1
|
Zhong A, Li S, Zhang J, Zhao J, Yao C. Endogenous micropeptides as potential diagnostic biomarkers and therapeutic drugs. Front Pharmacol 2025; 16:1545575. [PMID: 40264667 PMCID: PMC12011824 DOI: 10.3389/fphar.2025.1545575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
Micropeptides, these small proteins derived from non-coding RNA, typically consist of no more than 100 amino acids in length. Despite the challenges in analysis and identification, their various critical functions within organisms cannot be overlooked. They play a significant role in maintaining energy metabolism balance, regulating the immune system, and influencing the development of tumors, which also gives them a decisive impact on the occurrence and development of various diseases. This review aims to outline the role and potential value of micropeptides, introducing their tissue classification and distribution, biological functions, and mechanisms, with a focus on their potential as diagnostic markers and therapeutic drugs.
Collapse
Affiliation(s)
- Aixi Zhong
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Shuai Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingxuan Zhang
- Zhongshan College of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Chenhui Yao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Slayo M, Rummel C, Singhaarachchi PH, Feldotto M, Spencer SJ. The role of n-3-derived specialised pro-resolving mediators (SPMs) in microglial mitochondrial respiration and inflammation resolution in Alzheimer's disease. Mol Neurodegener 2025; 20:35. [PMID: 40114266 PMCID: PMC11927317 DOI: 10.1186/s13024-025-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia globally and is characterised by reduced mitochondrial respiration and cortical deposition of amyloid-β plaques and neurofibrillary tangles comprised of hyper-phosphorylated tau. Despite its characterisation more than 110 years ago, the mechanisms by which AD develops are still unclear. Dysregulation of microglial phagocytosis of amyloid-β may play a key role. Microglia are the major innate immune cell of the central nervous system and are critical responders to pro-inflammatory states. Typically, microglia react with a short-lived inflammatory response. However, a dysregulation in the resolution of this microglial response results in the chronic release of inflammatory mediators. This prolongs the state of neuroinflammation, likely contributing to the pathogenesis of AD. In addition, the microglial specialised pro-resolving mediator (SPM) contribution to phagocytosis of amyloid-β is dysregulated in AD. SPMs are derivatives of dietary n-3 polyunsaturated fatty acids (PUFAs) and potentially represent a strategic target for protection against AD progression. However, there is little understanding of how mitochondrial respiration in microglia may be sustained long term by n-3-derived SPMs, and how this affects their clearance of amyloid-β. Here, we re-evaluate the current literature on SPMs in AD and propose that SPMs may improve phagocytosis of amyloid-β by microglia as a result of sustained mitochondrial respiration and allowing a pro-resolution response.
Collapse
Affiliation(s)
- Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior - CMBB, Giessen, Marburg, Germany
| | | | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Popova S, Bhattarai P, Yilmaz E, Lascu D, Kuo JH, Erdem G, Coban B, Michling J, Cosacak MI, Tayran H, Kurth T, Schambony A, Buchholz F, Gentzel M, Kizil C. NCBP2-AS2 is a mitochondrial microprotein, regulates energy metabolism and neurogenesis, and is downregulated in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.25.634884. [PMID: 39975220 PMCID: PMC11838228 DOI: 10.1101/2025.01.25.634884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microproteins, short functional peptides encoded by small genes, are emerging as critical regulators of cellular processes, yet their roles in mitochondrial function and neurodegeneration remain underexplored. In this study, we identify NCBP2-AS2 as an evolutionarily conserved mitochondrial microprotein with significant roles in energy metabolism and neurogenesis. Using a combination of cellular and molecular approaches, including CRISPR/Cas9 knockout models, stoichiometric co- immunoprecipitation, and advanced imaging techniques, we demonstrate that NCBP2-AS2 localizes to the inner mitochondrial space and interacts with translocase of the inner membrane (TIM) chaperones. These interactions suggest a role in ATPase subunit transport, supported by the observed reductions in ATPase subunit levels and impaired glucose metabolism in NCBP2-AS2-deficient cells. In zebrafish, NCBP2-AS2 knockout led to increased astroglial proliferation, microglial abundance, and enhanced neurogenesis, particularly under amyloid pathology. Notably, we show that NCBP2-AS2 expression is consistently downregulated in human Alzheimer's disease brains and zebrafish amyloidosis models, suggesting a conserved role in neurodegenerative pathology. These findings reveal a novel link between mitochondrial protein transport, energy metabolism, and neural regeneration, positioning NCBP2-AS2 as a potential therapeutic target for mitigating mitochondrial dysfunction and promoting neurogenesis in neurodegenerative diseases such as Alzheimer's disease.
