1
|
Raymond JS, Athanasopoulos AG, Badolato CJ, Doolan TJ, Scicluna RL, Everett NA, Bowen MT, James MH. Emerging medications and pharmacological treatment approaches for substance use disorders. Pharmacol Biochem Behav 2025; 248:173952. [PMID: 39719161 DOI: 10.1016/j.pbb.2024.173952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Medications to treat substance use disorders (SUDs) remain suboptimal or, in the case of stimulants and cannabis, non-existent. Many factors have contributed to this paucity, including the biological complexity of addiction, regulatory challenges, and a historical lack of enthusiasm among pharmaceutical companies to commit resources to this disease space. Despite these headwinds, the recent opioid crisis has highlighted the devastating consequences of SUDs for both individuals and society, stimulating urgent efforts to identify novel treatment approaches. In addition, several neurobiological systems have been recently implicated in unique aspects of drug reward, opening the door to candidate medications with novel mechanisms of action. Here, we provide an overview of efforts to target several of these new systems, with a focus on those that are the subject of ongoing clinical trials as well as being areas of interest among the authors' research groups (MHJ, MTB, NAE). Specifically, we discuss new classes of medications targeting the serotonin 2A receptor (i.e., psychedelics), glucagon-like peptide 1 receptor, cannabidiol, dynorphin/kappa opioid receptor, orexin/hypocretin, and oxytocin receptor systems, as well as emergent approaches for modulating the more canonical dopaminergic system via agonist therapies for stimulant use disorders. Collectively, innovations in this space give reason for optimism for an improved therapeutic landscape for substance use disorders in the near future.
Collapse
Affiliation(s)
- Joel S Raymond
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA
| | - Alexander G Athanasopoulos
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Connie J Badolato
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tylah J Doolan
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Rhianne L Scicluna
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas A Everett
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA; School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Yang H, Wang Y, Liu S, Zhang S, Chen Y, Ding J, Chen S, Zhu F, Xia B, Luo P, Liu Y. Polysaccharide alleviates neurodegeneration and behavioral deficit by enhancing mitochondrial autophagy in chronic methamphetamine mice. Neurotoxicology 2025; 107:53-61. [PMID: 39954861 DOI: 10.1016/j.neuro.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Methamphetamine (METH) is a psychostimulant drug widely abused because of its addictive properties.Its impact on the central nervous system is a major area of interest due to its unique ability to cross the blood-brain barrier, facilitated by its dual water and lipid solubility. Studies have indicated that oxidative stress, neuroinflammation, neuronal apoptosis, and mitochondrial dysfunction are primary mechanisms of METH-induced neurotoxicity. Mitophagy, a process regulated by the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) induced kinase 1 (PINK1)/Parkin signaling pathway, has emerged as a critical mechanism for preserving mitochondrial function. Polysaccharides derived from bamboo fungus have shown potential in mitigating neurotoxicity. However, the role of these polysaccharides in ameliorating methamphetamine-induced neurotoxicity remains unclear. This study aimed to investigate whether polysaccharides could alleviate neurodegeneration in a chronic METH mice model and elucidate the underlying mechanisms and elucidate the mechanisms underlying METH-induced neuronal damage.
Collapse
Affiliation(s)
- Han Yang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Yuanhe Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Shan Liu
- Guiyang City Public Security Bureau Drug Testing Center, Guiyang, Guizhou Province 550008, China
| | - Shan Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Yuemeng Chen
- Guiyang City Public Security Bureau Drug Testing Center, Guiyang, Guizhou Province 550008, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Shunqin Chen
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Faze Zhu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China.
