1
|
Loos E, Sekar S, Rosin C, Navarini AA, Schwale C, Schaefert R, Müller S. The Relationship Between Chronic Pruritus, Attention-Deficit/Hyperactivity Disorder, and Skin Picking-A Case Series and Narrative Review. J Clin Med 2025; 14:1774. [PMID: 40095896 PMCID: PMC11901303 DOI: 10.3390/jcm14051774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Chronic pruritus (CP), attention-deficit/hyperactivity disorder (ADHD), and skin picking disorder (SPD) are medical conditions that involve both somatic and psychosocial dimensions, posing unique challenges in clinical management. While CP and SPD are often observed together, the link between ADHD and these conditions is less recognized. This conceptual work describes three women who suffered from a complex interplay of CP, ADHD, and SPD treated at our specialized bi-disciplinary psychodermatological pruritus clinic. Based on our clinical observation and a narrative review of the literature, we assume a bidirectional, triangular relationship between CP, ADHD, and SPD. To support this assumption, we propose two hypotheses: (1) a neurodevelopmental hypothesis, emphasizing that an underlying neurodevelopmental disorder, in this case, ADHD, might present with symptoms like dysfunction of sensory processing, impulsivity, and attention deficits as shared features that reinforce CP and SPD, and (2) a neuroinflammatory hypothesis, suggesting that similar neuroinflammatory signatures promote the co-occurrence of CP, ADHD, and SPD. In addition, we provide specific suggestions derived from our clinical experience on how to manage patients with this complex combination of conditions. Elucidating the interplay between CP, ADHD, and SPD might help develop personalized treatment strategies and improve outcomes.
Collapse
Affiliation(s)
- Eva Loos
- Department of Dermatology, University Hospital and University of Basel, CH-4031 Basel, Switzerland (S.M.)
- Department of Psychosomatic Medicine, University Hospital and University of Basel, CH-4031 Basel, Switzerland (R.S.)
| | - Suzan Sekar
- Department of Dermatology, University Hospital and University of Basel, CH-4031 Basel, Switzerland (S.M.)
| | - Christiane Rosin
- Department of Psychosomatic Medicine, University Hospital and University of Basel, CH-4031 Basel, Switzerland (R.S.)
| | - Alexander A. Navarini
- Department of Dermatology, University Hospital and University of Basel, CH-4031 Basel, Switzerland (S.M.)
| | - Chrysovalandis Schwale
- Department of Psychosomatic Medicine, University Hospital and University of Basel, CH-4031 Basel, Switzerland (R.S.)
| | - Rainer Schaefert
- Department of Psychosomatic Medicine, University Hospital and University of Basel, CH-4031 Basel, Switzerland (R.S.)
| | - Simon Müller
- Department of Dermatology, University Hospital and University of Basel, CH-4031 Basel, Switzerland (S.M.)
| |
Collapse
|
2
|
Buchholz E, Machule ML, Buthut M, Stefanovski L, Rössling R, Prüss H. Overlapping presence of β-amyloid, tau, p-tau, and α-synuclein in skin nerve fibers in Alzheimer's disease. J Neurol 2025; 272:247. [PMID: 40042672 PMCID: PMC11882635 DOI: 10.1007/s00415-025-12994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/09/2025]
Abstract
OBJECTIVE Skin nerve fiber deposition of proteins can be strongly associated with neurodegenerative diseases, such as phosphorylated α-synuclein (p-SN) in synucleinopathies. Little is known about other neurodegenerative proteins, such as tau or β-amyloid, in skin nerve fibers of patients with Alzheimer's disease (AD) and their link to underlying neurodegeneration. We therefore aimed for describing the presence and distribution of these proteins in the skin of patients with AD and non-AD controls. METHODS Skin biopsies were taken from 45 patients with AD (n = 23) and non-AD controls (n = 22). Nerve fibers were identified using antibodies against protein gene product 9.5 (PGP9.5), and protein deposits were evaluated with double-immunostaining of β-amyloid 1-42 (Aβ1-42), p-SN, tau, and phospho-tau (p-tau). RESULTS Skin nerve fiber Aβ1-42 was present in 7/23 (30.4%) patients with AD and 7/22 (31.8%) controls. p-tau was detected in 12/23 (52.2%) patients with AD and 9/22 (40.9%) controls. Tau was present in 19/23 (82.6%) patients with AD and 16/22 (72.7%) controls. p-SN was detected in 12/23 (52.2%) patients with AD and 8/22 (36.4%) controls. Frequencies of deposits were not significantly different between groups and protein frequency did not correlate with severity of cognitive impairment. INTERPRETATION Deposits of β-amyloid 1-42, p-SN, tau, and p-tau were detected in skin nerve fibers in both patient groups; however, qualitative assessment did not discriminate between AD and non-AD patients at this sample size. Future analyses of protein distribution and spreading in peripheral nerves may give new insights into the pathophysiology of neurodegenerative diseases, but may require quantitative detection.
