1
|
Yang C, Zhang H, Tian J, Li Z, Liu R, Huang G, Zhao L. Structural alteration of hippocampal subfields in type 2 diabetes mellitus patients with dyslipidemia. Brain Res 2025; 1850:149368. [PMID: 39622483 DOI: 10.1016/j.brainres.2024.149368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE To explore alterations in hippocampal subfield volumes in type 2 diabetes mellitus (T2DM) patients with dyslipidemia using hippocampal subfield segmentation. METHODS A total of 99 T2DM patients were prospectively recruited and divided into two groups based on the presence or absence of dyslipidemia: the T2DM dyslipidemia group and the T2DM normal lipidemia group. Additionally, 57 healthy volunteers were recruited as the healthy control (HC) group. General clinical data and cognitive psychological scale scores were collected. Subgroup analyses of T2DM patients were conducted based on the presence or absence of mild cognitive impairment (MCI). Hippocampal subfield volumes were analyzed using a general linear model with post-hoc Bonferroni correction. Significant differential hippocampal subfields were further analyzed in subgroups using the general linear model with post-hoc Bonferroni tests. Partial correlation analyses were performed to assess correlations between subfield-specific volumes and lipid and glucose metabolism indicators, as well as cognitive psychological scale scores. P-values from partial correlation analyses were corrected using the false discovery rate (FDR). RESULTS Volumes of the bilateral hippocampal tail, left presubiculum_body, and right subiculum_body were significantly reduced in the T2DM dyslipidemia group compared to both the HC group and the T2DM normal lipidemia group. Post-hoc analyses revealed that the T2DM dyslipidemia group had the smallest hippocampal subfield volumes. Further subgroup analysis showed that T2DM dyslipidemia patients with MCI exhibited the most pronounced volume reductions in the bilateral hippocampal tail and right subiculum_body. After FDR correction, partial correlation analysis indicated that, in the T2DM dyslipidemia group, the left hippocampal tail volume was positively correlated with the Montreal Cognitive Assessment score. In the T2DM dyslipidemia without MCI group, the volume of the right subiculum_body was negatively correlated with fasting insulin levels and the insulin resistance index, but positively correlated with total cholesterol and low-density lipoprotein cholesterol levels. In T2DM patients with normal lipidemia without MCI, the volume of the right subiculum_body was positively correlated with TC levels. CONCLUSION T2DM patients with dyslipidemia, especially those with MCI, exhibit significant atrophy in hippocampal subfield volumes, with correlations observed between lipid levels and hippocampal subfield volume changes. These findings suggest that lipid alterations may play an essential role in hippocampal structural abnormalities and cognitive impairment in T2DM patients. This study provides new insights into the neuropathophysiological mechanisms underlying brain alterations and cognitive decline in T2DM.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Huiyan Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, China
| | - Jing Tian
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhoule Li
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Ruifang Liu
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
2
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Cortese R, Battaglini M, Stromillo ML, Luchetti L, Leoncini M, Gentile G, Gasparini D, Plantone D, Altieri M, D'Ambrosio A, Gallo A, Giannì C, Piervincenzi C, Pantano P, Pagani E, Valsasina P, Preziosa P, Tedone N, Rocca MA, Filippi M, De Stefano N. Regional hippocampal atrophy reflects memory impairment in patients with early relapsing remitting multiple sclerosis. J Neurol 2024; 271:4897-4908. [PMID: 38743090 PMCID: PMC11319433 DOI: 10.1007/s00415-024-12290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Research work has shown that hippocampal subfields are atrophic to varying extents in multiple sclerosis (MS) patients. However, studies examining the functional implications of subfield-specific hippocampal damage in early MS are limited. We aim to gain insights into the relationship between hippocampal atrophy and memory function by investigating the correlation between global and regional hippocampal atrophy and memory performance in early MS patients. METHODS From the Italian Neuroimaging Network Initiative (INNI) dataset, we selected 3D-T1-weighted brain MRIs of 219 early relapsing remitting (RR)MS and 246 healthy controls (HC) to identify hippocampal atrophic areas. At the time of MRI, patients underwent Selective-Reminding-Test (SRT) and Spatial-Recall-Test (SPART) and were classified as mildly (MMI-MS: n.110) or severely (SMI-MS: n:109) memory impaired, according to recently proposed cognitive phenotypes. RESULTS Early RRMS showed lower hippocampal volumes compared to HC (p < 0.001), while these did not differ between MMI-MS and SMI-MS. In MMI-MS, lower hippocampal volumes correlated with worse memory tests (r = 0.23-0.37, p ≤ 0.01). Atrophic voxels were diffuse in the hippocampus but more prevalent in cornu ammonis (CA, 79%) than in tail (21%). In MMI-MS, decreased subfield volumes correlated with decreases in memory, particularly in the right CA1 (SRT-recall: r = 0.38; SPART: r = 0.34, p < 0.01). No correlations were found in the SMI-MS group. CONCLUSION Hippocampal atrophy spreads from CA to tail from early disease stages. Subfield hippocampal atrophy is associated with memory impairment in MMI-MS, while this correlation is lost in SMI-MS. This plays in favor of a limited capacity for an adaptive functional reorganization of the hippocampi in MS patients.