| | - Peng Luo
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou Province 550025, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| | - Yubo Liu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
3
|
Apryatin SA. The Neurometabolic Function of the Dopamine-Aminotransferase System. Metabolites 2025; 15:21. [PMID: 39852364 PMCID: PMC11767981 DOI: 10.3390/metabo15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES The neurometabolic function is controlled by a complex multi-level physiological system that includes neurochemical, hormonal, immunological, sensory, and metabolic components. Functional disorders of monoamine systems are often detected in clinical practice together with metabolic dysfunctions. An important part of the mentioned pathological conditions are associated with disturbances in protein metabolism, some of the most important biomarkers which are aminotransferases and transcription factors that regulate and direct the most important metabolic reactions. Another important part of energy metabolism is the dopamine-mediated regulation of protein metabolism. METHODS The review describes research results into the dopamine-mediated mechanism of metabolic regulation in humans and animals. Particular attention is paid to the neurometabolic mechanisms of protein metabolism. RESULTS The dopamine-aminotransferase system of the energy metabolism regulation is a separate, independent, regulatory and diagnostically significant biochemical pathway controlled by the hormonal system, the key hormone is cortisol, the key neurotransmitter is dopamine, the key transcription factor is CREB, and the key regulatory enzymes are alanine aminotransferase, aspartate aminotransferase, and tyrosine aminotransferase. CONCLUSIONS This review presents an original study describing the discovery of a new regulatory mechanism for neurometabolic physiological function in humans and animals. A key part of this mechanism is the dopamine-aminotransferase system.
Collapse
Affiliation(s)
- Sergey A Apryatin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
4
|
Kaya Ş, Kaya MK. Assessment of RNFL and macular changes in the eye related to multiple substance use using OCT. Psychiatry Res Neuroimaging 2024; 345:111889. [PMID: 39278198 DOI: 10.1016/j.pscychresns.2024.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Substance use is a chronic and recurrent public healthcare concern increasing in the world, causing negative outcomes. Two or more substance use is common among people who have substance use disorders and who receive treatment. For this reason, the present study aimed to measure Retinal Nerve Fiber Layer (RNFL), Mean Macular Thickness (MMT), Central Macular Thickness (CMT) in patients who have Multiple substance use disorder (MSUD) using Optical Coherence Tomography (OCT), considering that it will contribute to the literature. Among the inpatients who were rehabilitated in Elazig Mental Hospital Alcohol and Substance Addiction Treatment Center, 75 people who were diagnosed with MSUD according to DSM-5 and met the criteria, and 51 control groups were included in the study. RNFL, MMT and CMT measurements of both eyes of all participants were made by using the OCT. Total RNFL measurement were significantly thicker than the control group (p < 0.001). MMT and CMT of the eyes of the patient were thinner than the control group (p = 0.009, p < 0.001). The findings provide important contributions to the literature data and in light of these findings, it can be recommended to consider visual findings and possible neurodegeneration when evaluating patients in the addiction group and planning their treatment.
Collapse
Affiliation(s)
- Şüheda Kaya
- Elazig Fethi Sekin City Hospital, Elazig 23200, Turkey.
| | - Mehmet Kaan Kaya
- Ophthalmology Clinic, Universal Eye Hospital, Elazig 23040, Turkey
| |
Collapse
|
5
|
Miao L, Wang H, Li Y, Huang J, Wang C, Teng H, Xu L, Yang X, Tian Y, Yang G, Li J, Zeng X. Mechanisms and treatments of methamphetamine and HIV-1 co-induced neurotoxicity: a systematic review. Front Immunol 2024; 15:1423263. [PMID: 39224601 PMCID: PMC11366655 DOI: 10.3389/fimmu.2024.1423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Combination antiretroviral therapy (cART) has dramatically reduced mortality in people with human immunodeficiency virus (HIV), but it does not completely eradicate the virus from the brain. Patients with long-term HIV-1 infection often show neurocognitive impairment, which severely affects the quality of life of those infected. Methamphetamine (METH) users are at a significantly higher risk of contracting HIV-1 through behaviors such as engaging in high-risk sex or sharing needles, which can lead to transmission of the virus. In addition, HIV-1-infected individuals who abuse METH exhibit higher viral loads and more severe cognitive dysfunction, suggesting that METH exacerbates the neurotoxicity associated with HIV-1. Therefore, this review focuses on various mechanisms underlying METH and HIV-1 infection co-induced neurotoxicity and existing interventions targeting the sigma 1 receptor, dopamine transporter protein, and other relevant targets are explored. The findings of this review are envisaged to systematically establish a theoretical framework for METH abuse and HIV-1 infection co-induced neurotoxicity, and to suggest novel clinical treatment targets.
