1
|
Louis J, Rolain M, Levacher C, Baudry K, Pujol P, Ruminy P, Baert Desurmont S, Bou J, Bouvignies E, Coutant S, Kasper E, Lienard G, Vasseur S, Vezain M, Houdayer C, Charbonnier F, Bougeard G. Li-Fraumeni syndrome: a germline TP53 splice variant reveals a novel physiological alternative transcript. J Med Genet 2025; 62:160-168. [PMID: 39788694 DOI: 10.1136/jmg-2024-110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) predisposes individuals to a wide range of cancers from childhood onwards, underscoring the crucial need for accurate interpretation of germline TP53 variants for optimal clinical management of patients and families. Several unclassified variants, particularly those potentially affecting splicing, require specialised testing. One such example is the NM_000546.6:c.1101-2A>C (rs587781664) variant, located at the splice acceptor site of the last intron of TP53, identified in a female patient with breast cancer diagnosed in her 20s. METHODS To interpret this variant, which has been classified as a variant of uncertain significance (VUS), we developed specific assays including a p53 functional assay, RT-QMPSF, Splice and Expression Analyses by exon Ligation and High-Throughput Sequencing and long RT-droplet digital PCR. RESULTS We demonstrated a loss of p53 transcriptional activity, and a half reduction in TP53 mRNA expression. Additionally, we detected the use of a novel alternative last exon downstream of exon 11, which we have named exon 12. This transcript, typically detectable at low levels in most individuals, was found to be more highly expressed in the c.1101-2A>C carrier, predominantly transcribed from the mutant allele due to the disruption of the splice acceptor site in intron 10. CONCLUSION By combining these approaches, we successfully reclassified this intronic VUS as 'pathogenic', enabling appropriate genetic counselling for the patient and her family. Additionally, we identified a novel TP53 alternative transcript that is expressed in both physiological and pathological contexts, with heightened expression in the patient with LFS. This discovery provides a basis for further investigation into the role of TP53 isoforms in LFS oncogenesis.
Collapse
Affiliation(s)
- Jeanne Louis
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Marion Rolain
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Corentin Levacher
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Karen Baudry
- CHU Montpellier, Département d'oncogénétique, F-34000, Montpellier, France
| | - Pascal Pujol
- CHU Montpellier, Département d'oncogénétique, F-34000, Montpellier, France
- Univ Montpellier et CREEC, UMR IRD 224-CNRS 5290, F-34000, Montpellier, France
| | - Philippe Ruminy
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Centre Henri Becquerel, F-76000, Rouen, France
| | - Stéphanie Baert Desurmont
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Jacqueline Bou
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Emilie Bouvignies
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Sophie Coutant
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Edwige Kasper
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Gwendoline Lienard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Stéphanie Vasseur
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Myriam Vezain
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Claude Houdayer
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Françoise Charbonnier
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Gaëlle Bougeard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| |
Collapse
|
2
|
Ren C, D'Amato G, Hornicek FJ, Tao H, Duan Z. Advances in the molecular biology of the solitary fibrous tumor and potential impact on clinical applications. Cancer Metastasis Rev 2024; 43:1337-1352. [PMID: 39120790 PMCID: PMC11554739 DOI: 10.1007/s10555-024-10204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Solitary fibrous tumor (SFT) is a rare fibroblastic mesenchymal neoplasm. The current classification has merged SFT and hemangiopericytoma (HPC) into the same tumor entity, while the risk stratification models have been developed to compensate for clinical prediction. Typically, slow-growing and asymptomatic, SFT can occur in various anatomical sites, most commonly in the pleura. Histologically, SFT consists of spindle to oval cells with minimal patterned growth, surrounded by stromal collagen and unique vascular patterns. Molecularly, SFT is defined by the fusion of NGFI-A-binding protein 2 (NAB2) and signal transducer and activator of transcription 6 (STAT6) genes as NAB2-STAT6. This fusion transforms NAB2 into a transcriptional activator, activating early growth response 1 (EGR1) and contributing to SFT pathogenesis and development. There are several fusion variants of NAB2-STAT6 in tumor tissues, with the most frequent ones being NAB2ex4-STAT6ex2 and NAB2ex6-STAT6ex16/ex17. Diagnostic methods play a crucial role in SFT clinical practice and basic research, including RT-PCR, next-generation sequencing (NGS), FISH, immunohistochemistry (IHC), and Western blot analysis, each with distinct capabilities and limitations. Traditional treatment strategies of SFT encompass surgical resection, radiation therapy, and chemotherapy, while emerging management regimes include antiangiogenic agents, immunotherapy, RNA-targeting technologies, and potential targeted drugs. This review provides an update on SFT's clinical and molecular aspects, diagnostic methods, and potential therapies.