Collapse
|
4
|
Kozin MS, Kulakova OG, Kiselev IS, Semina EV, Kakotkin VV, Agapov MA, Favorova OO. Mitochondrial Genome Variants and Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S146-S163. [PMID: 40164157 DOI: 10.1134/s0006297924603174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD), a severe neurodegenerative disease of the central nervous system, is the most common cause of cognitive impairment in people over the age of 60. The etiology and pathogenesis of Alzheimer's disease are still unclear despite decades of active research. Numerous studies have shown that neurodegenerative processes in AD are associated with the mitochondrial dysfunction. In this review, we briefly discuss the results of these studies and present the reported evidence that mitochondrial dysfunction in AD is associated with mitochondrial DNA (mtDNA) variations. The results of association analysis of mtDNA haplogroups and individual polymorphic variants, including those whose combinations define haplogroups, with AD are described in detail. These data clearly indicate the role of variations in the mitochondrial genome in the susceptibility to AD, although the problem of significance of individual mtDNA variants is far from being resolved.
Collapse
Affiliation(s)
- Maxim S Kozin
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia.
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Olga G Kulakova
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Ivan S Kiselev
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | | | - Viktor V Kakotkin
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
| | - Mikhail A Agapov
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
| | - Olga O Favorova
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| |
Collapse
|
5
|
Xu M, Li T, Liu X, Islam B, Xiang Y, Zou X, Wang J. Mechanism and Clinical Application Prospects of Mitochondrial DNA Single Nucleotide Polymorphism in Neurodegenerative Diseases. Neurochem Res 2024; 50:61. [PMID: 39673588 DOI: 10.1007/s11064-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial dysfunction is well recognized as a critical component of the complicated pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review investigates the influence of mitochondrial DNA single nucleotide polymorphisms on mitochondrial function, as well as their role in the onset and progression of these neurodegenerative diseases. Furthermore, the contemporary approaches to mitochondrial regulation in these disorders are discussed. Our objective is to uncover early diagnostic targets and formulate precision medicine strategies for neurodegenerative diseases, thereby offering new paths for preventing and treating these conditions.
Collapse
Affiliation(s)
- Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuyue Xiang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiyan Zou
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
6
|
Ariaei A, Ghorbani A, Habibzadeh E, Moghaddam N, Chegeni Nezhad N, Abdoli A, Mazinanian S, Sadeghi M, Mayeli M. Investigating the association between the GAP-43 concentration with diffusion tensor imaging indices in Alzheimer's dementia continuum. BMC Neurol 2024; 24:397. [PMID: 39420261 PMCID: PMC11484424 DOI: 10.1186/s12883-024-03904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Synaptic degeneration, axonal injury, and white matter disintegration are among the pathological events in Alzheimer's disease (AD), for which growth-associated protein 43 (GAP-43) and diffusion tensor imaging (DTI) could be an indicator. In this study, the cerebrospinal fluid (CSF) GAP-43 clinical trajectories and their association with progression and AD hallmarks with white matter microstructural changes were evaluated. METHODS A total number of 133 participants were enrolled in GAP-43 and DTI values were compared between groups, both cross-sectionally and longitudinally with two and four-year follow-ups. Subsequently, the correlation between GAP-43 levels in the CSF and DTI values was investigated using Spearman's correlation. RESULTS The CSF level of GAP-43 is negatively correlated with the mean diffusivity measures in Fornix (Cres)/Stria terminals in early and late MCI (rs=-0.478 p = 0.021 and rs=-0.425 p = 0.038). Additionally, the CSF level of GAP-43 is negatively correlated with fractional anisotropy in the cingulum in late MCI (rs=-0.437 p = 0.033). Moreover, the axial diffusivity in superior corona radiate (rs=-0.562 p = 0.005 and rs=-0.484 p = 0.036) and radial diffusivity in superior fronto-occipital fasciculus was negatively correlated with GAP-43 level in the early and mid-MCI participants (rs=-0.520 p = 0.011 and rs=-0.498 p = 0.030). CONCLUSIONS Presynaptic marker GAP-43 in combination with DTI can be used as a novel biomarker to identify microstructural synaptic degeneration in the early MCI. In addition, it can be used as a biomarker for tracking the progression of AD and monitoring treatment efficacy.
