response rate of 2.5%. CONCLUSIONS The majority of these studies used single-agent targeted therapies. Whilst preclinical data can suggest rational combination treatment to reverse adaptive resistance or block parallel activated pathways, there is an essential need for accurate modelling of the toxicity-activity trade-off of combinations. Agent selection is often suboptimal; dose expansion should only be carried out with agents with clear clinical proof of mechanism and high target selectivity. Targeting copy number change has been disappointing; it is crucial to define the drivers on shared amplicons that include the targeted aberration. Maximising outcomes with currently available targeted therapies requires moving towards a more contextualised stratified medicine acknowledging the criticality of the genomic, transcriptional and immunological context on which the targeted aberration is inscribed. Genomic complexity and instability is likely to be a leading cause of targeted therapy failure in genomically complex cancers. Preclinical models must be developed that more accurately capture the genomic complexity of human disease. The degree of attrition of studies carried out after standard-of-care therapy suggests that serious efforts be made to develop a suite of precision medicine studies in the minimal residual disease setting.
Collapse
Affiliation(s)
- G Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| | - H Robbins
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - F Andre
- Institut Gustave Roussy, INSERM Unité 981, Université Paris-Sud, Villejuif, France; PRISM Center for Precision Medicine
| | - C Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
9
|
Testa U, Pelosi E, Castelli G. Molecular charcterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Rev Mol Diagn 2021; 22:77-100. [PMID: 34894979 DOI: 10.1080/14737159.2022.2017774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer mortality worldwide; lung adenocarcinoma (LUAD) corresponds to about 40% of lung cancers. LUAD is a genetically heterogeneous disease and the definition of this heterogeneity is of fundamental importance for prognosis and treatment. AREAS COVERED Based on primary literature, this review provides an updated analysis of multiomics studies based on the study of mutation profiling, copy number alterations and gene expression allowing for definition of molecular subgroups, prognostic factors based on molecular biomarkers, and identification of therapeutic targets. The authors sum up by providing the reader with their expert opinion on the potentialities of multiomics analysis of LUADs. EXPERT OPINION A detailed and comprehensive study of the co-occurring genetic abnormalities characterizing different LUAD subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of LUADs may provide a fundamental contribution to improve the survival of LUAD patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Yoshimura K, Inoue Y, Inui N, Karayama M, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Fujisawa T, Enomoto N, Nakamura Y, Sugimura H, Suda T. MET Amplification and Efficacy of Nivolumab in Patients With NSCLC. JTO Clin Res Rep 2021; 2:100239. [PMID: 34766065 PMCID: PMC8569583 DOI: 10.1016/j.jtocrr.2021.100239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction MET amplification is an important genetic alteration in NSCLC. Unlike in patients with EGFR and ALK alterations, the efficacy of immune checkpoint inhibitors in patients with MET-amplified NSCLC remains unknown. Methods An exploratory analysis of a prospective, multi-institutional cohort comprising 200 patients with advanced or recurrent NSCLC treated with nivolumab monotherapy was performed, and MET amplification was defined as a MET-to-CEP7 ratio of greater than or equal to 2 using fluorescent in situ hybridization. High-level and low-level MET gains were also defined as MET signals ≥10/nuclei and 10> MET signals ≥5/nuclei, respectively. Overall response rates (ORRs) and survival outcomes were evaluated on the basis of the MET gene copy number status. Results Among 175 patients eligible for analysis, MET amplification was detected in 13 tumors (7.4%). Four (2.3%) high-level and 14 (8.0%) low-level MET gains were also detected. There were no considerable differences in ORRs in accordance with the MET gene copy number status. Similarly, no significant differences in both progression-free survival (PFS) and overall survival (OS) were observed between patients with and without MET-amplified NSCLC (log-rank, p = 0.813 for PFS, and p = 0.855 for OS). Among 101 adenocarcinomas, ORRs in patients with high-level and low-level MET gains (50.0% for both, p = 0.049) were significantly higher than those without MET gains (17.6%), yet survival outcomes for both PFS and OS did not improve. Conclusions MET amplification was not associated with greater benefit of nivolumab treatment in patients with NSCLC. Further studies are warranted to prioritize immune checkpoint inhibitors in the treatment regimen for patients with MET amplification.