Collapse
Affiliation(s)
- Emilie Buchholz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Luise Machule
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Buthut
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leon Stefanovski
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rosa Rössling
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Bae J, Campbell A, Hein M, Hillis SL, Grice E, Rakel BA, Gardner SE. Relationship of opioid tolerance to patient and wound factors, and wound micro-environment in patients with open wounds. J Wound Care 2025; 34:S6-S16. [PMID: 39928508 DOI: 10.12968/jowc.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
OBJECTIVE Opioid tolerance is a criterion for opioid use disorder, which is currently an epidemic in the US. Individuals with open wounds are frequently administered opioids; however, the phenomenon of opioid tolerance has not been examined in the context of wounds. The purpose of this exploratory study was to compare patient/wound factors, wound microbiome and inflammatory mediators between individuals who were opioid-tolerant versus those who were not opioid-tolerant. METHOD Patients with acute open wounds were enrolled in this cross-sectional study. All study data were collected before and during a one-time study dressing change. RESULTS The study included a total of 385 participants. Opioid-tolerant participants were significantly younger (p<0.0001); had higher levels of depression (p=0.0055) and anxiety (p=0.0118); had higher pain catastrophising scores (p=0.0035); reported higher resting wound pain (p<0.0001); had a higher number of wounds of <30 days' duration (p=0.0486); and had wounds with lower bacterial richness (p=0.0152) than participants who were not opioid-tolerant. A backward elimination logistic regression model showed that four predictors-resting wound pain, age, bacterial richness and depression-were the most important variables in predicting opioid-tolerance status. CONCLUSION These findings provide the first insights into the phenomenon of opioid tolerance in the context of open wounds. This study provides findings from which to guide hypothesis-driven research in the future.
Collapse
Affiliation(s)
- Jaewon Bae
- University of Iowa, College of Nursing, US
| | - Amy Campbell
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology, US
| | - Maria Hein
- University of Iowa, College of Nursing, US
| | - Stephen L Hillis
- University of Iowa, Colleges of Medicine and Public Health, Departments of Radiology and Biostatistics, US
| | - Elizabeth Grice
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology, US
| | | | | |
Collapse
|
4
|
Al-Ayadhi LY, Elamin NE, Madani A, Al-Ghamdi F, Al-Ghamdi HA, Halepoto DM. Examining the Prevalence, Characteristics, and Potential Links Between Skin Disorders and Autism Spectrum Disorder (ASD). J Clin Med 2025; 14:469. [PMID: 39860475 PMCID: PMC11765873 DOI: 10.3390/jcm14020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Increasing evidence indicates that skin disorders may contribute to an increased risk of autism spectrum disorder (ASD). They can affect the quality of life, and they have an impact on social isolation, behavioral problems, cognitive scores, and some subscales of ASD. Methods: This study was an online questionnaire-based, observational, and cross-sectional study conducted during the period from August 2022 through January 2023 to examine dermatological manifestations among ASD individuals compared to controls. Descriptive and non-parametric tests were used for data analysis. Results: A total of 363 individuals with skin diseases were interviewed during the study period. In total, 189 (52.1%) of participants were autistic and 174 (47.9%) were controls. Asthma, anxiety, depression, and autoimmune disease were persistent in the ASD group compared to the controls (p < 0.001). The results also show that skin, food, and respiratory allergies were statistically significantly associated with ASD (50%, 22.2%, 14.8%, respectively) compared to the controls (26.4%, 10.3%, 7.5%, respectively) (p < 0.05). The most prevalent disease in the controls was eczema (15.5%), followed by dry skin (14.9%) and acne (10.3%). These diseases showed a statistically significant association with ASD compared to the controls (p < 0.0001). Conclusions: Our findings indicate that atopic disorders and comorbidities, including eczema, asthma, and allergies, are significantly associated with ASD. A large population-based study is warranted to clarify the prevalence of skin disorders among individuals with ASD, coupled with the study of the association between skin disorders and comorbidities to determine the relationship precisely.
Collapse
Affiliation(s)
- Laila Yousif Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
- Autism Research and Treatment Center, Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.A.A.-G.); (D.M.H.)
| | - Nadra Elyass Elamin
- Autism Research and Treatment Center, Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.A.A.-G.); (D.M.H.)
| | - Abdulaziz Madani
- Department of Dermatology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Farah Al-Ghamdi
- College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia;
| | - Hend Ali Al-Ghamdi
- Autism Research and Treatment Center, Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.A.A.-G.); (D.M.H.)
- Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia
| | - Dost Muhammad Halepoto
- Autism Research and Treatment Center, Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.A.A.-G.); (D.M.H.)