Collapse
Affiliation(s)
- Chongmin Ren
- Department of Bone Tumor, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266101, Shandong, China
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10Th Avenue, Miami, FL, 33136, USA
- The Orthopedic Hospital, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266101, Shandong, China
| | - Gina D'Amato
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10Th Avenue, Miami, FL, 33136, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10Th Avenue, Miami, FL, 33136, USA
| | - Hao Tao
- The Orthopedic Hospital, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266101, Shandong, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10Th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Alsugair Z, Perrot J, Descotes F, Lopez J, Champagnac A, Pissaloux D, Castain C, Onea M, Céruse P, Philouze P, Lépine C, Lanic MD, Laé M, Costes-Martineau V, Benzerdjeb N. Characterization of a Molecularly Distinct Subset of Oncocytic Pleomorphic Adenomas/Myoepitheliomas Harboring Recurrent ZBTB47-AS1::PLAG1 Gene Fusion. Am J Surg Pathol 2024; 48:551-561. [PMID: 38497430 DOI: 10.1097/pas.0000000000002206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Recurrent gene fusions are common in salivary gland tumors including benign tumors, such as pleomorphic adenoma (PA) and myoepithelioma (ME). In cases where chromosomal rearrangement is identified in the pleomorphic adenoma gene 1 (PLAG1) gene, different gene partners are found. Oncocytic metaplasia, characterized by oncocytes with abundant eosinophilic granular cytoplasm and hyperchromatic nuclei, is a well-known phenomenon in salivary gland neoplasms. However, the pure oncocytic variant of PA/ME showed PLAG1 gene rearrangements involving various gene partners at the molecular level, without any recurrent fusion being found. Our study includes 20 cases of PA/ME, with 11 females and 9 males. The age of patients ranged from 37 to 96 years, with a median age of 62.8 years. Most tumors originate from the parotid gland. The median size of the tumor was 26.5 mm (range: 13 to 60 mm). Among the 20 cases, 14 were a pure oncocytic variant of PA/ME, whereas 6 cases showed focal oncocytic or oncocytic-like aspects. Molecular studies on 20 cases of PA/ME were conducted. A novel recurrent ZBTB47-AS1::PLAG1 fusion was identified in 6 of 12 cases with pure oncocytic metaplasia, whereas the other cases had PLAG1 gene fusion with different gene partners. The transcriptomic analysis of the cases harboring ZBTB47-AS1::PLAG1 fusion demonstrated that these tumors have a distinct molecular profile from conventional PA/ME. This study reveals a unique subset in the oncocytic PA/ME spectrum characterized by pure oncocytic morphology with larger oncocytic cells and recurrent ZBTB47-AS1::PLAG1 fusion. It also highlights the transcriptomic distinctness of salivary gland adenomas with pure oncocytic metaplasia in the spectrum of salivary gland neoplasms. Further studies are needed to better understand the oncocytic variant of PA/ME and to determine the true nature of oncocytic cells in PA/ME.