Collapse
Affiliation(s)
- Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy
- SIENA Imaging SRL, 53100, Siena, Italy
| | - Maria Laura Stromillo
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Ludovico Luchetti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy
- SIENA Imaging SRL, 53100, Siena, Italy
| | - Matteo Leoncini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy
- SIENA Imaging SRL, 53100, Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy
- SIENA Imaging SRL, 53100, Siena, Italy
| | - Daniele Gasparini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Manuela Altieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Alessandro D'Ambrosio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia, 2, 80138, Naples, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | | | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nicolo' Tedone
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|
4
|
Zhang Y, Wei X, Zhang W, Jin F, Cao W, Yue M, Mo S. The BDNF Val66Met polymorphism serves as a potential marker of body weight in patients with psychiatric disorders. AIMS Neurosci 2024; 11:188-202. [PMID: 38988887 PMCID: PMC11230859 DOI: 10.3934/neuroscience.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a predominant neurotrophic factor in the brain, indispensable for neuronal growth, synaptic development, neuronal repair, and hippocampal neuroplasticity. Among its genetic variants, the BDNF Val66Met polymorphism is widespread in the population and has been associated with the onset and aggravation of diverse pathologies, including metabolic conditions like obesity and diabetes, cardiovascular ailments, cancer, and an array of psychiatric disorders. Psychiatric disorders constitute a broad category of mental health issues that influence mood, cognition, and behavior. Despite advances in research and treatment, challenges persist that hinder our understanding and effective intervention of these multifaceted conditions. Achieving and maintaining stable body weight is pivotal for overall health and well-being, and the relationship between psychiatric conditions and body weight is notably intricate and reciprocal. Both weight gain and loss have been linked to varying mental health challenges, making the disentanglement of this relationship critical for crafting holistic treatment strategies. The BDNF Val66Met polymorphism's connection to weight fluctuation in psychiatric patients has garnered attention. This review investigated the effects and underlying mechanisms by which the BDNF Val66Met polymorphism moderates body weight among individuals with psychiatric disorders. It posits the polymorphism as a potential biomarker, offering prospects for improved monitoring and therapeutic approaches for mental illnesses.