| |
Collapse
|
5
|
Rallis E, Grech VS, Lotsaris K, Tertipi N, Sfyri E, Kefala V. Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases. Genes (Basel) 2024; 15:1507. [PMID: 39766775 PMCID: PMC11675334 DOI: 10.3390/genes15121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
As the global population ages, the rising prevalence of neurodegenerative diseases, characterized by abnormal protein aggregates, presents significant challenges for early diagnosis and disease monitoring. Identifying accessible tissue biomarkers is crucial for advancing our ability to detect and track the progression of these diseases. Among the most promising biomarkers is the skin, which shares a common embryological origin with the brain and central nervous system (CNS). This biological connection positions the skin as a potential reflection of CNS pathology. Over the past decades, gene expression studies have demonstrated that key genes involved in neurodegenerative diseases are also expressed in skin tissues. Genes such as APP, PSEN1, PPA2, PINK1, LRRK2, PLCB4, MAPT, SPAST, and SPG7 are prominent in this regard. Beyond gene expression, proteins related to neurodegenerative diseases-such as α-synuclein, TAU, PARKIN, and prion protein (PrP)-have been isolated from the skin of affected individuals, underscoring the skin's capacity to mirror neural degeneration. This non-invasive window into neurodegenerative processes is further enhanced by advances in stem cell technology, which have allowed for the generation of human-induced pluripotent stem cells (iPSCs) from patient-derived fibroblasts. These iPSCs offer a valuable model for studying disease mechanisms and developing therapeutic approaches. This review conducts a comprehensive analysis of the literature from databases such as PubMed, Google Scholar, and ResearchGate, emphasizing the unique potential of the skin as a non-invasive biomarker for neurodegenerative diseases. It explores how the skin serves as a bridge between gene expression and disease pathology in both the skin and the CNS. By leveraging this biological connection, the skin emerges as a promising model for enhancing our understanding of neurodegenerative disorders and developing innovative strategies for early detection and treatment. However, significant limitations remain, requiring further validation to establish the specificity and sensitivity of these biomarkers.
Collapse
Affiliation(s)
- Efstathios Rallis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece; (E.R.); (N.T.); (E.S.); (V.K.)
| | - Vasiliki-Sofia Grech
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece; (E.R.); (N.T.); (E.S.); (V.K.)
| | - Kleomenis Lotsaris
- Psychiatrist in Department of Psychiatry, Athens General Hospital ‘Evaggelismos’, GR-10676 Athens, Greece;
| | - Niki Tertipi
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece; (E.R.); (N.T.); (E.S.); (V.K.)
| | - Eleni Sfyri
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece; (E.R.); (N.T.); (E.S.); (V.K.)
| | - Vassiliki Kefala
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece; (E.R.); (N.T.); (E.S.); (V.K.)
| |
Collapse
|
6
|
Ai Z, Yuan D, Cai J, Dong R, Liu W, Zhou D. Mechanism of medical hemorrhoid gel in relieving pruritus ani via inhibiting the activation of JAK2/STAT3 pathway. Front Med (Lausanne) 2024; 11:1487531. [PMID: 39606625 PMCID: PMC11600105 DOI: 10.3389/fmed.2024.1487531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background Pruritus ani (PA), a neurofunctional dermatosis, is one of the most common complications of hemorrhoids, which seriously affects the quality of life of patients. Medical hemorrhoid gel (MHG), a product mainly composed of herbal medicine, is widely used for treatment of PA clinically. This study aim to assess the alleviating effect and mechanism of MHG on PA based on rectal epidermis-spinal cord-brain axis using animal models. Methods A chloroquine-induced mouse itching model and a croton oil preparation-induced rat hemorrhoid model were established to evaluate anti-PA effect of MHG. Scratching behaviors of mice were recorded, and histopathology of mice skin and rat ano-rectal tissues was observed through H&E staining. Network pharmacology and western blotting were employed to explore potential mechanism of MHG. Results The study indicated that MHG significantly alleviated chloroquine-induced skin itching and improved pathological injuries in mice skin and rat ano-rectal tissues. Network pharmacology suggested that MHG might regulate the JAK/STAT signaling pathway. Experimental findings showed that MHG significantly downregulated TRPV1 and TRPA1 in rectal tissue, c-Fos and GRPR in spinal cord tissue, and 5-HT1a protein in brain tissue, while upregulating TRPM8 protein in rectal tissue. Furthermore, MHG inhibited the activation of the JAK2/STAT3 signaling pathway in the rectal epidermis-spinal cord-brain axis. Conclusion MHG improves PA by inhibiting the transmission of itching signals in rectal epidermis-spinal cord-brain axis via the JAK2/STAT3 signaling pathway, providing experimental evidence for its clinical application.
