1
|
Seilheimer RL, Qiu L, Rocchio G, Nho YH, Campos G, Pesaran B, Williams NR, Rolle CE, Buch VP, Ganguly TM, Miller KJ, Cristancho M, Oathes DJ, Brown L, Scangos KW, Barbosa DAN, Halpern CH. Stereo-encephalography-guided multi-lead deep brain stimulation for treatment-refractory obsessive compulsive disorder - study design and individualized surgical targeting approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.17.25325961. [PMID: 40313293 PMCID: PMC12045405 DOI: 10.1101/2025.04.17.25325961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Introduction Treatment-refractory obsessive-compulsive disorder (trOCD) is a complex brain network disorder that remains partially understood and may require personalized treatment strategies due to disease heterogeneity. While stereo-electroencephalography (sEEG) is standard of care for surgical epilepsy workups, its use in refractory neuropsychiatric disorders remains investigational. A multi-site, multi-stage, double-blinded, randomized crossover clinical trial is currently underway, using sEEG to guide selection of multi-nodal targets for subsequent deep brain stimulation (DBS) in the treatment of trOCD. Objectives To describe the study design of this ongoing clinical trial, with an emphasis on personalized surgical targeting strategies that ensure both the feasibility and precision of sEEG electrode placement, and enable adequate sampling of relevant targets in trOCD for network evaluation and modulation. Methods Adult patients with severe trOCD (Yale-Brown Obsessive Compulsive Scale ≥ 28) who meet eligibility criteria will be enrolled in this study. The clinical trial ( NCT05623306 ) involves three stages. In stage 1, up to 20 sEEG electrodes will be implanted in cortical and subcortical regions implicated in trOCD. Individualized probabilistic-tractography-guided target refinement will be performed for surgical planning. To ensure surgical feasibility of non-conventional surgical trajectories, patient-specific three-dimensional (3D) printed head models may be used for surgical rehearsal. Continuous and synchronous audiovisual and intracranial electroencephalographic (iEEG) recordings will be performed in the psychiatric monitoring unit. Participants undergo psychologist-led symptom provocations, brain stimulation evoked potential mapping, acute stimulation testing and cognitive tasks over a 12-day inpatient evaluation. In stage 2, up to four permanent DBS electrodes will be implanted followed by stimulation optimization for up to 52 weeks. Stage 3 involves a randomized, double-blinded cross-over phase. Expected Outcomes Safety, feasibility and preliminary efficacy will be assessed in this ongoing study. Primary safety endpoints include the number and type of serious adverse events. Feasibility endpoints include percentage of patients in whom OCD-relevant network or stimulation target can be identified. Treatment response will be determined by change in Y-BOCS II score between active and sham stimulation conditions. We anticipate that sEEG to guide selection of multi-nodal targets for DBS will be safe, feasible and result in clinically meaningful improvements in symptom severity and functional impairment in trOCD. Discussion We present the clinical protocol of sEEG-guided investigation of brain networks involved in trOCD and describe our tractography-guided surgical targeting strategy designed to optimize individualized network engagement and neuromodulation.
Collapse
|
2
|
Qiu L, Nho Y, Seilheimer RL, Kim MJ, Tufanoglu A, Williams N, Wexler A, David O, Millet B, Katherine SW, Pesaran B, Evins AE, Richardson M, Childress AR, Halpern CH. Localizing electrophysiologic cue-reactivity within the nucleus accumbens guides deep brain stimulation for opioid use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630822. [PMID: 39803486 PMCID: PMC11722221 DOI: 10.1101/2024.12.30.630822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Substance use disorder (SUD) is a significant public health concern, with over 30% of the affected population not responding to available treatments. Severe SUD is characterized by drug-cue reactivity that has been reported to predict treatment-failure. We leveraged this pathophysiological feature to optimize deep brain stimulation (DBS) of the nucleus accumbens region (NAc) in an adult with SUD. A personalized drug cue-reactivity task was administered while recording NAc region electrophysiology from a lead externalized for clinical purposes. We identified a drug cue-evoked signal in the ventral NAc associated with intensification of opioid-related cravings, which attenuated subsequent to stimulation delivered to the same area. DBS was then programmed to engage this focal region, which resulted in sustained suppression of drug-related cravings. This finding heralds the potential for personalized strategies to optimize DBS for SUD.
Collapse
|
3
|
Bachmann T, Mueller K, Kusnezow SNA, Schroeter ML, Piaggi P, Weise CM. Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling. Gigascience 2025; 14:giaf010. [PMID: 40072905 PMCID: PMC11899596 DOI: 10.1093/gigascience/giaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.