Collapse
Affiliation(s)
- Yinghua Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinyue Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenhao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenbo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| | - Mingjin Yue
- Henan Tianxing Education and Media Company, Limited, Zhengzhou, China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| |
Collapse
|
5
|
Zhang C, Zhang K, Hu X, Cai X, Chen Y, Gao F, Wang G. Regional GABA levels modulate abnormal resting-state network functional connectivity and cognitive impairment in multiple sclerosis. Cereb Cortex 2024; 34:bhad535. [PMID: 38271282 DOI: 10.1093/cercor/bhad535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
More evidence shows that changes in functional connectivity with regard to brain networks and neurometabolite levels correlated to cognitive impairment in multiple sclerosis. However, the neurological basis underlying the relationship among neurometabolite levels, functional connectivity, and cognitive impairment remains unclear. For this purpose, we used a combination of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to study gamma-aminobutyric acid and glutamate concentrations in the posterior cingulate cortex, medial prefrontal cortex and left hippocampus, and inter-network functional connectivity in 29 relapsing-remitting multiple sclerosis patients and 34 matched healthy controls. Neuropsychological tests were used to evaluate the cognitive function. We found that relapsing-remitting multiple sclerosis patients demonstrated significantly reduced gamma-aminobutyric acid and glutamate concentrations and aberrant functional connectivity involving cognitive-related networks compared to healthy controls, and both alterations were associated with specific cognition decline. Moreover, mediation analyses indicated that decremented hippocampus gamma-aminobutyric acid levels in relapsing-remitting multiple sclerosis patients mediated the association between inter-network functional connectivity in various components of default mode network and verbal memory deficits. In summary, our findings shed new lights on the essential function of GABAergic system abnormalities in regulating network dysconnectivity and functional connectivity in relapsing-remitting multiple sclerosis patients, suggesting potential novel approach to treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xianyun Cai
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
6
|
Relations of hippocampal subfields atrophy patterns with memory and biochemical changes in end stage renal disease. Sci Rep 2023; 13:2982. [PMID: 36804419 PMCID: PMC9941083 DOI: 10.1038/s41598-023-29083-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
End-stage renal disease (ESRD) results in hippocampal volume reduction, but the hippocampal subfields atrophy patterns cannot be identified. We explored the volumes and asymmetry of the hippocampal subfields and their relationships with memory function and biochemical changes. Hippocampal global and subfields volumes were derived from 33 ESRD patients and 46 healthy controls (HCs) from structural MRI. We compared the volume and asymmetric index of each subfield, with receiver operating characteristic curve analysis to evaluate the differentiation between ESRD and HCs. The relations of hippocampal subfield volumes with memory performance and biochemical data were investigated in ESRD group. ESRD patients had smaller hippocampal subfield volumes, mainly in the left CA1 body, left fimbria, right molecular layer head, right molecular layer body and right HATA. The right molecular layer body exhibited the highest accuracy for differentiating ESRD from HCs, with a sensitivity of 80.43% and specificity of 72.73%. Worse learning process (r = 0.414, p = 0.032), immediate recall (r = 0.396, p = 0.041) and delayed recall (r = 0.482, p = 0.011) was associated with left fimbria atrophy. The left fimbria volume was positively correlated with Hb (r = 0.388, p = 0.05); the left CA1 body volume was negatively correlated with Urea (r = - 0.469, p = 0.016). ESRD patients showed global and hippocampal subfields atrophy. Left fimbria atrophy was related to memory function. Anemia and Urea level may be associated with the atrophy of left fimbria and CA1 body, respectively.
Collapse
|
7
|
Barateiro A, Barros C, Pinto MV, Ribeiro AR, Alberro A, Fernandes A. Women in the field of multiple sclerosis: How they contributed to paradigm shifts. Front Mol Neurosci 2023; 16:1087745. [PMID: 36818652 PMCID: PMC9937661 DOI: 10.3389/fnmol.2023.1087745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
History is full of women who made enormous contributions to science. While there is little to no imbalance at the early career stage, a decreasing proportion of women is found as seniority increases. In the multiple sclerosis (MS) field, 44% of first authors and only 35% of senior authors were female. So, in this review, we highlight ground-breaking research done by women in the field of MS, focusing mostly on their work as principal investigators. MS is an autoimmune disorder of the central nervous system (CNS), with evident paradigm shifts in the understating of its pathophysiology. It is known that the immune system becomes overactivated and attacks myelin sheath surrounding axons. The resulting demyelination disrupts the communication signals to and from the CNS, which causes unpredictable symptoms, depending on the neurons that are affected. Classically, MS was reported to cause mostly physical and motor disabilities. However, it is now recognized that cognitive impairment affects more than 50% of the MS patients. Another shifting paradigm was the involvement of gray matter in MS pathology, formerly considered to be a white matter disease. Additionally, the identification of different T cell immune subsets and the mechanisms underlying the involvement of B cells and peripheral macrophages provided a better understanding of the immunopathophysiological processes present in MS. Relevantly, the gut-brain axis, recognized as a bi-directional communication system between the CNS and the gut, was found to be crucial in MS. Indeed, gut microbiota influences not only different susceptibilities to MS pathology, but it can also be modulated in order to positively act in MS course. Also, after the identification of the first microRNA in 1993, the role of microRNAs has been investigated in MS, either as potential biomarkers or therapeutic agents. Finally, concerning MS therapeutical approaches, remyelination-based studies have arisen on the spotlight aiming to repair myelin loss/neuronal connectivity. Altogether, here we emphasize the new insights of remarkable women that have voiced the impact of cognitive impairment, white and gray matter pathology, immune response, and that of the CNS-peripheral interplay on MS diagnosis, progression, and/or therapy efficacy, leading to huge breakthroughs in the MS field.