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Yan Z, Tang Y, Zhang Z, Feng J, Hao J, Sun S, Li M, Song Y, Dong W, Hu L. Biocompatible Folic-Acid-Strengthened Ag-Ir Quantum Dot Nanozyme for Cell and Plant Root Imaging of Cysteine/Stress and Multichannel Monitoring of Hg 2+ and Dopamine. Anal Chem 2024; 96:4299-4307. [PMID: 38414258 DOI: 10.1021/acs.analchem.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
To boost the enzyme-like activity, biological compatibility, and antiaggregation effect of noble-metal-based nanozymes, folic-acid-strengthened Ag-Ir quantum dots (FA@Ag-Ir QDs) were developed. Not only did FA@Ag-Ir QDs exhibit excellent synergistic-enhancement peroxidase-like activity, high stability, and low toxicity, but they could also promote the lateral root propagation of Arabidopsis thaliana. Especially, ultratrace cysteine or Hg2+ could exclusively strengthen or deteriorate the inherent fluorescence property with an obvious "turn-on" or "turn-off" effect, and dopamine could alter the peroxidase-like activity with a clear hypochromic effect from blue to colorless. Under optimized conditions, FA@Ag-Ir QDs were successfully applied for the turn-on fluorescence imaging of cysteine or the stress response in cells and plant roots, the turn-off fluorescence monitoring of toxic Hg2+, or the visual detection of dopamine in aqueous, beverage, serum, or medical samples with low detection limits and satisfactory recoveries. The selective recognition mechanisms for FA@Ag-Ir QDs toward cysteine, Hg2+, and dopamine were illustrated. This work will offer insights into constructing some efficient nanozyme sensors for multichannel environmental analyses, especially for the prediagnosis of cysteine-related diseases or stress responses in organisms.
Collapse
Affiliation(s)
- Zhengquan Yan
- School of Chemistry and Chemical Engineering & Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Yulian Tang
- School of Chemistry and Chemical Engineering & Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Zhaoran Zhang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Jing Feng
- School of Chemistry and Chemical Engineering & Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Junkai Hao
- School of Chemistry and Chemical Engineering & Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Shuo Sun
- School of Chemistry and Chemical Engineering & Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Meng Li
- School of Chemistry and Chemical Engineering & Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Wei Dong
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Lei Hu
- School of Chemistry and Chemical Engineering & Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu 273165, People's Republic of China
| |
Collapse
|
7
|
Ma DD, Shi WJ, Li SY, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106765. [PMID: 37979497 DOI: 10.1016/j.aquatox.2023.106765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
8
|
Wang HA, Liang HJ, Ernst TM, Nakama H, Cunningham E, Chang L. Independent and combined effects of methamphetamine use disorders and APOEε4 allele on cognitive performance and brain morphometry. Addiction 2023; 118:2384-2396. [PMID: 37563863 PMCID: PMC10840926 DOI: 10.1111/add.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
AIMS Prior studies showed that methamphetamine (METH) users had greater than normal age-related brain atrophy; whether having the apolipoprotein E (APOE)-ε4 allele may be a contributory factor has not been evaluated. We aimed to determine the independent and combined effects of chronic heavy METH use and having at least one copy of the APOE-ε4 allele (APOE-ε4+) on brain morphometry and cognition, especially in relation to aging. METHODS We compared brain morphometry and cognitive performance in 77 individuals with chronic heavy METH use (26 APOE-ε4+, 51 APOE-ε4-) and 226 Non-METH users (66 APOE-ε4+, 160 APOE-ε4-), using a 2 × 2 design (two-way analysis of co-variance). Vertex-wise cortical volumes, thickness and seven subcortical volumes, were automatically measured using FreeSurfer. Linear regression between regional brain measures, and cognitive scores that showed group differences were evaluated. Group differences in age-related decline in brain and cognitive measures were also explored. RESULTS Regardless of APOE-ε4 genotype, METH users had lower Motor Z-scores (P = 0.005), thinner right lateral-orbitofrontal cortices (P < 0.001), smaller left pars-triangularis gyrus volumes (P = 0.004), but larger pallida, hippocampi and amygdalae (P = 0.004-0.006) than nonusers. Across groups, APOE-ε4+ METH users had the smallest volumes of superior frontal cortical gyri bilaterally, and of the smallest volume in left rostral-middle frontal gyri (all P-values <0.001). Smaller right superior-frontal gyrus predicted poorer motor function only in APOE-ε4+ participants (interaction-P < 0.001). Cortical volumes and thickness declined with age similarly across all participants; however, APOE-ε4-carriers showed thinner right inferior parietal cortices than noncarriers at younger age (interaction-P < 0.001). CONCLUSIONS Chronic heavy use and having at least one copy of the APOE-ε4 allele may have synergistic effects on brain atrophy, particularly in frontal cortices, which may contribute to their poorer cognitive function. However, the enlarged subcortical volumes in METH users replicated prior studies, and are likely due to METH-mediated neuroinflammation.