Collapse
Affiliation(s)
- Katsuhiro Yoshimura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Clinical Oncology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
11
|
Cheema PK, Banerji SO, Blais N, Chu QSC, Desmeules P, Juergens RA, Leighl NB, Sheffield BS, Wheatley-Price PF, Melosky BL. Canadian Consensus Recommendations on the Management of MET-Altered NSCLC. Curr Oncol 2021; 28:4552-4576. [PMID: 34898564 PMCID: PMC8628757 DOI: 10.3390/curroncol28060386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
In Canada, the therapeutic management of patients with advanced non-small cell lung cancer (NSCLC) with rare actionable mutations differs between provinces, territories, and individual centres based on access to molecular testing and funded treatments. These variations, together with the emergence of several novel mesenchymal-epithelial transition (MET) factor-targeted therapies for the treatment of NSCLC, warrant the development of evidence-based consensus recommendations for the use of these agents. A Canadian expert panel was convened to define key clinical questions, review evidence, discuss practice recommendations and reach consensus on the treatment of advanced MET-altered NSCLC. Questions addressed by the panel include: 1. How should the patients most likely to benefit from MET-targeted therapies be identified? 2. What are the preferred first-line and subsequent therapies for patients with MET exon 14 skipping mutations? 3. What are the preferred first-line and subsequent therapies for advanced NSCLC patients with de novo MET amplification? 4. What is the preferred therapy for patients with advanced epidermal growth factor receptor (EGFR)-mutated NSCLC with acquired MET amplification progressing on EGFR inhibitors? 5. What are the potential strategies for overcoming resistance to MET inhibitors? Answers to these questions, along with the consensus recommendations herein, will help streamline the management of MET-altered NSCLC in routine practice, assist clinicians in therapeutic decision-making, and help ensure optimal outcomes for NSCLC patients with MET alterations.
Collapse
Affiliation(s)
- Parneet K. Cheema
- Medical Oncology/Hematology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shantanu O. Banerji
- CancerCare Manitoba Research Institute, Department of Medical Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Normand Blais
- Department of Medicine, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada;
| | - Quincy S.-C. Chu
- Cross Cancer Institute, Alberta Health Services, Edmonton, AB T6G 1Z2, Canada;
| | - Patrice Desmeules
- Service d’Anatomopathologie et de Cytologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Rosalyn A. Juergens
- Department of Medical Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON L8V 5C2, Canada;
| | - Natasha B. Leighl
- Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Brandon S. Sheffield
- Department of Laboratory Medicine, William Osler Health System, Brampton, ON L6R 3J7, Canada;
| | - Paul F. Wheatley-Price
- Department of Medicine, The Ottawa Hospital Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Barbara L. Melosky
- Department of Medical Oncology, BC Cancer-Vancouver Centre, Vancouver, BC V5Z 4E6, Canada;
| |
Collapse
|
12
|
Hanke B, Jünger ST, Kirches E, Waldt N, Schreiber J, Lücke E, Franke S, Sandalcioglu IE, Warnke JP, Meisel HJ, Prell J, Scheller C, Braunsdorf WEK, Preusser M, Schildhaus HU, Mawrin C. Frequency of actionable molecular drivers in lung cancer patients with precocious brain metastases. Clin Neurol Neurosurg 2021; 208:106841. [PMID: 34343913 DOI: 10.1016/j.clineuro.2021.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
Brain metastases frequently occur during the course of disease in patients suffering from lung cancer. Occasionally, neurological symptoms caused by brain metastases (BM) might represent the first sign of systemic tumor disease (so called precocious metastases), leading to the detection of the primary lung tumor. The biological basis of precocious BM is largely unknown, and treatment options are not well established for this subgroup of patients. Therefore, we retrospectively analyzed 33 patients (24 non-small cell lung cancer (NSCLC)), 9 small cell lung cancer (SCLC)) presenting with precocious BM focusing on molecular alterations potentially relevant for the tumor's biology and treatment. We found five FGFR1 amplifications (4 adenocarcinoma, 1 SCLC) among 31 analyzed patients (16.1%), eight MET amplifications among 30 analyzed tumors (7 NSCLC, 1 SCLC; 26.7%), three EGFR mutations within 33 patients (all adenocarcinomas, 9.1%), and five KRAS mutations among 32 patients (all adenocarcinomas; 15.6%). No ALK, ROS1 or RET gene rearrangements were detected. Our findings suggest that patients with precocious BM of lung cancer harbor EGFR mutations, MET amplifications or FGFR1 amplifications as potential targeted treatment options.