Collapse
Affiliation(s)
- Ziyad Alsugair
- Department of Pathology, Institut of Pathologie Multisite, Groupement Hospitalier Sud, Hospices Civils de Lyon
| | - Jimmy Perrot
- Department of Pathology, Institut of Pathologie Multisite, Groupement Hospitalier Sud, Hospices Civils de Lyon
| | - Françoise Descotes
- Department of Biochemistry and Molecular Biology, Groupement Hospitalier Sud, Lyon, Pierre-Bénite
| | - Jonathan Lopez
- Department of Biochemistry and Molecular Biology, Groupement Hospitalier Sud, Lyon, Pierre-Bénite
| | | | - Daniel Pissaloux
- Department of Biopathology, Centre Léon Bérard
- The Unit of Molecular Pathology, INSERM, Cancer Research Center of Lyon, and Team Genetics, Epigenetics and Biology of Sarcomas, Université Claude Bernard Lyon 1
| | - Claire Castain
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, La Croix Rousse Hospital, Hospices Civils de Lyon
| | - Mihaela Onea
- EMR3738, CICLY, University Claude Bernard Lyon 1, Lyon
| | - Philippe Céruse
- Department of Pathology, University Hospital of Bordeaux, Bordeaux
| | - Pierre Philouze
- Department of Pathology, University Hospital of Bordeaux, Bordeaux
| | - Charles Lépine
- Department of Pathology, University Hospital of Strasbourg, Strasbourg
- Department of Pathology, CHU Nantes
| | - Marie-Delphine Lanic
- Nantes University, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN
| | - Marick Laé
- Nantes University, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN
| | | | - Nazim Benzerdjeb
- Department of Pathology, Institut of Pathologie Multisite, Groupement Hospitalier Sud, Hospices Civils de Lyon
- Department of Pathology, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
4
|
Guérin R, Menard AL, Angot E, Piton N, Vera P, Schwarz L, Sabourin JC, Laé M, Thiébaut PA. An unusual case of primary splenic soft part alveolar sarcoma: case report and review of the literature with emphasis on the spectrum of TFE3-associated neoplasms. Diagn Pathol 2024; 19:62. [PMID: 38643139 PMCID: PMC11031972 DOI: 10.1186/s13000-024-01483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Alveolar soft part sarcoma is a rare tumour of soft tissues, mostly localized in muscles or deep soft tissues of the extremities. In rare occasions, this tumour develops in deep tissues of the abdomen or pelvis. CASE PRESENTATION In this case report, we described the case of a 46 year old man who developed a primary splenic alveolar soft part sarcoma. The tumour displayed typical morphological alveolar aspect, as well as immunohistochemical profile notably TFE3 nuclear staining. Detection of ASPSCR1 Exon 7::TFE3 Exon 6 fusion transcript in molecular biology and TFE3 rearrangement in FISH confirmed the diagnosis. CONCLUSION We described the first case of primary splenic alveolar soft part sarcoma, which questions once again the cell of origin of this rare tumour.
Collapse
Affiliation(s)
- René Guérin
- Department of Pathology, Rouen University Hospital, Rouen, France
| | | | - Emilie Angot
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Nicolas Piton
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Pierre Vera
- Department of Nuclear Medecine, Centre Henri Becquerel, Rouen, France
| | - Lilian Schwarz
- Department of Digestive Surgery, Rouen University Hospital, Rouen, France
| | | | - Marick Laé
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| | | |
Collapse
|
5
|
Sosinsky A, Ambrose J, Cross W, Turnbull C, Henderson S, Jones L, Hamblin A, Arumugam P, Chan G, Chubb D, Noyvert B, Mitchell J, Walker S, Bowman K, Pasko D, Buongermino Pereira M, Volkova N, Rueda-Martin A, Perez-Gil D, Lopez J, Pullinger J, Siddiq A, Zainy T, Choudhury T, Yavorska O, Fowler T, Bentley D, Kingsley C, Hing S, Deans Z, Rendon A, Hill S, Caulfield M, Murugaesu N. Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme. Nat Med 2024; 30:279-289. [PMID: 38200255 PMCID: PMC10803271 DOI: 10.1038/s41591-023-02682-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
The Cancer Programme of the 100,000 Genomes Project was an initiative to provide whole-genome sequencing (WGS) for patients with cancer, evaluating opportunities for precision cancer care within the UK National Healthcare System (NHS). Genomics England, alongside NHS England, analyzed WGS data from 13,880 solid tumors spanning 33 cancer types, integrating genomic data with real-world treatment and outcome data, within a secure Research Environment. Incidence of somatic mutations in genes recommended for standard-of-care testing varied across cancer types. For instance, in glioblastoma multiforme, small variants were present in 94% of cases and copy number aberrations in at least one gene in 58% of cases, while sarcoma demonstrated the highest occurrence of actionable structural variants (13%). Homologous recombination deficiency was identified in 40% of high-grade serous ovarian cancer cases with 30% linked to pathogenic germline variants, highlighting the value of combined somatic and germline analysis. The linkage of WGS and longitudinal life course clinical data allowed the assessment of treatment outcomes for patients stratified according to pangenomic markers. Our findings demonstrate the utility of linking genomic and real-world clinical data to enable survival analysis to identify cancer genes that affect prognosis and advance our understanding of how cancer genomics impacts patient outcomes.