Collapse
Affiliation(s)
- Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Andreia Barateiro,
| | - Catarina Barros
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. Pinto
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Ribeiro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Alberro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Multiple Sclerosis Group, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,*Correspondence: Adelaide Fernandes,
| |
Collapse
|
8
|
Galindo C, Nguyen VT, Hill B, Sims N, Heck A, Negron M, Lusk C. Brain-derived neurotrophic factor rs6265 (Val66Met) single nucleotide polymorphism as a master modifier of human pathophysiology. Neural Regen Res 2023. [PMID: 35799516 PMCID: PMC9241394 DOI: 10.4103/1673-5374.343894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brain-derived neurotrophic factor is the most prevalent member of the nerve growth factor family. Since its discovery in 1978, this enigmatic molecule has spawned more than 27,000 publications, most of which are focused on neurological disorders. Brain-derived neurotrophic factor is indispensable during embryogenesis and postnatally for the normal development and function of both the central and peripheral nervous systems. It is becoming increasingly clear, however, that brain-derived neurotrophic factor likewise plays crucial roles in a variety of other biological functions independently of sympathetic or parasympathetic involvement. Brain-derived neurotrophic factor is also increasingly recognized as a sophisticated environmental sensor and master coordinator of whole organismal physiology. To that point, we recently found that a common nonsynonymous (Val66→Met) single nucleotide polymorphism in the brain-derived neurotrophic factor gene (rs6265) not only substantially alters basal cardiac transcriptomics in mice but subtly influences heart gene expression and function differentially in males and females. In addition to a short description of recent results from associative neuropsychiatric studies, this review provides an eclectic assortment of research reports that support a modulatory role for rs6265 including and beyond the central nervous system.
Collapse
|
9
|
Choi EY, Tian L, Su JH, Radovan MT, Tourdias T, Tran TT, Trelle AN, Mormino E, Wagner AD, Rutt BK. Thalamic nuclei atrophy at high and heterogenous rates during cognitively unimpaired human aging. Neuroimage 2022; 262:119584. [PMID: 36007822 PMCID: PMC9787236 DOI: 10.1016/j.neuroimage.2022.119584] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 02/02/2023] Open
Abstract
The thalamus is a central integration structure in the brain, receiving and distributing information among the cerebral cortex, subcortical structures, and the peripheral nervous system. Prior studies clearly show that the thalamus atrophies in cognitively unimpaired aging. However, the thalamus is comprised of multiple nuclei involved in a wide range of functions, and the age-related atrophy of individual thalamic nuclei remains unknown. Using a recently developed automated method of identifying thalamic nuclei (3T or 7T MRI with white-matter-nulled MPRAGE contrast and THOMAS segmentation) and a cross-sectional design, we evaluated the age-related atrophy rate for 10 thalamic nuclei (AV, CM, VA, VLA, VLP, VPL, pulvinar, LGN, MGN, MD) and an epithalamic nucleus (habenula). We also used T1-weighted images with the FreeSurfer SAMSEG segmentation method to identify and measure age-related atrophy for 11 extra-thalamic structures (cerebral cortex, cerebral white matter, cerebellar cortex, cerebellar white matter, amygdala, hippocampus, caudate, putamen, nucleus accumbens, pallidum, and lateral ventricle). In 198 cognitively unimpaired participants with ages spanning 20-88 years, we found that the whole thalamus atrophied at a rate of 0.45% per year, and that thalamic nuclei had widely varying age-related atrophy rates, ranging from 0.06% to 1.18% per year. A functional grouping analysis revealed that the thalamic nuclei involved in cognitive (AV, MD; 0.53% atrophy per year), visual (LGN, pulvinar; 0.62% atrophy per year), and auditory/vestibular (MGN; 0.64% atrophy per year) functions atrophied at significantly higher rates than those involved in motor (VA, VLA, VLP, and