1
|
Canbeldek L, Rosenblum WI. Charcot Bouchard aneurysm: Case report and critical literature review. J Neuropathol Exp Neurol 2024; 83:783-784. [PMID: 38819089 DOI: 10.1093/jnen/nlae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Leyla Canbeldek
- Department of Pathology, Icahn School of Medicine at Mt Sinai, New York, NY 10128, United States
| | - William I Rosenblum
- Department of Pathology, Icahn School of Medicine at Mt Sinai, New York, NY 10128, United States
| |
Collapse
|
2
|
Muir RT, Smith EE. The Spectrum of Cerebral Small Vessel Disease: Emerging Pathophysiologic Constructs and Management Strategies. Neurol Clin 2024; 42:663-688. [PMID: 38937035 DOI: 10.1016/j.ncl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Cerebral small vessel disease (CSVD) is a spectrum of disorders that affect small arterioles, venules, cortical and leptomeningeal vessels, perivascular spaces, and the integrity of neurovascular unit, blood brain barrier, and surrounding glia and neurons. CSVD is an important cause of lacunar ischemic stroke and sporadic hemorrhagic stroke, as well as dementia-which will constitute some of the most substantive population and public health challenges over the next century. This article provides an overview of updated pathophysiologic frameworks of CSVD; discusses common and underappreciated clinical and neuroimaging manifestations of CSVD; and reviews emerging genetic risk factors linked to sporadic CSVD.
Collapse
Affiliation(s)
- Ryan T Muir
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Eric E Smith
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
3
|
Hernandez Torres LD, Rezende F, Peschke E, Will O, Hövener JB, Spiecker F, Özorhan Ü, Lampe J, Stölting I, Aherrahrou Z, Künne C, Kusche-Vihrog K, Matschl U, Hille S, Brandes RP, Schwaninger M, Müller OJ, Raasch W. Incidence of microvascular dysfunction is increased in hyperlipidemic mice, reducing cerebral blood flow and impairing remote memory. Front Endocrinol (Lausanne) 2024; 15:1338458. [PMID: 38469142 PMCID: PMC10925718 DOI: 10.3389/fendo.2024.1338458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction The development of cognitive dysfunction is not necessarily associated with diet-induced obesity. We hypothesized that cognitive dysfunction might require additional vascular damage, for example, in atherosclerotic mice. Methods We induced atherosclerosis in male C57BL/6N mice by injecting AAV-PCSK9DY (2x1011 VG) and feeding them a cholesterol-rich Western diet. After 3 months, mice were examined for cognition using Barnes maze procedure and for cerebral blood flow. Cerebral vascular morphology was examined by immunehistology. Results In AAV-PCSK9DY-treated mice, plaque burden, plasma cholesterol, and triglycerides are elevated. RNAseq analyses followed by KEGG annotation show increased expression of genes linked to inflammatory processes in the aortas of these mice. In AAV-PCSK9DY-treated mice learning was delayed and long-term memory impaired. Blood flow was reduced in the cingulate cortex (-17%), caudate putamen (-15%), and hippocampus (-10%). Immunohistological studies also show an increased incidence of string vessels and pericytes (CD31/Col IV staining) in the hippocampus accompanied by patchy blood-brain barrier leaks (IgG staining) and increased macrophage infiltrations (CD68 staining). Discussion We conclude that the hyperlipidemic PCSK9DY mouse model can serve as an appropriate approach to induce microvascular dysfunction that leads to reduced blood flow in the hippocampus, which could explain the cognitive dysfunction in these mice.
Collapse
Affiliation(s)
| | - Flavia Rezende
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Rhine-Main, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Frauke Spiecker
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ümit Özorhan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University Lübeck; University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kristina Kusche-Vihrog
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- Institute for Physiology, University Lübeck, Lübeck, Germany
| | - Urte Matschl
- Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Susanne Hille
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Rhine-Main, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Lübeck, Germany
| | - Oliver J. Müller
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Walter Raasch
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Nakagawa K, Chen R, Greenberg SM, Ross GW, Willcox BJ, Donlon TA, Allsopp RC, Willcox DC, Morris BJ, Masaki KH. Forkhead box O3 longevity genotype may attenuate the impact of hypertension on risk of intracerebral haemorrhage. J Hypertens 2022; 40:2230-2235. [PMID: 35943066 PMCID: PMC9553272 DOI: 10.1097/hjh.0000000000003249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Since the G allele of forkhead box O3 ( FOXO3 ) single nucleotide polymorphism (SNP) rs2802292 is associated with resilience and longevity, ostensibly by mitigating the adverse effects of chronic cardiometabolic stress on mortality, our aim was to determine the association between the FOXO3 SNP rs2802292 genotype and risk of hypertension-mediated intracerebral haemorrhage (ICH). METHODS From a prospective population-based cohort of Japanese American men from the Kuakini Honolulu Heart Program (KHHP), age-adjusted prevalence of ICH by hypertension was assessed for the whole cohort after stratifying by FOXO3 genotype. Cox regression models, adjusted for age, cardiovascular risk factors and, FOXO3 and APOE genotypes, were utilized to determine relative risk of hypertension's effect on ICH. All models were created for the whole cohort and stratified by FOXO3 G -allele carriage vs. TT genotype. RESULTS Among 6469 men free of baseline stroke, FOXO3 G -allele carriage was seen in 3009 (46.5%) participants. Overall, 183 participants developed ICH over the 34-year follow-up period. Age-adjusted ICH incidence was 0.90 vs. 1.32 per 1000 person-years follow-up in those without and with hypertension, respectively ( P = 0.002). After stratifying by FOXO3 genotype, this association was no longer significant in G allele carriers. In the whole cohort, hypertension was an independent predictor of ICH (relative risk [RR] = 1.70, 95% confidence interval [CI] 1.25, 2.32; P = 0.0007). In stratified analyses, hypertension remained an independent predictor of ICH among the FOXO3 TT -genotype group (RR = 2.02, 95% CI 1.33, 3.07; P = 0.001), but not in FOXO3 G -allele carriers (RR = 1.39, 95% CI 0.88, 2.19; P = 0.15). CONCLUSIONS The longevity-associated FOXO3 G allele may attenuate the impact of hypertension on ICH risk.
Collapse
Affiliation(s)
- Kazuma Nakagawa
- Department of Research, Kuakini Medical Center
- Neuroscience Institute, The Queen's Medical Center
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Randi Chen
- Department of Research, Kuakini Medical Center
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, Massachusetts
| | - G. Webster Ross
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
- Pacific Health Research and Education Institute
- Veterans Affairs Pacific Islands Healthcare Systems
- Department of Geriatric Medicine
| | - Bradley J. Willcox
- Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
| | - Timothy A. Donlon
- Department of Research, Kuakini Medical Center
- Department of Cell and Molecular Biology
| | - Richard C. Allsopp
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - D. Craig Willcox
- Department of Research, Kuakini Medical Center
- Department of Human Welfare, Okinawa International University, Ginowan, Okinawa, Japan
| | - Brian J. Morris
- Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal H. Masaki
- Department of Research, Kuakini Medical Center
- Department of Geriatric Medicine
| |
Collapse
|