Collapse
Affiliation(s)
- Benjamin Hanke
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Stephanie T Jünger
- Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elmar Kirches
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Natalie Waldt
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Jens Schreiber
- Department of Pneumonology, Otto-von-Guericke University Magdeburg, Germany
| | - Eva Lücke
- Department of Pneumonology, Otto-von-Guericke University Magdeburg, Germany
| | - Sabine Franke
- Department of Pathology, Otto-von-Guericke University Magdeburg, Germany
| | | | - Jan-Peter Warnke
- Department of Neurosurgery, Paracelsus Hospital Zwickau, Germany
| | - Hans-Jörg Meisel
- Department of Neurosurgery, Bergmannstrost Hospital Halle/Saale, Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle/Saale, Germany
| | | | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | | | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
13
|
|
14
|
Aguado C, Teixido C, Román R, Reyes R, Giménez-Capitán A, Marin E, Cabrera C, Viñolas N, Castillo S, Muñoz S, Arcocha A, López-Vilaró L, Sullivan I, Aldeguer E, Rodríguez S, Moya I, Viteri S, Cardona AF, Palmero R, Sainz C, Mesa-Guzmán M, Lozano MD, Aguilar-Hernández A, Martínez-Bueno A, González-Cao M, Gonzalvo E, Leenders WPJ, Rosell R, Montuenga LM, Prat A, Molina-Vila MA, Reguart N. Multiplex RNA-based detection of clinically relevant MET alterations in advanced non-small cell lung cancer. Mol Oncol 2020; 15:350-363. [PMID: 33236532 PMCID: PMC7858100 DOI: 10.1002/1878-0261.12861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
MET inhibitors have shown activity in non‐small‐cell lung cancer patients (NSCLC) with MET amplification and exon 14 skipping (METΔex14). However, patient stratification is imperfect, and thus, response rates have varied widely. Here, we studied MET alterations in 474 advanced NSCLC patients by nCounter, an RNA‐based technique, together with next‐generation sequencing (NGS), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and reverse transcriptase polymerase chain reaction (RT–PCR), exploring correlation with clinical benefit. Of the 474 samples analyzed, 422 (89%) yielded valid results by nCounter, which identified 13 patients (3%) with METΔex14 and 15 patients (3.5%) with very‐high MET mRNA expression. These two subgroups were mutually exclusive, displayed distinct phenotypes and did not generally coexist with other drivers. For METΔex14, 3/8 (37.5%) samples positive by nCounter tested negative by NGS. Regarding patients with very‐high MET mRNA, 92% had MET amplification by FISH and/or NGS. However, FISH failed to identify three patients (30%) with very‐high MET RNA expression, among which one received MET tyrosine kinase inhibitor treatment deriving clinical benefit. Our results indicate that quantitative mRNA‐based techniques can improve the selection of patients for MET‐targeted therapies.