Collapse
Affiliation(s)
| | | | - William Cross
- School of Life Sciences, University of Westminster, London, UK
| | - Clare Turnbull
- Genomics England, London, UK
- Institute of Cancer Research, London, UK
| | | | - Louise Jones
- Genomics England, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Angela Hamblin
- Genomics England, London, UK
- Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | | | | | | | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tom Fowler
- Genomics England, London, UK
- William Harvey Research Institute and the Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | | | | | | | - Sue Hill
- Genomics Unit, NHS England, London, UK
| | - Mark Caulfield
- Genomics England, London, UK.
- William Harvey Research Institute and the Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Nirupa Murugaesu
- Genomics England, London, UK.
- Guy's & St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
6
|
Lanic MD, Guérin R, Wassef M, Durdilly P, Rainville V, Sater V, Jardin F, Ruminy P, Costes-Martineau V, Laé M. Detection of salivary gland and sinonasal fusions by a next-generation sequencing based, ligation-dependent, multiplex RT-PCR assay. Histopathology 2023; 83:685-699. [PMID: 37350081 DOI: 10.1111/his.14971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
AIMS The discovery of tumour type-specific gene fusion oncogenes in benign and malignant salivary gland and sinonasal (SGSN) tumours has significantly increased our knowledge about their molecular pathology and classification. METHODS AND RESULTS We developed a new targeted multiplexed next-generation sequencing (NGS)-based method that utilizes ligation dependent reverse-transcriptase polymerase chain reaction (LD-RT-PCR) to detect oncogenic fusion transcripts involving 116 genes, leading to 96 gene fusions known to be recurrently rearranged in these tumours. In all, 180 SGSN tumours (formalin-fixed, paraffin-embedded samples, 141 specimens and 39 core needle biopsies) from the REFCORpath (French network for rare head and neck cancers) with previously identified fusion genes by fluorescent in situ hybridisation (FISH), RT-PCR, or molecular immunohistochemistry were selected to test its specificity and sensitivity and validate its diagnostic use. Tested tumours encompassed 14 major tumours types, including secretory carcinoma, mucoepidermoid carcinoma, adenoid cystic carcinoma, salivary gland intraductal carcinoma, clear cell carcinoma, pleomorphic adenoma, adamantinoma-like Ewing Sarcoma, EWSR1::COLCA2 sinonasal sarcoma, DEK::AFF2 sinonasal carcinoma, and biphenotypic sinonasal sarcoma. In-frame fusion transcripts were detected in 97.8% of cases (176/180). Gene fusion assay results correlated with conventional techniques (immunohistochemistry [IHC], FISH, and RT-PCR) in 176/180 tumours (97.8%). CONCLUSION This targeted multiplexed NGS-based LD-RT-PCR method is a robust, highly sensitive method for the detection of recurrent gene fusions from routine clinical SGSN tumours. It can be easily customized to cover new fusions. These results are promising for implementing an integrated NGS system to rapidly detect genetic aberrations, facilitating accurate, genomics-based diagnoses, and accelerate time to precision therapies in SGSN tumours.