Collapse
Affiliation(s)
- Armin Ariaei
- School of Medicine, Iran University of Medical Science, Hemmat Highway, Next to Milad Tower, Tehran, 1449614535, Iran.
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| | - Atousa Ghorbani
- Department of Biology, Islamic Azad University East Tehran Branch, Tehran, Iran
| | - Elham Habibzadeh
- School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nazanin Moghaddam
- Department of Clinical Biochemistry, Islamic Azad University Shahrood Branch, Shahrood, Iran
| | - Negar Chegeni Nezhad
- Department of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Amirabbas Abdoli
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Canada
| | - Samira Mazinanian
- Department of Psychology, Islamic Azad University Semnan Branch, Semnan, Iran
| | - Mohammad Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mayeli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Eysert F, Kinoshita PF, Lagarde J, Lacas-Gervais S, Xicota L, Dorothée G, Bottlaender M, Checler F, Potier MC, Sarazin M, Chami M. Mitochondrial alterations in fibroblasts from sporadic Alzheimer's disease (AD) patients correlate with AD-related clinical hallmarks. Acta Neuropathol Commun 2024; 12:90. [PMID: 38851733 PMCID: PMC11161956 DOI: 10.1186/s40478-024-01807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
Mitochondrial dysfunctions are key features of Alzheimer's disease (AD). The occurrence of these disturbances in the peripheral cells of AD patients and their potential correlation with disease progression are underinvestigated. We studied mitochondrial structure, function and mitophagy in fibroblasts from healthy volunteers and AD patients at the prodromal (AD-MCI) or demented (AD-D) stages. We carried out correlation studies with clinical cognitive scores, namely, (i) Mini-Mental State Examination (MMSE) and (ii) Dementia Rating-Scale Sum of Boxes (CDR-SOB), and with (iii) amyloid beta (Aβ) plaque burden (PiB-PET imaging) and (iv) the accumulation of peripheral amyloid precursor protein C-terminal fragments (APP-CTFs). We revealed alterations in mitochondrial structure as well as specific mitochondrial dysfunction signatures in AD-MCI and AD-D fibroblasts and revealed that defective mitophagy and autophagy are linked to impaired lysosomal activity in AD-D fibroblasts. We reported significant correlations of a subset of these dysfunctions with cognitive decline, AD-related clinical hallmarks and peripheral APP-CTFs accumulation. This study emphasizes the potential use of peripheral cells for investigating AD pathophysiology.
Collapse
Affiliation(s)
- Fanny Eysert
- INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, 660 Route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Paula-Fernanda Kinoshita
- INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, 660 Route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Université Paris-Saclay, 91401, Orsay, France
| | - Sandra Lacas-Gervais
- Centre Commun de Microscopie Appliquée, Université de Nice Côte d'Azur, 06108, Nice, France
| | - Laura Xicota
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France
- ICM Research Center, CNRS UMR 7225, Paris, France
| | - Guillaume Dorothée
- Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Sorbonne Université, 75012, Paris, France
| | - Michel Bottlaender
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Université Paris-Saclay, 91401, Orsay, France
- UNIACT, Neurospin, Joliot Institute, CEA, Université Paris-Saclay, 91140, Gif sur Yvette, France
| | - Frédéric Checler
- INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, 660 Route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Marie-Claude Potier
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France
- ICM Research Center, CNRS UMR 7225, Paris, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Université Paris-Saclay, 91401, Orsay, France
| | - Mounia Chami
- INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, 660 Route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
8
|
Duffy EE, Assad EG, Kalish BT, Greenberg ME. Small but mighty: the rise of microprotein biology in neuroscience. Front Mol Neurosci 2024; 17:1386219. [PMID: 38807924 PMCID: PMC11130481 DOI: 10.3389/fnmol.2024.1386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian central nervous system coordinates a network of signaling pathways and cellular interactions, which enable a myriad of complex cognitive and physiological functions. While traditional efforts to understand the molecular basis of brain function have focused on well-characterized proteins, recent advances in high-throughput translatome profiling have revealed a staggering number of proteins translated from non-canonical open reading frames (ncORFs) such as 5' and 3' untranslated regions of annotated proteins, out-of-frame internal ORFs, and previously annotated non-coding RNAs. Of note, microproteins < 100 amino acids (AA) that are translated from such ncORFs have often been neglected due to computational and biochemical challenges. Thousands of putative microproteins have been identified in cell lines and tissues including the brain, with some serving critical biological functions. In this perspective, we highlight the recent discovery of microproteins in the brain and describe several hypotheses that have emerged concerning microprotein function in the developing and mature nervous system.