Collapse
Affiliation(s)
- Cristina Aguado
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Cristina Teixido
- Thoracic Oncology Unit, Department of Pathology, Hospital Clínic, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruth Román
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Roxana Reyes
- Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Elba Marin
- Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Carlos Cabrera
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain
| | - Nuria Viñolas
- Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Sergi Castillo
- Division of Medical Oncology, Hospital General de Granollers, Barcelona, Spain
| | - Silvia Muñoz
- Division of Medical Oncology, Hospital General de Granollers, Barcelona, Spain
| | - Ainara Arcocha
- Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Laura López-Vilaró
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ivana Sullivan
- Division of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Erika Aldeguer
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Sonia Rodríguez
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Irene Moya
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain
| | - Santiago Viteri
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain.,Dr Rosell Oncology Institute, Teknon Medical Center, Quiron Salud Group, Barcelona, Spain
| | - Andrés Felipe Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia.,Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Ramon Palmero
- Division of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet, Barcelona, Spain
| | - Cristina Sainz
- Center for Applied Medical Research (CIMA), University of Navarra, Spain.,CIBERONC, Madrid, Spain
| | | | - Maria D Lozano
- CIBERONC, Madrid, Spain.,IDISNA, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | - María González-Cao
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain
| | - Elena Gonzalvo
- Thoracic Oncology Unit, Department of Pathology, Hospital Clínic, Barcelona, Spain
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rafael Rosell
- Dr Rosell Oncology Institute, Dexeus University Hospital Quiron Salud Group, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Luis M Montuenga
- Center for Applied Medical Research (CIMA), University of Navarra, Spain.,CIBERONC, Madrid, Spain.,IDISNA, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Miguel A Molina-Vila
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Noemi Reguart
- Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
15
|
Jünger ST, Schödel P, Ruess D, Ruge M, Brand JS, Wittersheim M, Eich ML, Schmidt NO, Goldbrunner R, Grau S, Proescholdt M. Timing of Development of Symptomatic Brain Metastases from Non-Small Cell Lung Cancer: Impact on Symptoms, Treatment, and Survival in the Era of Molecular Treatments. Cancers (Basel) 2020; 12:cancers12123618. [PMID: 33287226 PMCID: PMC7761690 DOI: 10.3390/cancers12123618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In order to clarify whether an early development of brain metastases from non-small cell lung cancer represents a poor prognostic factor for further survival we analyzed 377 patients with brain metastases, treated by radiosurgery or surgery at two German institutions. Our results show that an early appearance of brain metastasis does not influence further survival in a comprehensive treatment setting. Abstract Objective: We attempted to analyze whether early presentation with brain metastases (BM) represents a poor prognostic factor in patients with non-small cell lung cancer (NSCLC), which should guide the treatment team towards less intensified therapy. Patients and methods: In a retrospective bi-centric analysis, we identified patients receiving surgical treatment for NSCLC BM. We collected demographic-, tumor-, and treatment-related parameters and analyzed their influence on further survival. Results: We included 377 patients. Development of BM was precocious in 99 (26.3%), synchronous in 152 (40.3%), and metachronous in 126 (33.4%) patients. The groups were comparable in terms of age (p = 0.76) and number of metastases (p = 0.11), and histology (p = 0.1); however, mutational status significantly differed (p = 0.002). The precocious group showed the worst clinical status as assessed by Karnofsky performance score (KPS) upon presentation (p < 0.0001). Resection followed by postoperative radiotherapy was the predominant treatment modality for precocious BM, while in syn- and metachronous BM surgical and radio-surgical treatment was balanced. Overall survival (OS) did not differ between the groups (p = 0.76). A good postoperative clinical status (KPS ≥ 70) and the application of any kind of adjuvant systemic therapy were independent predictive factors for OS. Conclusion: Early BM presentation was not associated with worse OS in NSCLC BM patients.
Collapse
Affiliation(s)
- Stephanie T. Jünger
- Centre for Neurosurgery, Department of Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (R.G.); (S.G.)
- Centre for Integrated Oncology, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (D.R.); (M.R.)
- Correspondence: ; Tel.: +49-221-478-4550; Fax: +49-221-478-82825
| | - Petra Schödel
- Department of Neurosurgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (P.S.); (N.-O.S.); (M.P.)
- Wilhelm Sander Neuro-Oncology Unit, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Daniel Ruess
- Centre for Integrated Oncology, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (D.R.); (M.R.)
- Centre for Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany;
| | - Maximilian Ruge
- Centre for Integrated Oncology, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (D.R.); (M.R.)
- Centre for Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany;
| | - Julia-Sarita Brand
- Centre for Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany;
| | - Maike Wittersheim
- Department of Pathology, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (M.W.); (M.-L.E.)
| | - Marie-Lisa Eich
- Department of Pathology, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (M.W.); (M.-L.E.)
| | - Nils-Ole Schmidt
- Department of Neurosurgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (P.S.); (N.-O.S.); (M.P.)
- Wilhelm Sander Neuro-Oncology Unit, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Roland Goldbrunner
- Centre for Neurosurgery, Department of Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (R.G.); (S.G.)