Collapse
Affiliation(s)
- Tobias Bachmann
- Department of Neurology, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Neurology, First Faculty of Medicine and General University Hospital in Prague, Prague 12108, Czech Republic
| | - Simon N A Kusnezow
- Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Christopher M Weise
- Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
| |
Collapse
|
4
|
Feng AY, Barbosa DAN, Casey AB, Rijsketic DR, Salgado JS, Huang H, Malenka RC, Hermes D, Miller KJ, Halpern CH, Heifets BD. Cross-species brain-wide mapping reveals a conserved and coordinated network engaged by NAc DBS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611940. [PMID: 39314466 PMCID: PMC11419029 DOI: 10.1101/2024.09.08.611940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Nucleus accumbens (NAc) deep brain stimulation (DBS) has been increasingly explored as a treatment modality for refractory neuropsychiatric disorders. Uncovering the accumbens network that is engaged by DBS is a critical step forward in understanding how modulating this important node impacts the broader mesocorticolimbic circuit. Using whole-brain clearing and unbiased, brain-wide neural activity mapping, we found that NAc DBS increases neural activity in a coordinated mesocorticolimbic network in mice. Simultaneous intracranial electrophysiology recordings from the human NAc and brief stimulation epochs of homologous mesocorticolimbic nodes revealed similar connectivity. Altogether, these results identify specific connectivity conserved across species within the mesocorticolimbic circuit that may underlie mechanisms of NAc DBS.
Collapse
|
5
|
Nho YH, Rolle CE, Topalovic U, Shivacharan RS, Cunningham TN, Hiller S, Batista D, Feng A, Espil FM, Kratter IH, Bhati MT, Kellogg M, Raslan AM, Williams NR, Garnett J, Pesaran B, Oathes DJ, Suthana N, Barbosa DAN, Halpern CH. Responsive deep brain stimulation guided by ventral striatal electrophysiology of obsession durably ameliorates compulsion. Neuron 2024; 112:73-83.e4. [PMID: 37865084 PMCID: PMC10841397 DOI: 10.1016/j.neuron.2023.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Treatment-resistant obsessive-compulsive disorder (OCD) occurs in approximately one-third of OCD patients. Obsessions may fluctuate over time but often occur or worsen in the presence of internal (emotional state and thoughts) and external (visual and tactile) triggering stimuli. Obsessive thoughts and related compulsive urges fluctuate (are episodic) and so may respond well to a time-locked brain stimulation strategy sensitive and responsive to these symptom fluctuations. Early evidence suggests that neural activity can be captured from ventral striatal regions implicated in OCD to guide such a closed-loop approach. Here, we report on a first-in-human application of responsive deep brain stimulation (rDBS) of the ventral striatum for a treatment-refractory OCD individual who also had comorbid epilepsy. Self-reported obsessive symptoms and provoked OCD-related distress correlated with ventral striatal electrophysiology. rDBS detected the time-domain area-based feature from invasive electroencephalography low-frequency oscillatory power fluctuations that triggered bursts of stimulation to ameliorate OCD symptoms in a closed-loop fashion. rDBS provided rapid, robust, and durable improvement in obsessions and compulsions. These results provide proof of concept for a personalized, physiologically guided DBS strategy for OCD.
Collapse
Affiliation(s)
- Young-Hoon Nho
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Camarin E Rolle
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Uros Topalovic
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajat S Shivacharan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tricia N Cunningham
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel Batista
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Austin Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Flint M Espil
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian H Kratter
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Mahendra T Bhati
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marissa Kellogg
- Oregon Health and Science University Comprehensive Epilepsy Center, Portland, OR, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - John Garnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bijan Pesaran
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Desmond J Oathes
- Department of Psychiatry, Center for Neuromodulation in Depression and Stress, Brain Science, Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel A N Barbosa
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| | - Casey H Halpern
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Barbosa DAN, Gattas S, Salgado JS, Kuijper FM, Wang AR, Huang Y, Kakusa B, Leuze C, Luczak A, Rapp P, Malenka RC, Hermes D, Miller KJ, Heifets BD, Bohon C, McNab JA, Halpern CH. An orexigenic subnetwork within the human hippocampus. Nature 2023; 621:381-388. [PMID: 37648849 PMCID: PMC10499606 DOI: 10.1038/s41586-023-06459-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.