Collapse
Affiliation(s)
- Erin E. Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Elena G. Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Brian T. Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
9
|
Lanfranchi M, Yandiev S, Meyer-Dilhet G, Ellouze S, Kerkhofs M, Dos Reis R, Garcia A, Blondet C, Amar A, Kneppers A, Polvèche H, Plassard D, Foretz M, Viollet B, Sakamoto K, Mounier R, Bourgeois CF, Raineteau O, Goillot E, Courchet J. The AMPK-related kinase NUAK1 controls cortical axons branching by locally modulating mitochondrial metabolic functions. Nat Commun 2024; 15:2487. [PMID: 38514619 PMCID: PMC10958033 DOI: 10.1038/s41467-024-46146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The cellular mechanisms underlying axonal morphogenesis are essential to the formation of functional neuronal networks. We previously identified the autism-linked kinase NUAK1 as a central regulator of axon branching through the control of mitochondria trafficking. However, (1) the relationship between mitochondrial position, function and axon branching and (2) the downstream effectors whereby NUAK1 regulates axon branching remain unknown. Here, we report that mitochondria recruitment to synaptic boutons supports collateral branches stabilization rather than formation in mouse cortical neurons. NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration, and upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Finally, we found that NUAK1 regulates axon branching through the mitochondria-targeted microprotein BRAWNIN. Our results demonstrate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondrial distribution and metabolic activity.
Collapse
Affiliation(s)
- Marine Lanfranchi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Sozerko Yandiev
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Géraldine Meyer-Dilhet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Salma Ellouze
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Martijn Kerkhofs
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Raphael Dos Reis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Audrey Garcia
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Camille Blondet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Alizée Amar
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Anita Kneppers
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Hélène Polvèche
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
- CECS/AFM, I-STEM, 28 rue Henri Desbruères, F-91100, Corbeil-Essonnes, France
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Rémi Mounier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Evelyne Goillot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France.
| |
Collapse
|
10
|
Kim SJ, Miller B, Hartel NG, Ramirez R, Braniff RG, Leelaprachakul N, Huang A, Wang Y, Arpawong TE, Crimmins EM, Wang P, Sun X, Liu C, Levy D, Yen K, Petzinger GM, Graham NA, Jakowec MW, Cohen P. A naturally occurring variant of SHLP2 is a protective factor in Parkinson's disease. Mol Psychiatry 2024; 29:505-517. [PMID: 38167865 PMCID: PMC11116102 DOI: 10.1038/s41380-023-02344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) have been associated with a reduced risk of developing Parkinson's disease (PD), yet the underlying mechanisms remain elusive. In this study, we investigate the functional role of a PD-associated mtSNP that impacts the mitochondrial-derived peptide (MDP) Small Humanin-like Peptide 2 (SHLP2). We identify m.2158 T > C, a mtSNP associated with reduced PD risk, within the small open reading frame encoding SHLP2. This mtSNP results in an alternative form of SHLP2 (lysine 4 replaced with arginine; K4R). Using targeted mass spectrometry, we detect specific tryptic fragments of SHLP2 in neuronal cells and demonstrate its binding to mitochondrial complex 1. Notably, we observe that the K4R variant, associated with reduced PD risk, exhibits increased stability compared to WT SHLP2. Additionally, both WT and K4R SHLP2 show enhanced protection against mitochondrial dysfunction in in vitro experiments and confer protection against a PD-inducing toxin, a mitochondrial complex 1 inhibitor, in a mouse model. This study sheds light on the functional consequences of the m.2158 T > C mtSNP on SHLP2 and provides insights into the potential mechanisms by which this mtSNP may reduce the risk of PD.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Ricardo Ramirez
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Regina Gonzalez Braniff
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Amy Huang
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Yuzhu Wang
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Thalida Em Arpawong
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen M Crimmins
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Penglong Wang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xianbang Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Chunyu Liu
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Daniel Levy
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Giselle M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Nicholas A Graham
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