Collapse
Affiliation(s)
- Marie-Delphine Lanic
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France
| | - René Guérin
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| | - Michel Wassef
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | | | - Vinciane Rainville
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France
| | - Vincent Sater
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| | - Fabrice Jardin
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France
| | - Philippe Ruminy
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France
| | | | - Marick Laé
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| |
Collapse
|
7
|
Stelloo E, Meijers RWJ, Swennenhuis JF, Allahyar A, Hajo K, Cangiano M, de Leng WWJ, van Helvert S, Van der Meulen J, Creytens D, van Kempen LC, Cleton-Jansen AM, Bovee JVMG, de Laat W, Splinter E, Feitsma H. Formalin-Fixed, Paraffin-Embedded-Targeted Locus Capture: A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors. J Mol Diagn 2023; 25:758-770. [PMID: 37517473 DOI: 10.1016/j.jmoldx.2023.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Chromosomal rearrangements are important drivers in cancer, and their robust detection is essential for diagnosis, prognosis, and treatment selection, particularly for bone and soft tissue tumors. Current diagnostic methods are hindered by limitations, including difficulties with multiplexing targets and poor quality of RNA. A novel targeted DNA-based next-generation sequencing method, formalin-fixed, paraffin-embedded-targeted locus capture (FFPE-TLC), has shown advantages over current diagnostic methods when applied on FFPE lymphomas, including the ability to detect novel rearrangements. We evaluated the utility of FFPE-TLC in bone and soft tissue tumor diagnostics. FFPE-TLC sequencing was successfully applied on noncalcified and decalcified FFPE samples (n = 44) and control samples (n = 19). In total, 58 rearrangements were identified in 40 FFPE tumor samples, including three previously negative samples, and none was identified in the FFPE control samples. In all five discordant cases, FFPE-TLC could identify gene fusions where other methods had failed due to either detection limits or poor sample quality. FFPE-TLC achieved a high specificity and sensitivity (no false positives and negatives). These results indicate that FFPE-TLC is applicable in cancer diagnostics to simultaneously analyze many genes for their involvement in gene fusions. Similar to the observation in lymphomas, FFPE-TLC is a good DNA-based alternative to the conventional methods for detection of rearrangements in bone and soft tissue tumors.
Collapse
Affiliation(s)
| | - Ruud W J Meijers
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Amin Allahyar
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd van Helvert
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Léon C van Kempen
- Department of Pathology, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Judith V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | |
Collapse
|
8
|
Song L, Zhang Y, Wang Y, Xia Q, Guo D, Cao J, Xin X, Cheng H, Liu C, Jia X, Li F. Detection of various fusion genes by one-step RT-PCR and the association with clinicopathological features in 242 cases of soft tissue tumor. Front Cell Dev Biol 2023; 11:1214262. [PMID: 37621777 PMCID: PMC10446835 DOI: 10.3389/fcell.2023.1214262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: Over the past decades, an increasing number of chromosomal translocations have been found in different STSs, which not only has value for clinical diagnosis but also suggests the pathogenesis of STS. Fusion genes can be detected by FISH, RT-PCR, and next-generation sequencing. One-step RT-PCR is a convenient method to detect fusion genes with higher sensitivity and lower cost. Method: In this study, 242 cases of soft tissue tumors were included, which were detected by one-step RT-PCR in multicenter with seven types of tumors: rhabdomyosarcoma (RMS), peripheral primitive neuroectodermal tumor (pPNET), synovial sarcoma (SS), myxoid liposarcomas (MLPS), alveolar soft part sarcoma (ASPS), dermatofibrosarcoma protuberans (DFSP), and soft tissue angiofibroma (AFST). 18 cases detected by one-step RT-PCR were further tested by FISH. One case with novel fusion gene detected by RNA-sequencing was further validated by one-step RT-PCR. Results: The total positive rate of fusion genes was 60% (133/213) in the 242 samples detected by one-step RT-PCR, in which 29 samples could not be evaluated because of poor RNA quality. The positive rate of PAX3-FOXO1 was 88.6% (31/35) in alveolar rhabdomyosarcoma, EWSR1-FLI1 was 63% (17/27) in pPNET, SYT-SSX was 95.4% in SS (62/65), ASPSCR1-TFE3 was 100% in ASPS (10/10), FUS-DDIT3 was 80% in MLPS (4/5), and COL1A1-PDGFB was 66.7% in DFSP (8/12). For clinicopathological parameters, fusion gene status was correlated with age and location in 213 cases. The PAX3-FOXO1 fusion gene status was correlated with lymph node metastasis and distant metastasis in RMS. Furthermore, RMS patients with positive PAX3-FOXO1 fusion gene had a significantly shorter overall survival time than those patients with the negative fusion gene. Among them, the FISH result of 18 cases was concordant with one-step RT-PCR. As detected as the most common fusion types of AHRR-NCOA2 in one case of AFST were detected as negative by one-step RT-PCR. RNA-sequencing was used to determine the fusion genes, and a novel fusion gene PTCH1-PLAG1 was found. Moreover, the fusion gene was confirmed by one-step RT-PCR. Conclusion: Our study indicates that one-step RT-PCR displays a reliable tool to detect fusion genes with the advantage of high accuracy and low cost. Moreover, it is a great tool to identify novel fusion genes. Overall, it provides useful information for molecular pathological diagnosis and improves the diagnosis rate of STSs.