Collapse
Affiliation(s)
- Hannah A. Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hua-Jun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas M. Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Eric Cunningham
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
10
|
Uchimura H, Kanai K, Arai M, Inoue M, Hishimoto A, Masukawa D, Goshima Y. Involvement of the L-DOPA receptor GPR143 in acute and chronic actions of methylphenidate. J Pharmacol Sci 2023; 152:178-181. [PMID: 37257945 DOI: 10.1016/j.jphs.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Methylphenidate (MPH) and methamphetamine (METH) are the current treatments of choice for attention deficit/hyperactivity disorder. We previously reported that METH induces the release of dopamine (DA) and of the neurotransmitter candidate L-3,4-dihydroxyphenylalanine (L-DOPA). In contrast, we here found that MPH increased the DA release while it did not affect the L-DOPA release from the dorsolateral striatum. Nevertheless, MPH-induced hyperlocomotion was reduced in Gpr143 (L-DOPA receptor) gene-deficient (Gpr143-/y) mice. The rewarding effect and increased c-fos expression induced by MPH were also attenuated in Gpr143-/y mice. Together, these findings suggest that GPR143 is involved in the acute and chronic actions of MPH.
Collapse
Affiliation(s)
- Hiraku Uchimura
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan; Department of Psychiatry, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kaori Kanai
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masami Arai
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Miyu Inoue
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yoshio Goshima
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
11
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Kaya Ş, Kaya MK. OCT Findings in Patients with Methamphetamine Use Disorder. J Pers Med 2023; 13:308. [PMID: 36836542 PMCID: PMC9967004 DOI: 10.3390/jpm13020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE In the present study, the purpose was to examine the results of optical coherence tomography (OCT) measurements in patients diagnosed with methamphetamine use disorder (MUD) by comparing them with healthy controls. MATERIALS AND METHODS A total of 114 eyes were evaluated in this study (27 patients and 30 control group participants). After detailed biomicroscopic examinations of all participants by the same ophthalmologist, both eyes were evaluated by OCT. The retinal nerve fiber layer thickness (RNFL) and macular thickness were calculated from OCT. RESULTS No statistically significant differences were detected between the demographic data of the patient and control groups (p > 0.05). When OCT findings were evaluated, macular thickness and volume were not different between the groups (p > 0.05). With respect to RNFL, the left eye superior, inferior, temporal, and nasal quadrants, as well as the left eye's total measurements were found to be thicker than those of controls (p < 0.05). In both eyes, the left eye nasal quadrant and APIS total score were negatively correlated, the total RNLF measurement of the right eye and APIS motivation subscale score were negatively correlated, central macular thickness and the APIS motivation subscale score were positively correlated, and the APIS substance use characteristics subscale score and left eye temporal quadrant RNLF measurement were positively correlated. CONCLUSION Our study is the first to evaluate addiction severity and OCT findings in MUD. However, this study needs to be supported by further studies so that OCT findings, which can be used as an effective method for demonstrating possible neurodegeneration in methamphetamine use disorder, gain importance.