- Department of Biokinesiology and Physical Therapy, The George and MaryLou Boone Center for Parkinson's Disease Research, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Zhu Y, Huang H, Chen Z, Tao Y, Liao LY, Gao SH, Wang YJ, Gao CY. Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer's Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice. Neurosci Bull 2024; 40:182-200. [PMID: 37578635 PMCID: PMC10838862 DOI: 10.1007/s12264-023-01098-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 08/15/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS), a time-saving and cost-effective repetitive transcranial magnetic stimulation regime, has been shown to improve cognition in patients with Alzheimer's disease (AD). However, the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown. Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation. Here, we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1 (ISCA1, an essential regulatory factor for mitochondrial respiration) in the brain of APP/PS1 mice. In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function, which is required for ISCA1. Moreover, iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice. The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD. We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhi Chen
- Department of Special Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shi-Hao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Chang-Yue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
12
|
Kal S, Mahata S, Jati S, Mahata SK. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives. Peptides 2024; 172:171147. [PMID: 38160808 PMCID: PMC10838678 DOI: 10.1016/j.peptides.2023.171147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.
Collapse
Affiliation(s)
- Satadeepa Kal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Department of Anesthesiology, Riverside University Health System, Moreno Valley, CA, USA
| | - Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
13
|
Blatkiewicz M, Szyszka M, Olechnowicz A, Kamiński K, Jopek K, Komarowska H, Tyczewska M, Klimont A, Wierzbicki T, Karczewski M, Ruchała M, Rucinski M. Impaired Expression of Humanin during Adrenocortical Carcinoma. Int J Mol Sci 2024; 25:1038. [PMID: 38256114 PMCID: PMC10816135 DOI: 10.3390/ijms25021038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of mitochondria-derived peptides (MDPs) has provided a new perspective on mitochondrial function. MDPs encoded by mitochondrial DNA (mtDNA) can act as hormone-like peptides, influencing cell survival and proliferation. Among these peptides, humanin has been identified as a crucial factor for maintaining cell survival and preventing cell death under various conditions. Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy that results from adrenal hormone dysfunction. This study aimed to investigate humanin expression in the adrenal tissue and serum of patients with ACC. For the first time, our study revealed significant reduction in the mRNA expression of humanin in patients with ACC compared to healthy controls. However, no significant changes were observed in the serum humanin levels. Interestingly, we identified a positive correlation between patient age and serum humanin levels and a negative correlation between tumor size and LDL levels. While the impaired expression of humanin in patients with ACC may be attributed to mitochondrial dysfunction, an alternative explanation could be related to diminished mitochondrial copy number. Further investigations are warranted to elucidate the intricate relationship among humanin, mitochondrial function, and ACC pathology.
Collapse
Affiliation(s)
- Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Anna Olechnowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Kamiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| | - Hanna Komarowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
- Department of Anatomy and Histology, University of Zielona Góra, Licealna Street 9, 65-417 Zielona Góra, Poland
| | - Anna Klimont
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Tomasz Wierzbicki
- Department of General, Endocrinological and Gastroenterological Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Marek Karczewski
- Department of General and Transplantation Surgery, Poznan University of Medical Sciences, 60-356 Poznan, Poland;
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland; (H.K.); (A.K.); (M.R.)
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.S.); (K.J.); (M.R.)
| |
Collapse
|
14
|
de Souza EV, Bizarro CV. Identification of Novel Bacterial Microproteins Encoded by Small Open Reading Frames Using a Computational Proteogenomics Workflow. Methods Mol Biol 2024; 2836:19-34. [PMID: 38995533 DOI: 10.1007/978-1-0716-4007-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Genome annotation has historically ignored small open reading frames (smORFs), which encode a class of proteins shorter than 100 amino acids, collectively referred to as microproteins. This cutoff was established to avoid thousands of false positives due to limitations of pure genomics pipelines. Proteogenomics, a computational approach that combines genomics, transcriptomics, and proteomics, makes it possible to accurately identify these short sequences by overlaying different levels of omics evidence. In this chapter, we showcase the use of μProteInS, a bioinformatics pipeline developed for the identification of unannotated microproteins encoded by smORFs in bacteria. The workflow covers all the steps from quality control and transcriptome assembly to the scoring and post-processing of mass spectrometry data. Additionally, we provide an example on how to apply the pipeline's machine learning method to identify high-confidence spectra and pinpoint the most reliable identifications from large datasets.