Collapse
Affiliation(s)
- Zhongzhu Ai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Dongfeng Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingyi Cai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ruotong Dong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wei Liu
- Mayinglong Pharmaceutical Group Co., Ltd, Wuhan, China
| | - Daonian Zhou
- Mayinglong Pharmaceutical Group Co., Ltd, Wuhan, China
| |
Collapse
|
7
|
Xu X, Jigeer G, Gunn DA, Liu Y, Chen X, Guo Y, Li Y, Gu X, Ma Y, Wang J, Wang S, Sun L, Lin X, Gao X. Facial aging, cognitive impairment, and dementia risk. Alzheimers Res Ther 2024; 16:245. [PMID: 39506848 PMCID: PMC11539626 DOI: 10.1186/s13195-024-01611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Facial aging, cognitive impairment, and dementia are all age-related conditions. However, the temporal relation between facial age and future risk of dementia was not systematically examined. OBJECTIVES To investigate the relationship between facial age (both subjective/perceived and objective) and cognitive impairment and/or dementia risk. METHODS The study included 195,329 participants (age ≥ 60 y) from the UK Biobank (UKB) with self-perceived facial age and 612 participants from the Nutrition and Health of Aging Population in China Project (NHAPC) study (age ≥ 56 y) with objective assessment of facial age. Cox proportional hazards model was used to prospectively examine the hazard ratios (HRs) and their 95% confidence intervals (CIs) of self-perceived facial age and dementia risk in the UKB, adjusting for age, sex, education, APOE ε4 allele, and other potential confounders. Linear and logistic regressions were performed to examine the cross-sectional association between facial age (perceived and objective) and cognitive impairment in the UKB and NHAPC, with potential confounders adjusted. RESULTS During a median follow-up of 12.3 years, 5659 dementia cases were identified in the UKB. The fully-adjusted HRs comparing high vs. low perceived facial age were 1.61 (95% CI, 1.33 ~ 1.96) for dementia (P-trend ≤ 0.001). Subjective facial age and cognitive impairment was also observed in the UKB. In the NHAPC, facial age, as assessed by three objective wrinkle parameters, was associated with higher odds of cognitive impairment (P-trend < 0.05). Specifically, the fully-adjusted OR for cognitive impairment comparing the highest versus the lowest quartiles of crow's feet wrinkles number was 2.48 (95% CI, 1.06 ~ 5.78). CONCLUSIONS High facial age was associated with cognitive impairment, dementia and its subtypes after adjusting for conventional risk factors for dementia. Facial aging may be an indicator of cognitive decline and dementia risk in older adults, which can aid in the early diagnosis and management of age-related conditions.
Collapse
Affiliation(s)
- Xinming Xu
- Department of Nutrition and Food Hygiene, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, 130 Dongan Road, Shanghai, 200030, China
| | - Guliyeerke Jigeer
- Department of Nutrition and Food Hygiene, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, 130 Dongan Road, Shanghai, 200030, China
| | - David Andrew Gunn
- Unilever R&D Colworth Science Part, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Yizhou Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xinrui Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Yi Guo
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, 200030, China
| | - Yaqi Li
- Department of Nutrition and Food Hygiene, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, 130 Dongan Road, Shanghai, 200030, China
| | - Xuelan Gu
- Unilever R&D Shanghai, Shanghai, 200335, China
| | - Yanyun Ma
- Unilever R&D Colworth Science Part, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, CAS-MPG Partner Institute for Computational Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, 130 Dongan Road, Shanghai, 200030, China.
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, 130 Dongan Road, Shanghai, 200030, China.
| |
Collapse
|
8
|
Nasim S, Bichsel C, Pinto A, Alexandrescu S, Kozakewich H, Bischoff J. Similarities and differences between brain and skin GNAQ p.R183Q driven capillary malformations. Angiogenesis 2024; 27:931-941. [PMID: 39343803 DOI: 10.1007/s10456-024-09950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Capillary malformations (CM) are congenital vascular irregularities of capillary and venous blood vessels that appear in the skin, leptomeninges of the brain, and the choroid of the eye in the disorder known as Sturge Weber Syndrome (SWS). More common are non-syndromic CM found only in the skin, without brain or ocular involvement. A somatic activating mutation in GNAQ (p.R183Q) is found in ~ 90% of syndromic and non-syndromic CM specimens and is present in CD31pos endothelial cells isolated from brain and skin CM specimens. Endothelial expression of the GNAQ p.R183Q variant is sufficient to form CM-like vessels in mice. Given the distinct features and functions of blood vessels in the brain versus the skin, we examined the features of CM vessels in both tissues to gain insights into the pathogenesis of CM. Herein, we present morphologic characteristics of CM observed in specimens from brain and skin. The GNAQ p.R183Q variant allelic frequency in each specimen was determined by droplet digital PCR. Sections were stained for endothelial cells, tight junctions, mural cells, and macrophages to assess the endothelium as well as perivascular constituents. CM blood vessels in brain and skin were enlarged, exhibited fibrin leakage and reduced zona occludin-1 and claudin-5, and were surrounded by MRC1pos/LYVE1pos macrophages. In contrast, the CMs from brain and skin differ in endothelial sprouting activity and localization of mural cells. These characteristics might be helpful in the development of targeted and/or tissue specific therapies to prevent or reverse non-syndromic and syndromic CM.
Collapse
Affiliation(s)
- Sana Nasim
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Colette Bichsel
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- CSEM SA, Hegenheimermattweg 167 A, 4123, Allschwil, Switzerland
| | - Anna Pinto
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Harry Kozakewich
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
10
|
Arjun AM, Deshpande S, Dunlop T, Norman B, Oliviera D, Vulpe G, Moreira F, Sharma S. Alzheimer's diagnosis beyond cerebrospinal fluid: Probe-Free Detection of Tau Proteins using MXene based redox systems and molecularly imprinted polymers. BIOSENSORS & BIOELECTRONICS: X 2024; 20:100513. [PMID: 39355372 PMCID: PMC11406148 DOI: 10.1016/j.biosx.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 10/03/2024]
Abstract
Phosphorylated Tau proteins are promising biomarkers for the diagnosis and prognosis of Alzheimer's disease. This study presents a novel voltametric sensor using a vanadium MXene polydopamine (VxPDA) redox active composite and a Tau-441-specific polyaniline molecularly imprinted polymer (PANI MIP) for the sensitive detection of Tau-441 in interstitial fluid (ISF) and plasma. The VxPDA/PANI MIP sensor demonstrates a broad detection range of 5 fg/mL to 5 ng/mL (122 aM/L to 122 pM/L) in ISF without the use of redox mediators, with a lower limit of detection (LOD) of 2.3 fg/mL (60 aM/L). Furthermore, a handheld device utilizing this technology successfully detects Tau-441 in artificial serum with high sensitivity (5 fg/mL to 150 fg/mL (122 aM/L to 366 aM/L)) and specificity within a clinically relevant range. The rapid detection time (∼32 min) and low cost (∼£20/device) of this sensor highlight its potential for minimally invasive, early AD diagnosis in clinical settings. This advancement aims to facilitate a transition away from invasive cerebrospinal fluid (CSF)-based diagnostic techniques for AD.