CM; 0.37% atrophy per year) and somatosensory (VPL; 0.32% atrophy per year) functions. A proximity-to-CSF analysis showed that the group of thalamic nuclei situated immediately adjacent to CSF atrophied at a significantly greater atrophy rate (0.59% atrophy per year) than that of the group of nuclei located farther from CSF (0.36% atrophy per year), supporting a growing hypothesis that CSF-mediated factors contribute to neurodegeneration. We did not find any significant hemispheric differences in these rates of change for thalamic nuclei. Only the CM thalamic nucleus showed a sex-specific difference in atrophy rates, atrophying at a greater rate in male versus female participants. Roughly half of the thalamic nuclei showed greater atrophy than all extra-thalamic structures examined (0% to 0.54% per year). These results show the value of white-matter-nulled MPRAGE imaging and THOMAS segmentation for measuring distinct thalamic nuclei and for characterizing the high and heterogeneous atrophy rates of the thalamus and its nuclei across the adult lifespan. Collectively, these methods and results advance our understanding of the role of thalamic substructures in neurocognitive and disease-related changes that occur with aging.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, MC5327, Stanford, CA 94305, USA
| | - Lu Tian
- Department of Biomedical Data Science, 1265 Welch Road, MC5464, Stanford, CA 94305, USA
| | - Jason H. Su
- Department of Radiology, Stanford University, 300 Pasteur Drive, MC5488, Stanford, CA 94305, USA,Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, MC9505, Stanford, CA 94305, USA
| | - Matthew T. Radovan
- Department of Computer Science, Stanford University, 353 Jane Stanford Way, MC9025, Stanford, CA 94305, USA
| | - Thomas Tourdias
- Department of Neuroradiology, Bordeaux University Hospital, Bordeaux, France,INSERM U1215, Neurocentre Magendie, University of Bordeaux, France
| | - Tammy T. Tran
- Department of Psychology, Stanford University, Building 420, MC2130, Stanford, CA 94305, USA
| | - Alexandra N. Trelle
- Department of Psychology, Stanford University, Building 420, MC2130, Stanford, CA 94305, USA
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford, University, 300 Pasteur Drive, MC5235, Stanford, CA 94305, USA,Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, USA
| | - Anthony D. Wagner
- Department of Psychology, Stanford University, Building 420, MC2130, Stanford, CA 94305, USA,Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, USA
| | - Brian K. Rutt
- Department of Radiology, Stanford University, 300 Pasteur Drive, MC5488, Stanford, CA 94305, USA,Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, USA,Corresponding author. (B.K. Rutt)
| |
Collapse
|
10
|
Yalachkov Y, Anschütz V, Jakob J, Schaller-Paule MA, Schäfer JH, Reiländer A, Friedauer L, Behrens M, Steffen F, Bittner S, Foerch C. Brain-derived neurotrophic factor and neurofilament light chain in cerebrospinal fluid are inversely correlated with cognition in Multiple Sclerosis at the time of diagnosis. Mult Scler Relat Disord 2022; 63:103822. [DOI: 10.1016/j.msard.2022.103822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
|
11
|
Azman KF, Zakaria R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:6827. [PMID: 35743271 PMCID: PMC9224343 DOI: 10.3390/ijms23126827] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | | |
Collapse
|
12
|
Giordano A, Clarelli F, Cannizzaro M, Mascia E, Santoro S, Sorosina M, Ferrè L, Leocani L, Esposito F. BDNF Val66Met Polymorphism Is Associated With Motor Recovery After Rehabilitation in Progressive Multiple Sclerosis Patients. Front Neurol 2022; 13:790360. [PMID: 35265024 PMCID: PMC8899087 DOI: 10.3389/fneur.2022.790360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background Rehabilitation is fundamental for progressive multiple sclerosis (MS), but predictive biomarkers of motor recovery are lacking, making patient selection difficult. Motor recovery depends on synaptic plasticity, in which the Brain-Derived Neurotrophic Factor (BDNF) is a key player, through its binding to the Neurotrophic-Tyrosine Kinase-2 (NTRK2) receptor. Therefore, genetic polymorphisms in the BDNF pathway may impact motor recovery. The most well-known polymorphism