Collapse
Affiliation(s)
- Eduardo Vieira de Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Lu Y, Ran Y, Li H, Wen J, Cui X, Zhang X, Guan X, Cheng M. Micropeptides: origins, identification, and potential role in metabolism-related diseases. J Zhejiang Univ Sci B 2023; 24:1106-1122. [PMID: 38057268 PMCID: PMC10710913 DOI: 10.1631/jzus.b2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
16
|
Huynh K, Kibrom A, Donald BR, Zhou P. Discovery, characterization, and redesign of potent antimicrobial thanatin orthologs from Chinavia ubica and Murgantia histrionica targeting E. coli LptA. J Struct Biol X 2023; 8:100091. [PMID: 37416832 PMCID: PMC10320583 DOI: 10.1016/j.yjsbx.2023.100091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Podisus maculiventris thanatin has been reported as a potent antimicrobial peptide with antibacterial and antifungal activity. Its antibiotic activity has been most thoroughly characterized against E. coli and shown to interfere with multiple pathways, such as the lipopolysaccharide transport (LPT) pathway comprised of seven different Lpt proteins. Thanatin binds to E. coli LptA and LptD, thus disrupting the LPT complex formation and inhibiting cell wall synthesis and microbial growth. Here, we performed a genomic database search to uncover novel thanatin orthologs, characterized their binding to E. coli LptA using bio-layer interferometry, and assessed their antimicrobial activity against E. coli. We found that thanatins from Chinavia ubica and Murgantia histrionica bound tighter (by 3.6- and 2.2-fold respectively) to LptA and exhibited more potent antibiotic activity (by 2.1- and 2.8-fold respectively) than the canonical thanatin from P. maculiventris. We crystallized and determined the LptA-bound complex structures of thanatins from C. ubica (1.90 Å resolution), M. histrionica (1.80 Å resolution), and P. maculiventris (2.43 Å resolution) to better understand their mechanism of action. Our structural analysis revealed that residues A10 and I21 in C. ubica and M. histrionica thanatin are important for improving the binding interface with LptA, thus overall improving the potency of thanatin against E. coli. We also designed a stapled variant of thanatin that removes the need for a disulfide bond but retains the ability to bind LptA and antibiotic activity. Our discovery presents a library of novel thanatin sequences to serve as starting scaffolds for designing more potent antimicrobial therapeutics.
Collapse
Affiliation(s)
- Kelly Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Amanuel Kibrom
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Bruce R. Donald
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Computer Science, Duke University, Durham, NC, United States
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
17
|
Lehrer S, Rheinstein PH. Increased Maternal Compared to Paternal Transmission of Alzheimer's Disease May Be Due to Increased Incidence of Depression in Women. In Vivo 2023; 37:2447-2451. [PMID: 37905609 PMCID: PMC10621409 DOI: 10.21873/invivo.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Mothers transmit Alzheimer's disease (AD) more frequently than fathers. Factors other than female longevity may be at work to promote maternal transmission of AD. Among these are the X chromosome, mitochondrial DNA, and AD comorbidities, especially depression. A recent study associated mitochondrial SNP rs2853499 with AD. MATERIALS AND METHODS We used UK Biobank (UKBB) data to investigate the relation of mitochondrial SNP rs2853499, with AD. To identify cases of AD we used ICD10 code G30.9. Data processing was performed on Minerva, a Linux mainframe with Centos 7.6, at the Icahn School of Medicine at Mount Sinai. We used PLINK, a whole-genome association analysis toolset, to analyze the UKB22418 mitochondrial hard-called chromosome file. RESULTS Of 953 AD cases, 493 were male (51.7%) and 460 were female (48.3%). Mothers were twice as likely to transmit AD compared to fathers. We found that in individuals with AD, 22.3% (n=201) carried the A allele of SNP rs2853499, 77.7% (n=700) carried the G allele. In individuals without AD, 22.2% (n=10,7726) carried the A allele of SNP rs2853499, 77.8% (n=378,535) carried the G allele. This difference was not significant (p=0.91, two-tailed Fisher exact test). Therefore, factors other than mitochondrial SNP rs2853499 may be at work to promote maternal transmission of AD. CONCLUSION We conclude that depression, a multigenic illness, in the mother is most likely the basis for the fact that mothers transmit AD twice as often as fathers.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.;