Collapse
Affiliation(s)
- Ajith Mohan Arjun
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| | - Sudhaunsh Deshpande
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| | - Tom Dunlop
- The Advanced Imaging of Materials (AIM) Facility, Faculty of Science and Engineering, Swansea University, UK
| | - Beth Norman
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| | - Daniela Oliviera
- CIETI - LabRISE-School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Georgeta Vulpe
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| | - Felismina Moreira
- CIETI - LabRISE-School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Sanjiv Sharma
- Dept. of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, UK
| |
Collapse
|
11
|
Elgenidy A, Gad EF, Shabaan I, Abdelrhem H, Wassef PG, Elmozugi T, Abdelfattah M, Mousa H, Nasr M, Salah-Eldin M, Altaweel A, Hussein A, Bazzazeh M, Elganainy MA, Ali AM, Ezzat M, Elhoufey A, Alatram AA, Hammour A, Saad K. Examining the association between autism spectrum disorder and atopic eczema: meta-analysis of current evidence. Pediatr Res 2024:10.1038/s41390-024-03456-1. [PMID: 39128926 DOI: 10.1038/s41390-024-03456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVES This study aims to investigate the association between autism spectrum disorder (ASD) and atopic eczema (AE), shedding light on potential associations and underlying mechanisms. METHODS A comprehensive review of literature was conducted to identify relevant studies published up to August 2023. Various electronic databases, including PubMed, Embase, Scopus, Web of Science, and Cochrane, were searched using specific keywords related to ASD and AE. RESULTS The meta-analysis covered a total of 30 studies. The first analysis included 23 studies with a combined total of 147430 eczema patients in the ASD group and 8895446 eczema patients in non-ASD group. We calculated the risk ratio of eczema in ASD and non-ASD groups, which revealed a significantly higher risk of eczema in patients with ASD (RR 1.34; 95% CI 1.03, 1.76). The second analysis included seven studies with a combined total of 3570449 ASD patients in the AE group and 3253973 in the non-Eczema group. The risk ratio of ASD in the Eczema and Non-Eczema groups showed an insignificantly increased risk of ASD in patients with eczema (RR 1.67; 95% CI 0.91, 3.06). CONCLUSION This study underscores the possible link between ASD and atopic eczema, shedding light on their potential association. IMPACT Our study conducted a meta-analysis on the association between autism spectrum disorder (ASD) and atopic eczema (AE), shedding light on potential associations and underlying mechanisms. The review we conducted covered a total of 30 studies. This study underscores the possible link between ASD and atopic eczema, shedding light on their potential association.
Collapse
Affiliation(s)
| | - Eman F Gad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Islam Shabaan
- Department of Psychiatry, Faculty of Medicine, Al Azhar University, Assiut, Egypt
| | | | | | - Taher Elmozugi
- Faculty of Medicine, Benghazi University, Benghazi, Libya
| | | | - Hisham Mousa
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Nasr
- Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| | | | - Ahmed Altaweel
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | | | - Ahmed M Ali
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Ezzat
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amira Elhoufey
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Abdulrahman A Alatram
- Department of Psychiatry, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Ahmed Hammour
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
12
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
13
|
Mo N, Yang Y, Wang W, Zhou P, Liu F, Zhang Y, Zhang J, Han L, Lu C. Causal associations between psoriasis, eczema, urticaria, and mental illness: A bidirectional Mendelian randomization study of the European population. Medicine (Baltimore) 2024; 103:e38586. [PMID: 38941419 PMCID: PMC11466097 DOI: 10.1097/md.0000000000038586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024] Open
Abstract
Observational studies have reported a relationship between multiple common dermatoses and mental illness. To assess the potential bidirectional causality between 3 skin disorders (psoriasis, eczema, and urticaria) and 4 psychiatric disorders (bipolar disorder, schizophrenia, major depressive disorder, and anxiety) in the European population, we used Mendelian randomization (MR) analysis, which provides definitive evidence for causal inference. Eligible single nucleotide polymorphisms were screened for dermatological and psychiatric disorders using a genome-wide association study database. We conducted bidirectional, 2-sample MR analysis using instrumental variables related to psoriasis, eczema, and urticaria as exposure factors, and bipolar disorder, schizophrenia, major depression, and anxiety as outcomes. Reverse MR analysis with bipolar disorder, schizophrenia, major depression, and anxiety as exposure and psoriasis, eczema, and urticaria as outcomes were also performed, and the causality was analyzed using inverse-variance weighting (IVW), MR-Egger, and weighted median methods. To thoroughly assess causality, sensitivity analyses were conducted using the IVW, MR-PRESSO, and MR-Egger methods. The results showed that bipolar disorder increased the incidence of psoriasis (odds ratio = 1.271, 95% confidence interval = 1.003-1.612, P = .047), heterogeneity test with Cochran Q test in the IVW showed P value > .05, (P = .302), the MR-Pleiotropy and MR-PRESSO (outlier methods) in the multiplicity test showed P value > .05, (P = .694; P = .441), and MR-Pleiotropy evidence showed no apparent intercept (intercept = -0.060; SE = 0.139; P = .694). Major depression increased the risk of eczema (odds ratio = 1.002, 95% confidence interval = 1.000-1.004, P = .024), heterogeneity test showed P value > .05, (P = .328), multiplicity detection showed P value > .05, (P = .572; P = .340), and MR-Pleiotropy evidence showed no apparent intercept (intercept = -0.099; SE = 0.162; P = .572). Sensitivity analyses of the above results were reliable, and no heterogeneity or multiplicity was found. This study demonstrated a statistically significant causality between bipolar disorder and psoriasis, major depression, and eczema in a European population, which could provide important information for physicians in the clinical management of common skin conditions.