Collapse
Affiliation(s)
- Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Yuanyuan Wang
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Qingxin Xia
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Dandan Guo
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiachen Cao
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Xin
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haoyue Cheng
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyuan Jia
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng Li
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
9
|
Levacher C, Viennot M, Drouet A, Beaussire L, Coutant S, Théry JC, Baert-Desurmont S, Laé M, Ruminy P, Houdayer C. Disequilibrium between BRCA1 and BRCA2 Circular and Messenger RNAs Plays a Role in Breast Cancer. Cancers (Basel) 2023; 15:2176. [PMID: 37046838 PMCID: PMC10093293 DOI: 10.3390/cancers15072176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is a frequent disease for which the discovery of markers that enable early detection or prognostic assessment remains challenging. Circular RNAs (circRNAs) are single-stranded structures in closed loops that are produced by backsplicing. CircRNA and messenger RNA (mRNA) are generated co-transcriptionally, and backsplicing and linear splicing compete against each other. As mRNAs are key players in tumorigenesis, we hypothesize that a disruption of the balance between circRNAs and mRNAs could promote breast cancer. Hence, we developed an assay for a simultaneous study of circRNAs and mRNAs, which we have called splice and expression analyses by exon ligation and high-throughput sequencing (SEALigHTS). Following SEALigHTS validation for BRCA1 and BRCA2, our hypothesis was tested using an independent research set of 95 pairs from tumor and adjacent normal breast tissues. In this research set, ratios of BRCA1 and BRCA2 circRNAs/mRNAs were significantly lower in the tumor breast tissue compared to normal tissue (p = 1.6 × 10-9 and p = 4.4 × 10-5 for BRCA1 and BRCA2, respectively). Overall, we developed an innovative method to study linear splicing and backsplicing, described the repertoire of BRCA1 and BRCA2 circRNAs, including 15 novel ones, and showed for the first time that a disequilibrium between BRCA1 and BRCA2 circRNAs and mRNAs plays a role in breast cancer.
Collapse
Affiliation(s)
- Corentin Levacher
- Univ Rouen Normandie, INSERM U1245, FHU-G4 Génomique, 76000 Rouen, France; (C.L.)
| | - Mathieu Viennot
- Univ Rouen Normandie, INSERM U1245, Centre Henri Becquerel, 76000 Rouen, France (M.L.); (P.R.)
| | - Aurélie Drouet
- Univ Rouen Normandie, INSERM U1245, FHU-G4 Génomique, 76000 Rouen, France; (C.L.)
| | - Ludivine Beaussire
- Univ Rouen Normandie, INSERM U1245, FHU-G4 Génomique, 76000 Rouen, France; (C.L.)
- Department of Pathology, Centre Henri Becquerel, 1 Rue d’Amiens, 76038 Rouen, France
| | - Sophie Coutant
- Univ Rouen Normandie, INSERM U1245, FHU-G4 Génomique, 76000 Rouen, France; (C.L.)
| | - Jean-Christophe Théry
- Univ Rouen Normandie, INSERM U1245, FHU-G4 Génomique, 76000 Rouen, France; (C.L.)
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d’Amiens, 76038 Rouen, France
| | - Stéphanie Baert-Desurmont
- Univ Rouen Normandie, INSERM U1245, FHU-G4 Génomique and CHU Rouen, Department of Genetics, 76000 Rouen, France
| | - Marick Laé
- Univ Rouen Normandie, INSERM U1245, Centre Henri Becquerel, 76000 Rouen, France (M.L.); (P.R.)
