1
|
Pulk K, Somelar-Duracz K, Rooden M, Anier K, Kalda A. Concentration-dependent effect of delta-9-tetrahydrocannabinol on epigenetic DNA modifiers in human peripheral blood mononuclear cells. Transl Psychiatry 2025; 15:198. [PMID: 40506434 PMCID: PMC12162825 DOI: 10.1038/s41398-025-03419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/02/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Cannabis is among the most used illicit substances in the world, and approximately 10% of regular cannabis users are estimated to be susceptible to developing cannabis use disorder (CUD). We examined the effect of different concentrations of delta-9-tetrahydrocannabinol (THC) on the epigenetic DNA modifiers DNA methyltransferases (DNMTs) and ten-eleven translocation enzymes (TETs); cannabinoid CB1 and CB2 receptors; and the cytokines IL-1β, IL-6, IL-10, and TNF-α. We used two in vitro study designs on human peripheral blood mononuclear cells (PBMCs) collected from healthy donors: (a) repeated THC incubations and (b) repeated THC incubations followed by an "abstinence" period and a THC challenge incubation. We observed no significant effects on DNMTs and TETs mRNA levels, enzymatic activity, or CB1 and CB2 mRNA levels at an average THC concentration (50 ng/ml, n = 8 donors). However, repeated incubations at a high THC concentration (200 ng/ml, n = 16 donors) significantly downregulated DNMTs and upregulated TETs, CB1, and CB2 mRNA levels. Both THC concentrations upregulated the gene expression of IL-1β, IL-6, and IL-10, but had no effect on TNF-α gene expression. At the genome-wide level, repeated THC incubations resulted in a significant number of differentially hydroxymethylated genes being hyperhydroxymethylated. An additional THC challenge shifted the hyperhydroxymethylated state to hypohydroxymethylation. The genes with the strongest associations with THC exposure were found to be functionally significant for various signaling pathways. These findings suggest that repeated incubations with high concentrations of THC may affect the expression of genes critical for the development of CUD through aberrant demethylation.
Collapse
MESH Headings
- Humans
- Dronabinol/pharmacology
- Dronabinol/administration & dosage
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Epigenesis, Genetic/drug effects
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/metabolism
- Male
- Adult
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Dose-Response Relationship, Drug
- Cytokines/genetics
- Cytokines/drug effects
- Cytokines/metabolism
- Female
- DNA Methylation/drug effects
- DNA Modification Methylases/drug effects
- DNA Modification Methylases/genetics
- DNA Modification Methylases/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/drug effects
- Young Adult
Collapse
Affiliation(s)
- Kerda Pulk
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kelli Somelar-Duracz
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mikk Rooden
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anti Kalda
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Ferland JMN, Chisholm A, Abdalla J, Cinar R, Johnson C, Bradshaw HB, Hurd YL. Cannabidiol abrogates cue-induced anxiety associated with normalization of mitochondria-specific transcripts and linoleic acid in the nucleus accumbens shell. Mol Psychiatry 2025; 30:2718-2728. [PMID: 39815058 DOI: 10.1038/s41380-024-02881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant. This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders. Yet, CBD's anxiolytic effects are mixed with some studies reporting little to no impact on trait anxiety but significant reductions in pathological anxiety with suggestions that CBD's effect may relate to triggered or cue-induced behavior. Here, we studied the effects of CBD on cued and non-cued behaviors and related neurobiological underpinnings. To investigate the effect of CBD on cue-induced anxiety, male rats underwent a fear conditioning protocol (odor associated with shock) followed by assessments of avoidance behavior. CBD (10 mg/kg) was administered 1 h prior to anxiety assessments. To understand molecular mechanisms associated with behavior, we investigated the transcriptome and lipid profile of the nucleus accumbens shell (NAcSh), a structure implicated in cue-mediated behaviors and aversion. Administration of CBD significantly reduced avoidance behavior, but only in animals repeatedly exposed to a shock-paired cue. CBD did not affect behavior in animals exposed to neutral cue or encoding of the cue behavioral response. RNA sequencing revealed substantial impact of the shock-paired cue in control animals, recruiting mechanisms ranging from cytoskeletal dynamics to mitochondria dysfunction. The shock-paired cue also resulted in elevated linoleic acid in vehicle animals which correlated with anxiety-like behavior. CBD either reversed or normalized these cue-induced molecular phenotypes. CBD also recruited lipid networks which correlated with transcripts involved in synaptic plasticity, signaling, and epigenetic mechanisms. These results suggest that CBD may specifically alleviate salient, conditioned anxiety and normalize related biological mechanisms in the NAcSh which may guide therapeutic interventions for anxiety disorders.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA
| | - Alexandra Chisholm
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA
| | - Jasmina Abdalla
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Clare Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Martinez MX, Alizo Vera V, Ruiz CM, Floresco SB, Mahler SV. Adolescent THC impacts on mPFC dopamine-mediated cognitive processes in male and female rats. Psychopharmacology (Berl) 2025; 242:309-326. [PMID: 39190156 DOI: 10.1007/s00213-024-06676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
RATIONALE Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. OBJECTIVE We determined how 14 daily THC injections (5 mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. METHODS In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impact probabilistic discounting. RESULTS AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. CONCLUSIONS These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine neurons or their projections to mPFC.