Collapse
Affiliation(s)
- Şüheda Kaya
- Elazıg Mental Health Hospital, Elazig 23200, Turkey
| | - Mehmet Kaan Kaya
- Ophthalmology Clinic, Universal Göz Hospital, Elazig 23040, Turkey
| |
Collapse
|
13
|
Roodsari SK, Cheng Y, Reed KM, Wellman LL, Sanford LD, Kim WK, Guo ML. Sleep Disturbance Alters Cocaine-Induced Locomotor Activity: Involvement of Striatal Neuroimmune and Dopamine Signaling. Biomedicines 2022; 10:biomedicines10051161. [PMID: 35625897 PMCID: PMC9138453 DOI: 10.3390/biomedicines10051161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Sleep disorders have high comorbidity with drug addiction and function as major risk factors for developing drug addiction. Recent studies have indicated that both sleep disturbance (SD) and abused drugs could activate microglia, and that increased neuroinflammation plays a critical role in the pathogenesis of both diseases. Whether microglia are involved in the contribution of chronic SDs to drug addiction has never been explored. In this study, we employed a mouse model of sleep fragmentation (SF) with cocaine treatment and examined their locomotor activities, as well as neuroinflammation levels and dopamine signaling in the striatum, to assess their interaction. We also included mice with, or without, SF that underwent cocaine withdrawal and challenge. Our results showed that SF significantly blunted cocaine-induced locomotor stimulation while having marginal effects on locomotor activity of mice with saline injections. Meanwhile, SF modulated the effects of cocaine on neuroimmune signaling in the striatum and in ex vivo isolated microglia. We did not observe differences in dopamine signaling in the striatum among treatment groups. In mice exposed to cocaine and later withdrawal, SF reduced locomotor sensitivity and also modulated neuroimmune and dopamine signaling in the striatum. Taken together, our results suggested that SF was capable of blunting cocaine-induced psychoactive effects through modulating neuroimmune and dopamine signaling. We hypothesize that SF could affect neuroimmune and dopamine signaling in the brain reward circuitry, which might mediate the linkage between sleep disorders and drug addiction.
Collapse
Affiliation(s)
- Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
| | - Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
| | - Kirstin M. Reed
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
| | - Laurie L. Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Larry D. Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Woong-Ki Kim
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Correspondence: ; Tel.: +1-757-446-5891
| |
Collapse
|
14
|
Ding J, Shen L, Ye Y, Hu S, Ren Z, Liu T, Dai J, Li Z, Wang J, Luo Y, Zhang Q, Zhang X, Qi X, Huang J. Inflammasome Inhibition Prevents Motor Deficit and Cerebellar Degeneration Induced by Chronic Methamphetamine Administration. Front Mol Neurosci 2022; 15:861340. [PMID: 35431795 PMCID: PMC9010733 DOI: 10.3389/fnmol.2022.861340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH), a psychostimulant, has the potential to cause neurodegeneration by targeting the cerebrum and cerebellum. It has been suggested that the NLRP3 inflammasome may be responsible for the neurotoxicity caused by METH. However, the role of NLRP3 in METH-induced cerebellar Purkinje cell (PC) degeneration and the underlying mechanism remain elusive. This study aims to determine the consequences of NLRP3 modulation and the underlying mechanism of chronic METH-induced cerebellar PC degeneration. In METH mice models, increased NLRP3 expression, PC degeneration, myelin sheath destruction, axon degeneration, glial cell activation, and motor coordination impairment were observed. Using the NLRP3 inhibitor MCC950, we found that inhibiting NLRP3 alleviated the above-mentioned motor deficits and cerebellar pathologies. Furthermore, decreased mature IL-1β expression mediated by Caspase 1 in the cerebellum may be associated with the neuroprotective effects of NLRP3 inflammasome inhibition. Collectively, these findings suggest that mature IL-1β secretion mediated by NLRP3-ASC-Caspase 1 may be a critical step in METH-induced cerebellar degeneration and highlight the neuroprotective properties of inflammasome inhibition in cerebellar degeneration.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Lingyi Shen
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Yuanliang Ye
- Department of Neurosurgery, Liuzhou People’s Hospital, Liuzhou, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng Ren
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Jialin Dai
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Ya Luo
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiaojun Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiali Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Jiang Huang,
| |
Collapse
|