| | | |
Collapse
|
18
|
Kamradt ML, Makarewich CA. Mitochondrial microproteins: critical regulators of protein import, energy production, stress response pathways, and programmed cell death. Am J Physiol Cell Physiol 2023; 325:C807-C816. [PMID: 37642234 PMCID: PMC11540166 DOI: 10.1152/ajpcell.00189.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Mitochondria rely upon the coordination of protein import, protein translation, and proper functioning of oxidative phosphorylation (OXPHOS) complexes I-V to sustain the activities of life for an organism. Each process is dependent upon the function of profoundly large protein complexes found in the mitochondria [translocase of the outer mitochondrial membrane (TOMM) complex, translocase of the inner mitochondrial membrane (TIMM) complex, OXPHOS complexes, mitoribosomes]. These massive protein complexes, in some instances more than one megadalton, are built up from numerous protein subunits of varying sizes, including many proteins that are ≤100-150 amino acids. However, these small proteins, termed microproteins, not only act as cogs in large molecular machines but also have important steps in inhibiting or promoting the intrinsic pathway of apoptosis, coordinate responses to cellular stress, and even act as hormones. This review focuses on microproteins that occupy the mitochondria and are critical for its function. Although the microprotein field is relatively new, researchers have long recognized the existence of these mitochondrial proteins as critical components of virtually all aspects of mitochondrial biology. Thus, recent studies estimating that hundreds of new microproteins of unknown function exist and are missing from current genome annotations suggests that the mitochondrial "microproteome" is a rich area for future biological investigation.
Collapse
Affiliation(s)
- Michael L Kamradt
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Catherine A Makarewich
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
19
|
Emser SV, Spielvogel CP, Millesi E, Steinborn R. Mitochondrial polymorphism m.3017C>T of SHLP6 relates to heterothermy. Front Physiol 2023; 14:1207620. [PMID: 37675281 PMCID: PMC10478271 DOI: 10.3389/fphys.2023.1207620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Heterothermic thermoregulation requires intricate regulation of metabolic rate and activation of pro-survival factors. Eliciting these responses and coordinating the necessary energy shifts likely involves retrograde signalling by mitochondrial-derived peptides (MDPs). Members of the group were suggested before to play a role in heterothermic physiology, a key component of hibernation and daily torpor. Here we studied the mitochondrial single-nucleotide polymorphism (SNP) m.3017C>T that resides in the evolutionarily conserved gene MT-SHLP6. The substitution occurring in several mammalian orders causes truncation of SHLP6 peptide size from twenty to nine amino acids. Public mass spectrometric (MS) data of human SHLP6 indicated a canonical size of 20 amino acids, but not the use of alternative translation initiation codons that would expand the peptide. The shorter isoform of SHLP6 was found in heterothermic rodents at higher frequency compared to homeothermic rodents (p < 0.001). In heterothermic mammals it was associated with lower minimal body temperature (T b, p < 0.001). In the thirteen-lined ground squirrel, brown adipose tissue-a key organ required for hibernation, showed dynamic changes of the steady-state transcript level of mt-Shlp6. The level was significantly higher before hibernation and during interbout arousal and lower during torpor and after hibernation. Our finding argues to further explore the mode of action of SHLP6 size isoforms with respect to mammalian thermoregulation and possibly mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Sarah V. Emser
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Kienzle L, Bettinazzi S, Choquette T, Brunet M, Khorami HH, Jacques JF, Moreau M, Roucou X, Landry CR, Angers A, Breton S. A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics. BMC Biol 2023; 21:111. [PMID: 37198654 DOI: 10.1186/s12915-023-01609-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.