- Centre for Integrated Oncology, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (D.R.); (M.R.)
| | - Stefan Grau
- Centre for Neurosurgery, Department of Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (R.G.); (S.G.)
- Centre for Integrated Oncology, Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; (D.R.); (M.R.)
| | - Martin Proescholdt
- Department of Neurosurgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (P.S.); (N.-O.S.); (M.P.)
- Wilhelm Sander Neuro-Oncology Unit, University Medical Centre Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Hieggelke L, Schultheis AM. [Application of FISH in the diagnosis of lung cancer]. DER PATHOLOGE 2020; 41:582-588. [PMID: 32989488 DOI: 10.1007/s00292-020-00831-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rapid advancements in the area of lung cancer therapy were determined by the discovery of molecular markers and the possibility of their therapeutic exploitation. Today's lung cancer diagnosis places high demands on pathologists. In the majority of cases, small tissue samples must suffice for diagnosis and testing of all relevant biomarkers. The minimum panel required for advanced non-small-cell lung carcinoma (NSCLC) with nonsquamous histology includes testing of EGFR, BRAF, ALK, ROS1, and PD-L1-expression. So far, only PD-L1-IHC (immunohistochemistry, IHC) is required for squamous cell carcinoma. If possible, newer biomarkers such as RET, MET, HER2, NTRK, and KRAS should be integrated in test panels. Fluorescence in situ hybridization (FISH) is a well-established molecular method for the detection of chromosomal aberrations, such as ALK-, ROS1-, and RET- translocations and amplifications, such as Her2/neu or MET. The relevance of MET-FISH for the detection of amplifications in the first-line setting is controversial, but of high importance in the recurrent setting. All equivocal or discrepant results should be validated using orthogonal methods. IHC is a suitable, thoroughly validated method for ALK and ROS1 aberration detection with the advantage of quick and cost-efficient test results and tissue conservation. All other translocations, or discrepancy between IHC and FISH, require a sequencing-based confirmation procedure. The low frequency of NTRK fusions, and high sensitivity of NTRK-IHC, suggest using IHC as a prescreening tool with subsequent sequencing-based analysis for IHC positive cases.
Collapse
Affiliation(s)
- Lena Hieggelke
- Institut für Pathologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Anne M Schultheis
- Institut für Pathologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
| |
Collapse
|
17
|
Vuong HG, Nguyen TQ, Nguyen HC, Nguyen PT, Ho ATN, Hassell L. Efficacy and Safety of Crizotinib in the Treatment of Advanced Non-Small-Cell Lung Cancer with ROS1 Rearrangement or MET Alteration: A Systematic Review and Meta-Analysis. Target Oncol 2020; 15:589-598. [PMID: 32865687 DOI: 10.1007/s11523-020-00745-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Crizotinib has been approved for the treatment of non-small-cell lung cancer (NSCLC) with ROS proto-oncogene 1 (ROS1) gene fusion. This drug has also been granted breakthrough designation for NSCLCs with MET exon 14 alterations. OBJECTIVE This systematic review and meta-analysis aimed to investigate the efficacy and safety of crizotinib in patients with these diseases. METHODS We searched PubMed and Web of Science for relevant studies. Meta-analysis of proportions was conducted to calculate the pooled rate of complete response, partial response, stable disease, progressive disease, disease control rate (DCR), objective response rate (ORR), and drug adverse effects (AEs) of crizotinib in NSCLCs with ROS1 rearrangement or MET alterations. RESULTS A total of 20 studies were included for meta-analysis. Among patients with ROS1-positive NSCLC, crizotinib exhibited a pooled DCR of 93.2% (95% confidence interval [CI] 90.8-95.5) and a pooled ORR of 77.4% (95% CI 72.8-82.1). The median progression-free survival (PFS) and overall survival (OS) of patients in this group was 14.5 and 32.6 months, respectively. For NSCLC with MET alterations, crizotinib was associated with a lower efficacy (DCR 78.9% [95% CI 70.3-87.4] and ORR 40.6% [95% CI 28.3-53.0]). The median PFS was 5.2 months, and median OS was 12.7 months. The most common drug AEs were vision impairment (43.7%), edema (42.9%), and fatigue (40.1%). CONCLUSION Our study highlighted and confirmed the efficacy of crizotinib in patients with NSCLC with ROS1 or MET genetic alterations. Crizotinib had remarkable effects on advanced NSCLC with ROS1 fusion, as previously reported. However, the role of this targeted therapy in MET-altered NSCLC remains investigational.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, Oklahoma University of Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Thu Quynh Nguyen
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - Hoang Cong Nguyen
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - Phuoc Truong Nguyen
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - An Thi Nhat Ho