Collapse
Affiliation(s)
- Nian Mo
- The Second Clinical College of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Wen Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Panyu Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Fanlu Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Yating Zhang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Junhong Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
- State Key Laboratory of TCM Moisture Syndrome at the Second Affiliated Hospital of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of TCM and Immune Disease Research in Guangzhou, Guangzhou, China
- Guangdong Province Hospital of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
- State Key Laboratory of TCM Moisture Syndrome at the Second Affiliated Hospital of Guangzhou University of Chinese Medicine in Guangzhou, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of TCM and Immune Disease Research in Guangzhou, Guangzhou, China
- Guangdong Province Hospital of Chinese Medicine in Guangzhou, Guangzhou, China
| |
Collapse
|
14
|
Nasim S, Bichsel C, Pinto A, Alexandrescu S, Kozakewich H, Bischoff J. Similarities and differences between brain and skin GNAQ p.R183Q driven capillary malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599711. [PMID: 38948880 PMCID: PMC11213000 DOI: 10.1101/2024.06.19.599711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Capillary malformations (CM) are congenital vascular irregularities of capillary and venous blood vessels that appear in the skin, leptomeninges of the brain, and the choroid of the eye in the disorder known as Sturge Weber Syndrome (SWS). More common are non-syndromic CM found only in the skin, without brain or ocular involvement. A somatic activating mutation in GNAQ (p.R183Q) is found in ~90% of syndromic and non-syndromic CM specimens and is present in CD31pos endothelial cells isolated from brain and skin CM specimens. Endothelial expression of the GNAQ p.R183Q variant is sufficient to form CM-like vessels in mice. Given the distinct features and functions of blood vessels in the brain versus the skin, we examined the features of CM vessels in both tissues to gain insights into the pathogenesis of CM. Herein, we present morphologic characteristics of CM observed in specimen from brain and skin. The GNAQ p.R183Q variant allelic frequency in each specimen was determined by droplet digital PCR. Sections were stained for endothelial cells, tight junctions, mural cells, and macrophages to assess the endothelium as well as perivascular constituents. CM blood vessels in brain and skin were enlarged, exhibited fibrin leakage and reduced zona occludin-1, and were surrounded by MRC1pos/LYVE1pos macrophages. In contrast, the CMs from brain and skin differ in endothelial sprouting activity and localization of mural cells. These characteristics might be helpful in the development of targeted and/or tissue specific therapies to prevent or reverse non-syndromic and syndromic CM.
Collapse
Affiliation(s)
- Sana Nasim
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Colette Bichsel
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Harry Kozakewich
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Boulton KA, Lee D, Honan I, Phillips NL, Morgan C, Crowle C, Novak I, Badawi N, Guastella AJ. Exploring early life social and executive function development in infants and risk for autism: a prospective cohort study protocol of NICU graduates and infants at risk for cerebral palsy. BMC Psychiatry 2024; 24:359. [PMID: 38745143 PMCID: PMC11092236 DOI: 10.1186/s12888-024-05779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Delays in early social and executive function are predictive of later developmental delays and eventual neurodevelopmental diagnoses. There is limited research examining such markers in the first year of life. High-risk infant groups commonly present with a range of neurodevelopmental challenges, including social and executive function delays, and show higher rates of autism diagnoses later in life. For example, it has been estimated that up to 30% of infants diagnosed with cerebral palsy (CP) will go on to be diagnosed with autism later in life. METHODS This article presents a protocol of a prospective longitudinal study. The primary aim of this study is to identify early life markers of delay in social and executive function in high-risk infants at the earliest point in time, and to explore how these markers may relate to the increased risk for social and executive delay, and risk of autism, later in life. High-risk infants will include Neonatal Intensive Care Unit (NICU) graduates, who are most commonly admitted for premature birth and/or cardiovascular problems. In addition, we will include infants with, or at risk for, CP. This prospective study will recruit 100 high-risk infants at the age of 3-12 months old and will track social and executive function across the first 2 years of their life, when infants are 3-7, 8-12, 18 and 24 months old. A multi-modal approach will be adopted by tracking the early development of social and executive function using behavioural, neurobiological, and caregiver-reported everyday functioning markers. Data will be analysed to assess the relationship between the early markers, measured from as early as 3-7 months of age, and the social and executive function as well as the autism outcomes measured at 24 months. DISCUSSION This study has the potential to promote the earliest detection and intervention opportunities for social and executive function difficulties as well as risk for autism in NICU graduates and/or infants with, or at risk for, CP. The findings of this study will also expand our understanding of the early emergence of autism across a wider range of at-risk groups.