Collapse
Affiliation(s)
- Laura Kienzle
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Stefano Bettinazzi
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Thierry Choquette
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Marie Brunet
- Service de génétique médicale, Département de pédiatrie, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| | | | - Jean-François Jacques
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Mathilde Moreau
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Xavier Roucou
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
- Département de biochimie et génomique fonctionnelle, Université de Sherbrooke, Sherbrooke, Canada
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Montréal, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
21
|
Otsuka T, Matsui H. Fish Models for Exploring Mitochondrial Dysfunction Affecting Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24087079. [PMID: 37108237 PMCID: PMC10138900 DOI: 10.3390/ijms24087079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of neuronal structure or function, resulting in memory loss and movement disorders. Although the detailed pathogenic mechanism has not been elucidated, it is thought to be related to the loss of mitochondrial function in the process of aging. Animal models that mimic the pathology of a disease are essential for understanding human diseases. In recent years, small fish have become ideal vertebrate models for human disease due to their high genetic and histological homology to humans, ease of in vivo imaging, and ease of genetic manipulation. In this review, we first outline the impact of mitochondrial dysfunction on the progression of neurodegenerative diseases. Then, we highlight the advantages of small fish as model organisms, and present examples of previous studies regarding mitochondria-related neuronal disorders. Lastly, we discuss the applicability of the turquoise killifish, a unique model for aging research, as a model for neurodegenerative diseases. Small fish models are expected to advance our understanding of the mitochondrial function in vivo, the pathogenesis of neurodegenerative diseases, and be important tools for developing therapies to treat diseases.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
22
|
Kumagai H, Miller B, Kim SJ, Leelaprachakul N, Kikuchi N, Yen K, Cohen P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes (Basel) 2023; 14:286. [PMID: 36833212 PMCID: PMC9956216 DOI: 10.3390/genes14020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sports genetics research began in the late 1990s and over 200 variants have been reported as athletic performance- and sports injuries-related genetic polymorphisms. Genetic polymorphisms in the α-actinin-3 (ACTN3) and angiotensin-converting enzyme (ACE) genes are well-established for athletic performance, while collagen-, inflammation-, and estrogen-related genetic polymorphisms are reported as genetic markers for sports injuries. Although the Human Genome Project was completed in the early 2000s, recent studies have discovered previously unannotated microproteins encoded in small open reading frames. Mitochondrial microproteins (also called mitochondrial-derived peptides) are encoded in the mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c (mitochondrial ORF of the 12S rRNA type-c), SHLPs 1-6 (small humanin-like peptides 1 to 6), SHMOOSE (Small Human Mitochondrial ORF Over SErine tRNA), and Gau (gene antisense ubiquitous in mtDNAs) have been identified to date. Some of those microproteins have crucial roles in human biology by regulating mitochondrial function, and those, including those to be discovered in the future, could contribute to a better understanding of human biology. This review describes a basic concept of mitochondrial microproteins and discusses recent findings about the potential roles of mitochondrial microproteins in athletic performance as well as age-related diseases.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya-ku, Tokyo 158-8508, Japan
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics (Basel) 2022; 12:diagnostics12122975. [PMID: 36552984 PMCID: PMC9777434 DOI: 10.3390/diagnostics12122975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| |
Collapse
|
24
|
Li Y, Xia X, Wang Y, Zheng JC. Mitochondrial dysfunction in microglia: a novel perspective for pathogenesis of Alzheimer's disease. J Neuroinflammation 2022; 19:248. [PMID: 36203194 PMCID: PMC9535890 DOI: 10.1186/s12974-022-02613-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly globally. Emerging evidence has demonstrated microglia-driven neuroinflammation as a key contributor to the onset and progression of AD, however, the mechanisms that mediate neuroinflammation remain largely unknown. Recent studies have suggested mitochondrial dysfunction including mitochondrial DNA (mtDNA) damage, metabolic defects, and quality control (QC) disorders precedes microglial activation and subsequent neuroinflammation. Therefore, an in-depth understanding of the relationship between mitochondrial dysfunction and microglial activation in AD is important to unveil the pathogenesis of AD and develop effective approaches for early AD diagnosis and treatment. In this review, we summarized current progress in the roles of mtDNA, mitochondrial metabolism, mitochondrial QC changes in microglial activation in AD, and provide comprehensive thoughts for targeting microglial mitochondria as potential therapeutic strategies of AD.
Collapse
Affiliation(s)
- Yun Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China.,Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|