- Department of Pulmonary and Critical Care Medicine, Saint Louis University, St. Louis, MO, 63104, USA
| | - Lewis Hassell
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
18
|
Middleton G, Fletcher P, Popat S, Savage J, Summers Y, Greystoke A, Gilligan D, Cave J, O'Rourke N, Brewster A, Toy E, Spicer J, Jain P, Dangoor A, Mackean M, Forster M, Farley A, Wherton D, Mehmi M, Sharpe R, Mills TC, Cerone MA, Yap TA, Watkins TBK, Lim E, Swanton C, Billingham L. The National Lung Matrix Trial of personalized therapy in lung cancer. Nature 2020; 583:807-812. [PMID: 32669708 PMCID: PMC7116732 DOI: 10.1038/s41586-020-2481-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
The majority of targeted therapies for non-small-cell lung cancer (NSCLC) are directed against oncogenic drivers that are more prevalent in patients with light exposure to tobacco smoke1-3. As this group represents around 20% of all patients with lung cancer, the discovery of stratified medicine options for tobacco-associated NSCLC is a high priority. Umbrella trials seek to streamline the investigation of genotype-based treatments by screening tumours for multiple genomic alterations and triaging patients to one of several genotype-matched therapeutic agents. Here we report the current outcomes of 19 drug-biomarker cohorts from the ongoing National Lung Matrix Trial, the largest umbrella trial in NSCLC. We use next-generation sequencing to match patients to appropriate targeted therapies on the basis of their tumour genotype. The Bayesian trial design enables outcome data from open cohorts that are still recruiting to be reported alongside data from closed cohorts. Of the 5,467 patients that were screened, 2,007 were molecularly eligible for entry into the trial, and 302 entered the trial to receive genotype-matched therapy-including 14 that re-registered to the trial for a sequential trial drug. Despite pre-clinical data supporting the drug-biomarker combinations, current evidence shows that a limited number of combinations demonstrate clinically relevant benefits, which remain concentrated in patients with lung cancers that are associated with minimal exposure to tobacco smoke.
Collapse
Affiliation(s)
- Gary Middleton
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Peter Fletcher
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | | | - Joshua Savage
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | | | | | | | - Judith Cave
- Southampton University Hospitals NHS Trust, Southampton, UK
| | | | | | - Elizabeth Toy
- Royal Devon and Exeter Foundation NHS Trust, Exeter, UK
| | - James Spicer
- King's College London, Guy's Hospital, London, UK
| | - Pooja Jain
- St James's University Hospital, Leeds, UK
| | - Adam Dangoor
- Bristol Haematology and Oncology Centre, Bristol, UK
| | | | | | - Amanda Farley
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Dee Wherton
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Manita Mehmi
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Rowena Sharpe
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | | | | | - Timothy A Yap
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Charles Swanton
- The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
| | - Lucinda Billingham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Champagnac A, Bringuier PP, Barritault M, Isaac S, Watkin E, Forest F, Maury JM, Girard N, Brevet M. Frequency of MET exon 14 skipping mutations in non-small cell lung cancer according to technical approach in routine diagnosis: results from a real-life cohort of 2,369 patients. J Thorac Dis 2020; 12:2172-2178. [PMID: 32642122 PMCID: PMC7330338 DOI: 10.21037/jtd.2020.04.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background Mesenchymal epithelial transition receptor (MET) alterations, including MET exon 14 skipping mutation, are oncogenic in non-small cell lung cancer (NSCLC) and may confer sensitivity to targeted therapy. Given the rarity and the diversity of exon 14 skipping mutations, diagnosis may be challenging on small-biopsy specimens. Methods Between March 2014 and May 2018, tissue samples from patients with metastatic NSCLC were analysed for MET exon 14 skipping mutation as part of routine practice in the Pathology Department of the Hospices Civils de Lyon, France. Over the study period, Sanger sequencing and/or two different DNA-based next generation sequencing (NGS) assays were used. Results Genomic alterations of MET exon 14 were detected in 2.6% (62/2,369) samples of NSCLC analysed for MET exon 14 mutations. Patients were mainly women (38/62, 61%) without smoking history (22/39, 56%) and the median age was 75 years. MET exon 14 skipping mutations were diagnosed by NGS in 50 cases and by classical Sanger sequencing in 12 cases. The frequency of MET mutations was 15.4% when Sanger sequencing was performed at the request of the clinician and 4.1% when the DNA-based NGS assay coverage included the 3' and 5' parts of the MET exon 14 and performed systematically. Conclusions The frequency of genomic alterations is highly dependent on patient selection and the technical approach.