Collapse
Affiliation(s)
- Maricela X Martinez
- Department of Neurobiology and Behavior, University of California, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Hurd YL, Ferland JMN, Nomura Y, Hulvershorn LA, Gray KM, Thurstone C. CANNABIS USE AND THE DEVELOPING BRAIN: HIGHS AND LOWS. FRONTIERS FOR YOUNG MINDS 2023; 11:898445. [PMID: 37946933 PMCID: PMC10635559 DOI: 10.3389/frym.2023.898445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although cannabis is a naturally occurring plant with a long history of use by humans, the chemicals it contains, called cannabinoids, can act on the human body in many ways. Use of cannabis during important periods of development, such as during pregnancy and adolescence, can have a long-lasting impact on the way the brain forms and develops its systems to control emotions and other functions. This article gives an overview of some of the effects of cannabinoids on the developing brain, before birth and as teenagers, and provides information about how young people can prevent or minimize the negative effects of cannabis on their brains.
Collapse
Affiliation(s)
- Yasmin L Hurd
- Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jacqueline-Marie N Ferland
- Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yoko Nomura
- Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychology, Queens College and Graduate Center, City University of New York, New York, NY, United States
| | - Leslie A Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin M Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Christian Thurstone
- Behavioral Health-Adolescent Outpatient, Denver Health and Hospital Authority and University of Colorado School of Medicine, Denver, CO, United States
| |
Collapse
|
6
|
Freels TG, Westbrook SR, Wright HR, Kuyat JR, Zamberletti E, Malena AM, Melville MW, Brown AM, Glodosky NC, Ginder DE, Klappenbach CM, Delevich KM, Rubino T, McLaughlin RJ. Sex differences in adolescent cannabis vapor self-administration mediate enduring effects on behavioral flexibility and prefrontal microglia activation in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.524468. [PMID: 36711651 PMCID: PMC9882275 DOI: 10.1101/2023.01.21.524468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood. To this end, we used a novel volitional vapor administration model to investigate long-term effects of cannabis use during adolescence on the medial prefrontal cortex (mPFC) and mPFC-dependent behaviors in male and female rats. Adolescent (35-55 day old) female rats had significantly higher rates of responding for vaporized Δ9-tetrahydrocannabinol (THC)-dominant cannabis extract (CANTHC) compared to adolescent males. In adulthood (70-110 day old), female, but not male, CANTHC rats also took more trials to reach criterion and made more regressive errors in an automated attentional set-shifting task compared to vehicle rats. Similar set-shifting deficits were observed in males when they were exposed to a non-contingent CANTHC vapor dosing regimen that approximated CANTHC self-administration rates in females. No differences were observed in effort-based decision making in either sex. In the mPFC, female (but not male) CANTHC rats displayed more reactive microglia with no significant changes in myelin basic protein expression or dendritic spine density. Together, these data reveal important sex differences in rates of cannabis vapor self-administration in adolescence that confer enduring alterations to mPFC structure and function. Importantly, female-specific deficits in behavioral flexibility appear to be driven by elevated rates of CANTHC self-administration as opposed to a sex difference in the effects of CANTHC vapor per se.
Collapse
Affiliation(s)
- Timothy G. Freels
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Sara R. Westbrook
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Hayden R. Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Jacqulyn R. Kuyat
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Alexandra M. Malena
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Max W. Melville
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Amanda M. Brown
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | | | - Darren E. Ginder
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Courtney M. Klappenbach
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Kristen M. Delevich
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Ryan J. McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
- Department of Psychology, Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
Ferland JMN, Ellis RJ, Betts G, Silveira MM, de Firmino JB, Winstanley CA, Hurd YL. Long-Term Outcomes of Adolescent THC Exposure on Translational Cognitive Measures in Adulthood in an Animal Model and Computational Assessment of Human Data. JAMA Psychiatry 2023; 80:66-76. [PMID: 36416863 PMCID: PMC9685552 DOI: 10.1001/jamapsychiatry.2022.3915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
Importance Although perceived as relatively harmless and nonaddictive, adolescent cannabis use significantly increases the likelihood of developing cannabis use disorder in adulthood, especially for high-potency cannabis. Risky decision-making is associated with chronic cannabis use, but given confounds of human studies, it remains unclear whether adolescent cannabis exposure and Δ9-tetrahydrocannabinol (THC) potency specifically predicts risky decision-making or influences cognitive response to the drug later in life. Objective To leverage a human data set of cannabis users and a rat model to evaluate the long-term outcomes of adolescent THC exposure on adult decision-making and impulse control. Design, Setting, and Participants This translational rat study tested the link between adolescent THC exposure and adulthood decision-making. A reanalysis of a previously published dataset of human chronic cannabis users was conducted to evaluate decision-making phenotypes. Computational modeling assessed the human and animal results in a single framework. Data were collected