in BDNF gene (rs6265) causes valine to methionine substitution (Val66Met) and it influences memory and motor learning in healthy individuals and neurodegenerative diseases. To date, no studies have explored whether polymorphisms in BDNF or NTRK2 genes may impact motor recovery in MS. Objectives To assess whether genetic variants in BDNF and NTRK2 genes affect motor recovery after rehabilitation in progressive MS. Methods The association between motor recovery after intensive neurorehabilitation and polymorphisms in BDNF (rs6265) and NTKR2 receptor (rs2289656 and rs1212171) was assessed using Six-Minutes-Walking-Test (6MWT), 10-Metres-Test (10MT) and Nine-Hole-Peg-Test (9HPT) in 100 progressive MS patients. Results We observed greater improvement at 6MWT after rehabilitation in carriers of the BDNF Val66Met substitution, compared to BDNF Val homozygotes (p = 0.024). No significant association was found for 10MT and 9HPT. NTRK2 polymorphisms did not affect the results of motor function tests. Conclusion BDNF Val66Met was associated with walking function improvement after rehabilitation in progressive MS patients. This result is in line with previous evidence showing a protective effect of Val66Met substitution on brain atrophy in MS. Larger studies are needed to explore its potential as a predictive biomarker of rehabilitation outcome.
Collapse
Affiliation(s)
- Antonino Giordano
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miryam Cannizzaro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Ferrè
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Dolcetti E, Bruno A, Azzolini F, Gilio L, Moscatelli A, De Vito F, Pavone L, Iezzi E, Gambardella S, Giardina E, Ferese R, Buttari F, Rizzo FR, Furlan R, Finardi A, Musella A, Mandolesi G, Guadalupi L, Centonze D, Stampanoni Bassi M. The BDNF Val66Met Polymorphism (rs6265) Modulates Inflammation and Neurodegeneration in the Early Phases of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13020332. [PMID: 35205376 PMCID: PMC8871843 DOI: 10.3390/genes13020332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
The clinical course of multiple sclerosis (MS) is critically influenced by the interplay between inflammatory and neurodegenerative processes. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265), one of the most studied single-nucleotide polymorphisms (SNPs), influences brain functioning and neurodegenerative processes in healthy individuals and in several neuropsychiatric diseases. However, the role of this polymorphism in MS is still controversial. In 218 relapsing–remitting (RR)-MS patients, we explored, at the time of diagnosis, the associations between the Val66Met polymorphism, clinical characteristics, and the cerebrospinal fluid (CSF) levels of a large set of pro-inflammatory and anti-inflammatory molecules. In addition, associations between Val66Met and structural MRI measures were assessed. We identified an association between the presence of Met and a combination of cytokines, identified by principal component analysis (PCA), including the pro-inflammatory molecules MCP-1, IL-8, TNF, Eotaxin, and MIP-1b. No significant associations emerged with clinical characteristics. Analysis of MRI measures evidenced reduced cortical thickness at the time of diagnosis in patients with Val66Met. We report for the first time an association between the Val66Met polymorphism and central inflammation in MS patients at the time of diagnosis. The role of this polymorphism in both inflammatory and neurodegenerative processes may explain its complex influence on the MS course.
Collapse
Affiliation(s)
| | - Antonio Bruno
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | | | - Luana Gilio
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Laboratory of Neuromotor Physiology, IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Luigi Pavone
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Ennio Iezzi
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Stefano Gambardella
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029 Urbino, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | | | - Fabio Buttari
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Diego Centonze
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | | |
Collapse
|