Collapse
Affiliation(s)
- Anne Champagnac
- Pathology Department, Hospices Civils de Lyon, Bron, France.,Lyon 1 University, Lyon, France
| | - Pierre-Paul Bringuier
- Pathology Department, Hospices Civils de Lyon, Bron, France.,Lyon 1 University, Lyon, France
| | - Marc Barritault
- Pathology Department, Hospices Civils de Lyon, Bron, France.,Lyon 1 University, Lyon, France
| | - Sylvie Isaac
- Lyon 1 University, Lyon, France.,Pathology Department, Lyon University Hospital, Pierre-Bénite, France
| | | | - Fabien Forest
- Pathology Department, Saint Etienne University Hospital-Site Nord, Saint Etienne, France
| | - Jean-Michel Maury
- Lyon 1 University, Lyon, France.,Thoracic Surgery Department, Hospices Civils de Lyon, Bron, France
| | - Nicolas Girard
- Lyon 1 University, Lyon, France.,Institut of Thorax Curie-Montsouris, Institut Curie, Paris, France
| | - Marie Brevet
- Pathology Department, Hospices Civils de Lyon, Bron, France.,Lyon 1 University, Lyon, France
| |
Collapse
|
20
|
Heydt C, Becher AK, Wagener-Ryczek S, Ball M, Schultheis AM, Schallenberg S, Rüsseler V, Büttner R, Merkelbach-Bruse S. Comparison of in situ and extraction-based methods for the detection of MET amplifications in solid tumors. Comput Struct Biotechnol J 2019; 17:1339-1347. [PMID: 31762957 PMCID: PMC6861603 DOI: 10.1016/j.csbj.2019.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 01/22/2023] Open
Abstract
In EGFR-treatment naive NSCLC patients, high-level MET amplification is detected in approximately 2-3% and is considered as adverse prognostic factor. Currently, clinical trials with two different inhibitors, capmatinib and tepotinib, are under way both defining different inclusion criteria regarding MET amplification from proven amplification only to defining an exact MET copy number. Here, 45 patient samples, including 10 samples without MET amplification, 5 samples showing a low-level MET amplification, 10 samples with an intermediate-level MET amplification, 10 samples having a high-level MET amplification by a MET/CEN7 ratio ≥2.0 and 10 samples showing a high-level MET amplification with GCN ≥6, were evaluated by MET FISH, MET IHC, a ddPCR copy number assay, a NanoString nCounter copy number assay and an amplicon-based parallel sequencing. The MET IHC had the best concordance with MET FISH followed by the NanoString copy number assay, the ddPCR copy number assay and the custom amplicon-based parallel sequencing assays. The concordance was higher in the high-level amplified cohorts than in the low- and intermediate-level amplified cohorts. In summary, currently extraction-based methods cannot replace the MET FISH for the detection of low-level, intermediate-level and high-level MET amplifications, as the number of false negative results is very high. Only for the detection of high-level amplified samples with a gene copy number ≥6 extraction-based methods are a reliable alternative.
Collapse
Affiliation(s)
- Carina Heydt
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Ann-Kathrin Becher
- Institute of Pathology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Svenja Wagener-Ryczek
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Markus Ball
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Anne M. Schultheis
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Vanessa Rüsseler
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|