Collapse
Affiliation(s)
- Kelsie A Boulton
- Clinic for Autism and Neurodevelopmental (CAN) research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Dabin Lee
- Clinic for Autism and Neurodevelopmental (CAN) research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Ingrid Honan
- Cerebral Palsy Alliance Institute, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Natalie L Phillips
- Clinic for Autism and Neurodevelopmental (CAN) research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Catherine Morgan
- Cerebral Palsy Alliance Institute, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Cathryn Crowle
- Grace Centre for Newborn Intensive Care, Sydney Children's Hospital Network, Sydney, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Institute, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Nadia Badawi
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
- Cerebral Palsy Alliance Institute, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
- Grace Centre for Newborn Intensive Care, Sydney Children's Hospital Network, Sydney, Australia
| | - Adam J Guastella
- Clinic for Autism and Neurodevelopmental (CAN) research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia.
| |
Collapse
|
16
|
Kim HS, Jung H, Park YH, Heo SH, Kim S, Moon M. Skin-brain axis in Alzheimer's disease - Pathologic, diagnostic, and therapeutic implications: A Hypothetical Review. Aging Dis 2024; 16:901-916. [PMID: 38739932 PMCID: PMC11964427 DOI: 10.14336/ad.2024.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
The dynamic interaction between the brain and the skin is termed the 'skin-brain axis.' Changes in the skin not only reflect conditions in the brain but also exert direct and indirect effects on the brain. Interestingly, the connection between the skin and brain is crucial for understanding aging and neurodegenerative diseases. Several studies have shown an association between Alzheimer's disease (AD) and various skin disorders, such as psoriasis, bullous pemphigoid, and skin cancer. Previous studies have shown a significantly increased risk of new-onset AD in patients with psoriasis. In contrast, skin cancer may reduce the risk of developing AD. Accumulating evidence suggests an interaction between skin disease and AD; however, AD-associated pathological changes mediated by the skin-brain axis are not yet clearly defined. While some studies have reported on the diagnostic implications of the skin-brain axis in AD, few have discussed its potential therapeutic applications. In this review, we address the pathological changes mediated by the skin-brain axis in AD. Furthermore, we summarize (1) the diagnostic implications elucidated through the role of the skin-brain axis in AD and (2) the therapeutic implications for AD based on the skin-brain axis. Our review suggests that a potential therapeutic approach targeting the skin-brain axis will enable significant advances in the treatment of AD.
Collapse
Affiliation(s)
- Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Su-Hak Heo
- Department of Medicinal Bioscience, Konkuk University (Glocal Campus), Chungcheongbuk-do 27478, Korea.
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon 35365, Korea.
| |
Collapse
|
17
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
18
|
Huang H, Zhang KP, Sun KK, Yu G. Association between type 2 inflammatory diseases and neurodevelopmental disorders in low-birth-weight children and adolescents. Front Psychol 2024; 15:1292071. [PMID: 38455122 PMCID: PMC10918750 DOI: 10.3389/fpsyg.2024.1292071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Background Evidence of the association of certain neurodevelopmental disorder with specific type 2 inflammatory (T2) disease has been found. However, the association of various neurodevelopmental disorders with T2 diseases as a whole remains unclear in low-birth-weight (LBW) infants. Objective To evaluate the association of type 2 inflammatory (T2) diseases with intellectual disability (ID), autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and learning disability (LD) in LBW children and adolescents. Methods The study sample was derived from 2005 to 2018 National Health Interview Survey sample child files. LBW children and adolescents aged 3-17 were included. History of T2 diseases (including asthma and atopic dermatitis) and four neurodevelopmental disorders were reported by adults in families. The relationship between T2 diseases and the risk of four neurodevelopmental disorders was investigated through multiple-weighted logistic regression. Age, sex, race/ethnicity, region, highest education in family and ratio of family income to the poverty threshold were adjusted as covariates for model estimation. Subgroup analyses were conducted by age stratification (3-11 and 12-17 years), sex (male and female), and race (white and non-white). Results 11,260 LBW children aged 3-17 years [mean age (SE), 9.73 (0.05) years] were included, in which 3,191 children had T2 diseases. History of T2 diseases was associated with an increased risk of neurodevelopmental disorders, with an OR of 1.35 (95% CI, 0.99-1.84) for ID, 1.47 (95% CI, 1.05-2.05) for ASD, 1.81 (95% CI, 1.51-2.16) for ADHD, and 1.74 (95% CI, 1.49-2.04) for LD following the adjustment of all the covariates. The correlations between T2 disorders and each of the four neurodevelopmental disorders were significantly different by sex and race (all P for interaction < 0.001), and no differences were found in age stratification (all P for interaction > 0.05). Conclusion In a nationally representative sample of children, we found a significant association of T2 diseases with ASD, ADHD, and LD, even after adjusting for demographic baseline. We also found that the association of T2 disease with neurodevelopmental disorders differed between sex and race. Further investigation is needed to evaluate causal relationships and elucidate their potential mechanisms.