from 2017 to 2020 and analyzed from 2020 to 2022. Main Outcomes and Measures Decision-making was measured by the Iowa Gambling Task (IGT) and Rat Gambling Task (rGT). Impulse control was assessed in the rat model. Computational modeling was used to determine reward and punishment learning rates and learning strategy used by cannabis users and THC-exposed rats. Cell-specific molecular measures were conducted in the prefrontal cortex and amygdala. Results Of 37 participants, 24 (65%) were male, and the mean (SD) age was 33.0 (8.3) years. Chronic cannabis users (n = 22; mean [SE] IGT score, -5.182 [1.262]) showed disadvantageous decision-making compared with controls (n = 15; mean [SE] IGT score, 7.133 [2.687]; Cohen d = 1.436). Risky choice was associated with increased reward learning (mean [SE] IGT score: cannabis user, 0.170 [0.018]; control, 0.046 [0.008]; Cohen d = 1.895) and a strategy favoring exploration vs long-term gains (mean [SE] IGT score: cannabis user, 0.088 [0.012]; control, 0.020 [0.002]; Cohen d = 2.218). Rats exposed to high-dose THC but not low-dose THC during adolescence also showed increased risky decision-making (mean [SE] rGT score: vehicle, 46.17 [7.02]; low-dose THC, 69.45 [6.01]; high-dose THC, 21.97 [11.98]; Cohen d = 0.433) and elevated reward learning rates (mean [SE] rGT score: vehicle, 0.17 [0.01]; low-dose THC, 0.10 [0.01]; high-dose THC, 0.24 [0.06]; Cohen d = 1.541) during task acquisition. These animals were also uniquely susceptible to increased cognitive impairments after reexposure to THC in adulthood, which was correlated with even greater reward learning (r = -0.525; P < .001) and a shift in strategy (r = 0.502; P < .001), similar to results seen in human cannabis users. Molecular studies revealed that adolescent THC dose differentially affected cannabinoid-1 receptor messenger RNA expression in the prelimbic cortex and basolateral amygdala in a layer- and cell-specific manner. Further, astrocyte glial fibrillary acidic protein messenger RNA expression associated with cognitive deficits apparent with adult THC reexposure. Conclusions and Relevance In this translational study, high-dose adolescent THC exposure was associated with cognitive vulnerability in adulthood, especially with THC re-exposure. These data also suggest a link between astrocytes and cognition that altogether provides important insights regarding the neurobiological genesis of risky cannabis use that may help promote prevention and treatment efforts.
Collapse
Affiliation(s)
- Jacqueline-Marie N. Ferland
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Randall J. Ellis
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Addiction Institute of Mount Sinai, New York, New York
| | - Graeme Betts
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mason M. Silveira
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joao Bronze de Firmino
- The Collaborative Advanced Microscopy Laboratories of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Catharine A. Winstanley
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasmin L. Hurd
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Addiction Institute of Mount Sinai, New York, New York
| |
Collapse
|
8
|
Zuo Y, Iemolo A, Montilla-Perez P, Li HR, Yang X, Telese F. Chronic adolescent exposure to cannabis in mice leads to sex-biased changes in gene expression networks across brain regions. Neuropsychopharmacology 2022; 47:2071-2080. [PMID: 35995972 PMCID: PMC9556757 DOI: 10.1038/s41386-022-01413-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
During adolescence, frequent and heavy cannabis use can lead to serious adverse health effects and cannabis use disorder (CUD). Rodent models of adolescent exposure to the main psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC), mimic the behavioral alterations observed in adolescent users. However, the underlying molecular mechanisms remain largely unknown. Here, we treated female and male C57BL6/N mice with high doses of THC during early adolescence and assessed their memory and social behaviors in late adolescence. We then profiled the transcriptome of five brain regions involved in cognitive and addiction-related processes. We applied gene coexpression network analysis and identified gene coexpression modules, termed cognitive modules, that simultaneously correlated with THC treatment and memory traits reduced by THC. The cognitive modules were related to endocannabinoid signaling in the female dorsal medial striatum, inflammation in the female ventral tegmental area, and synaptic transmission in the male nucleus accumbens. Moreover, cross-brain region module-module interaction networks uncovered intra- and inter-region molecular circuitries influenced by THC. Lastly, we identified key driver genes of gene networks associated with THC in mice and genetic susceptibility to CUD in humans. This analysis revealed a common regulatory mechanism linked to CUD vulnerability in the nucleus accumbens of females and males, which shared four key drivers (Hapln4, Kcnc1, Elavl2, Zcchc12). These genes regulate transcriptional subnetworks implicated in addiction processes, synaptic transmission, brain development, and lipid metabolism. Our study provides novel insights into disease mechanisms regulated by adolescent exposure to THC in a sex- and brain region-specific manner.
Collapse
Affiliation(s)
- Yanning Zuo
- grid.19006.3e0000 0000 9632 6718Department of Integrative Biology and Physiology, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA
| | - Attilio Iemolo
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA
| | - Patricia Montilla-Perez
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA
| | - Hai-Ri Li
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA
| | - Xia Yang
- grid.19006.3e0000 0000 9632 6718Department of Integrative Biology and Physiology, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Brain Research Institute, University of California, Los Angeles, CA USA
| | - Francesca Telese
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|