- Department of Pathology, Centre Henri Becquerel, 1 Rue d’Amiens, 76038 Rouen, France
| | - Philippe Ruminy
- Univ Rouen Normandie, INSERM U1245, Centre Henri Becquerel, 76000 Rouen, France (M.L.); (P.R.)
| | - Claude Houdayer
- Univ Rouen Normandie, INSERM U1245, FHU-G4 Génomique and CHU Rouen, Department of Genetics, 76000 Rouen, France
| |
Collapse
|
10
|
Lanic MD, Guérin R, Sater V, Durdilly P, Ruminy P, Skálová A, Laé M. A novel SMARCA2-CREM fusion expending the molecular spectrum of salivary gland hyalinazing clear cell carcinoma beyond the FET genes. Genes Chromosomes Cancer 2023; 62:231-236. [PMID: 36504225 DOI: 10.1002/gcc.23114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Hyalinizing clear cell carcinoma (HCCC) is a rare salivary gland carcinoma with a generally indolent behavior, characterized by recurrent chromosomal translocation involving EWSR1 (22q12.2) leading to two fusion genes EWSR1::ATF1 or EWSR1::CREM. We report one case of HCCC with a novel SMARCA2::CREM fusion, identified by targeted RNA next generation sequencing by LD-RT-PCR, which has until now never been described in salivary glands. The exon 4 of SMARCA2 is fused to exon 5 of CREM. This fusion has been described previously in only one tumor, a central nervous system tumor (intracranial mesenchymal tumor) but not in other FET::CREB fused tumors. This fusion was confirmed by CREM break-apart FISH and reverse transcriptase polymerase chain reaction (RT-PCR). The tumor cells showed retained expression of INI1, SMARCA2, and SMARCA4 by immunohistochemistry. We compare its clinical, histopathological, immunophenotypic, genetic features with those previously described in HCCC, FET::CREB fusion-positive. Our results added data suggesting that different histomolecular tumor subtypes seem to be included within the terminology "HCCC, FET::CREB fusion-positive," and that further series of cases are needed to better characterize them.
Collapse
Affiliation(s)
- Marie-Delphine Lanic
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France
| | - René Guérin
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| | - Vincent Sater
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France.,Department of Pathology, Centre Henri Becquerel, Rouen, France
| | | | - Philippe Ruminy
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France
| | - Alena Skálová
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Plzen, Czech Republic.,Bioptic Laboratory, Ltd, Plzen, Czech Republic
| | - Marick Laé
- INSERM U1245, Cancer Center Henri Becquerel, Institute of Research and Innovation in Biomedicine (IRIB), University of Normandy, UNIROUEN, Rouen, France.,Department of Pathology, Centre Henri Becquerel, Rouen, France
| |
Collapse
|
11
|
Agaimy A, Baněčková M, De Almeida J, Dickson BC, Dimmler A, Hartmann W, Laé M, Pablik J, Schubart C, Skálová A, Stoehr R, Trautmann M, Wardelmann E, Wassef M, Weinreb I. Recurrent EWSR1::COLCA2 Fusions Define a Novel Sarcoma With Spindle/Round Cell Morphology and Strong Predilection for the Sinonasal Tract. Am J Surg Pathol 2023; 47:361-369. [PMID: 36580038 DOI: 10.1097/pas.0000000000002000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The last 2 decades have attended a dynamic evolution in the nosology of poorly differentiated sinonasal tract malignancies, with several new molecularly defined entities having been described in addition to delineation of the genetic driver/s of some established older entities. These discoveries, however, mostly concerned epithelial-derived neoplasms (carcinomas). Adamantinoma-like Ewing sarcoma and biphenotypic sinonasal sarcoma are the major representatives of the newly defined mesenchymal categories. The colorectal cancer associated 2 (COLCA2) has been discovered recently as a colorectal cancer risk gene locus, but fusions involving this gene have not been well characterized. We, herein, describe clinicopathologic and molecular features of a novel sinonasal sarcoma characterized by undifferentiated spindle/round cell morphology and defined by recurrent EWSR1::COLCA2 fusions. All patients (n=5) were adults (3 female and 2 male) with a median age of 46 years (range, 23 to 60 y). The tumors originated in different subsites of the sinonasal tract with frequent multisite involvement. Original diagnoses were undifferentiated or unclassified round cell/spindle cell neoplasm/sarcoma (n=4) and neuroendocrine carcinoma (n=1). Surgery with or without adjuvant chemoradiation was the treatment in all cases. At the last follow-up, 1 patient developed multiple local recurrences over 21 years and another developed local recurrence and distant metastasis to bone 27 months after diagnosis. A third patient developed local recurrence 11 months later. Two patients were disease-free at 23, and 24 months. Histology showed nondescript highly cellular neoplasms with an admixture of spindled and round cells disposed into solid sheets and fascicles with brisk mitotic activity. Immunohistochemistry was negative for all lineage-specific markers with only limited focal membranous CD99 (4 of 5 cases) and weak pankeratin (1 of 5 cases) expression. Targeted RNA sequencing revealed an EWSR1::COLCA2 fusion, verified by EWSR1 fluorescence in situ hybridization, in all cases. This series identifies a novel member in the undifferentiated spindle/round cell sarcoma category with strong predilection for the sinonasal tract. None of >10,000 epithelial and mesenchymal neoplasms tested at the authors' centers during the same period showed this fusion, highlighting rarity of tumors carrying this gene fusion. Accordingly, molecular testing of unclassified sinonasal malignancies/sarcomas showing round and spindle cell morphology is recommended to enhance the identification and further characterization of this entity.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich Alexander University of Erlangen-Nuremberg, Erlangen
| | - Martina Baněčková
- Department of Pathology, Charles University, Faculty of Medicine in Plzen
- Bioptic Laboratory Ltd, Plzen, Czech Republic
| | - John De Almeida
- Department of Otolaryngology, Head and Neck Surgery, Princess Margaret Hospital, University of Toronto
| | - Brendan C Dickson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital
- Department of Pathobiology and Laboratory Medicine, University of Toronto
| | - Arno Dimmler
- Institut und Gemeinschaftspraxis für Pathologie, ViDia Christliche Kliniken Karlsruhe, Karlsruhe
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster
| | - Marick Laé
- Department of Pathology, Centre Henri Becquerel, INSERM U1245, Université Rouen Normandie, Rouen
| | - Jessica Pablik
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - Christoph Schubart
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich Alexander University of Erlangen-Nuremberg, Erlangen
| | - Alena Skálová
- Department of Pathology, Charles University, Faculty of Medicine in Plzen
- Bioptic Laboratory Ltd, Plzen, Czech Republic
| | - Robert Stoehr
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich Alexander University of Erlangen-Nuremberg, Erlangen
| | - Marcel Trautmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital
| | - Michel Wassef
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Ilan Weinreb
- Laboratory Medicine Program, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
SRF Rearrangements in Soft Tissue Tumors with Muscle Differentiation. Biomolecules 2022; 12:biom12111678. [DOI: 10.3390/biom12111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The Serum Response Factor (SRF) is a transcription factor that regulates the expression of a wide set of genes involved in cell proliferation, migration, cytoskeletal organization and myogenesis. Accumulating evidence suggests that SRF may play a role in carcinogenesis and tumor progression in various neoplasms, where it is often involved in different fusion events. Here we investigated SRF rearrangements in soft tissue tumors, along with a gene expression profile analysis to gain insight into the oncogenic mechanism driven by SRF fusion. Whole transcriptome analysis of cell lines transiently overexpressing the SRF::E2F1 chimeric transcript uncovered the specific gene expression profile driven by the aberrant gene fusion, including overexpression of SRF-dependent target genes and of signatures related to myogenic commitment, inflammation and immune activation. This result was confirmed by the analysis of two cases of myoepitheliomas harboring SRF::E2F1 fusion with respect to EWSR1-fusion positive tumors. The recognition of the specific gene signature driven by SRF rearrangement in soft tissue tumors could aid the molecular classification of this rare tumor entity and support therapeutic decisions.
Collapse
|