Collapse
Affiliation(s)
- Daniel A N Barbosa
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Juliana S Salgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Fiene Marie Kuijper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Université Paris Cité, Paris, France
- Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Allan R Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuhao Huang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bina Kakusa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Leuze
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Paul Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Dora Hermes
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Parker JJ, Rolle CE, Shivacharan RS, Barbosa DAN, Feng A, Huang Y, Kakusa BW, Prieto T, Jaffe RA, Williams NR, Halpern CH. Appetitive Mapping of the Human Nucleus Accumbens. Biol Psychiatry 2023; 93:e15-e19. [PMID: 36509559 DOI: 10.1016/j.biopsych.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathon J Parker
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Cammie E Rolle
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Rajat S Shivacharan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Daniel A N Barbosa
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Austin Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Yuhao Huang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Bina W Kakusa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Tom Prieto
- Department of Neurology, Stanford University School of Medicine, Stanford, California
| | - Richard A Jaffe
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Casey H Halpern
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Wong JK, Mayberg HS, Wang DD, Richardson RM, Halpern CH, Krinke L, Arlotti M, Rossi L, Priori A, Marceglia S, Gilron R, Cavanagh JF, Judy JW, Miocinovic S, Devergnas AD, Sillitoe RV, Cernera S, Oehrn CR, Gunduz A, Goodman WK, Petersen EA, Bronte-Stewart H, Raike RS, Malekmohammadi M, Greene D, Heiden P, Tan H, Volkmann J, Voon V, Li L, Sah P, Coyne T, Silburn PA, Kubu CS, Wexler A, Chandler J, Provenza NR, Heilbronner SR, Luciano MS, Rozell CJ, Fox MD, de Hemptinne C, Henderson JM, Sheth SA, Okun MS. Proceedings of the 10th annual deep brain stimulation think tank: Advances in cutting edge technologies, artificial intelligence, neuromodulation, neuroethics, interventional psychiatry, and women in neuromodulation. Front Hum Neurosci 2023; 16:1084782. [PMID: 36819295 PMCID: PMC9933515 DOI: 10.3389/fnhum.2022.1084782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
The deep brain stimulation (DBS) Think Tank X was held on August 17-19, 2022 in Orlando FL. The session organizers and moderators were all women with the theme women in neuromodulation. Dr. Helen Mayberg from Mt. Sinai, NY was the keynote speaker. She discussed milestones and her experiences in developing depression DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging DBS technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank X speakers was that DBS has continued to expand in scope however several indications have reached the "trough of disillusionment." DBS for depression was considered as "re-emerging" and approaching a slope of enlightenment. DBS for depression will soon re-enter clinical trials. The group estimated that globally more than 244,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia, and Australia; cutting-edge technologies, closed loop DBS, DBS tele-health, neuroethics, lesion therapy, interventional psychiatry, and adaptive DBS.
Collapse
Affiliation(s)
- Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Helen S. Mayberg
- Department of Neurology, Neurosurgery, Psychiatry, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Doris D. Wang
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Casey H. Halpern
- Richards Medical Research Laboratories, Department of Neurosurgery, Perelman School of Medicine, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, United States
| | - Lothar Krinke
- Newronika, Goose Creek, SC, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | | | | | | | | | | | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jack W. Judy
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Svjetlana Miocinovic
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Annaelle D. Devergnas
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Stephanie Cernera
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Carina R. Oehrn
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Wayne K. Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Erika A. Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Robert S. Raike
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | | | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Pankaj Sah
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Terry Coyne
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Peter A. Silburn
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Cynthia S. Kubu
- Department of Neurology, Cleveland Clinic, Cleveland, OH, United States
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Chandler
- Centre for Health Law, Policy, and Ethics, Faculty of Law, University of Ottawa, Ottawa, ON, Canada
| | - Nicole R. Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Marta San Luciano
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Coralie de Hemptinne
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jaimie M. Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Michael S. Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Pilot study of responsive nucleus accumbens deep brain stimulation for loss-of-control eating. Nat Med 2022; 28:1791-1796. [PMID: 36038628 PMCID: PMC9499853 DOI: 10.1038/s41591-022-01941-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Cravings that precede loss of control (LOC) over food consumption present an opportunity for intervention in patients with the binge eating disorder (BED). In this pilot study, we used responsive deep brain stimulation (DBS) to record nucleus accumbens (NAc) electrophysiology during food cravings preceding LOC eating in two patients with BED and severe obesity (trial registration no. NCT03868670). Increased NAc low-frequency oscillations, prominent during food cravings, were used to guide DBS delivery. Over 6 months, we observed improved self-control of food intake and weight loss. These findings provide early support for restoring inhibitory control with electrophysiologically-guided NAc DBS. Further work with increased sample sizes is required to determine the scalability of this approach. Nucleus accumbens, low-frequency, responsive deep brain stimulation improved self-control of food intake and weight loss in two patients with binge eating disorder and severe obesity
Collapse
|