Collapse
Affiliation(s)
- Hengye Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kelvin Pengyuan Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Karol Kexin Sun
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Guangjun Yu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Zhao T, Chang X, Biswas SK, Balsbaugh JL, Liddle J, Chen MH, Matson AP, Alder NN, Cong X. Pain/Stress, Mitochondrial Dysfunction, and Neurodevelopment in Preterm Infants. Dev Neurosci 2024; 46:341-352. [PMID: 38286121 PMCID: PMC11284246 DOI: 10.1159/000536509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Preterm infants experience tremendous early life pain/stress during their neonatal intensive care unit (NICU) hospitalization, which impacts their neurodevelopmental outcomes. Mitochondrial function/dysfunction may interface between perinatal stress events and neurodevelopment. Nevertheless, the specific proteins or pathways linking mitochondrial functions to pain-induced neurodevelopmental outcomes in infants remain unidentified. Our study aims to investigate the associations among pain/stress, proteins associated with mitochondrial function/dysfunction, and neurobehavioral responses in preterm infants. METHODS We conducted a prospective cohort study, enrolling 33 preterm infants between September 2017 and July 2022 at two affiliated NICUs located in Hartford and Farmington, CT. NICU Network Neurobehavioral Scale (NNNS) datasets were evaluated to explore potential association with neurobehavioral outcomes. The daily pain/stress experienced by infant's during their NICU stay was documented. At 36-38 weeks post-menstrual age (PMA), neurobehavioral outcomes were evaluated using the NNNS and buccal swabs were collected for further analysis. Mass spectrometry-based proteomics was conducted on epithelial cells obtained from buccal swabs to evaluate protein expression level. Lasso statistical methods were conducted to study the association between protein abundance and infants' NNNS summary scores. Multiple linear regression and Gene Ontology (GO) enrichment analyses were performed to examine how clinical characteristics and neurodevelopmental outcomes may be associated with protein levels and underlying molecular pathways. RESULTS During NICU hospitalization, preterm premature rupture of membrane (PPROM) was negatively associated with neurobehavioral outcomes. The protein functions including leptin receptor binding activity, glutathione disulfide oxidoreductase activity and response to oxidative stress, lipid metabolism, and phosphate and proton transmembrane transporter activity were negatively associated with neurobehavioral outcomes; in contrast, cytoskeletal regulation, epithelial barrier, and protection function were found to be associated with the optimal neurodevelopmental outcomes. In addition, mitochondrial function-associated proteins including SPRR2A, PAIP1, S100A3, MT-CO2, PiC, GLRX, PHB2, and BNIPL-2 demonstrated positive association with favorable neurodevelopmental outcomes, while proteins of ABLIM1, UNC45A, keratins, MUC1, and CYB5B showed positive association with adverse neurodevelopmental outcomes. CONCLUSION Mitochondrial function-related proteins were observed to be associated with early life pain/stress and neurodevelopmental outcomes in infants. Large-scale studies with longitudinal datasets are warranted. Buccal proteins could be used to predict potential neurobehavioral outcomes.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Nursing, Yale University, Orange, Connecticut, USA,
| | - Xiaolin Chang
- Department of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Subrata Kumar Biswas
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer Liddle
- Proteomics and Metabolomics Facility, University of Connecticut, Storrs, Connecticut, USA
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Adam P Matson
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Xiaomei Cong
- School of Nursing, Yale University, Orange, Connecticut, USA
| |
Collapse
|
20
|
Wang H, Duan C, Keate RL, Ameer GA. Panthenol Citrate Biomaterials Accelerate Wound Healing and Restore Tissue Integrity. Adv Healthc Mater 2023; 12:e2301683. [PMID: 37327023 PMCID: PMC11468745 DOI: 10.1002/adhm.202301683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Impaired wound healing is a common complication for diabetic patients and effective diabetic wound management remains a clinical challenge. Furthermore, a significant problem that contributes to patient morbidity is the suboptimal quality of healed skin, which often leads to reoccurring chronic skin wounds. Herein, a novel compound and biomaterial building block, panthenol citrate (PC), is developed. It has interesting fluorescence and absorbance properties, and it is shown that PC can be used in soluble form as a wash solution and as a hydrogel dressing to address impaired wound healing in diabetes. PC exhibits antioxidant, antibacterial, anti-inflammatory, and pro-angiogenic properties, and promotes keratinocyte and dermal fibroblast migration and proliferation. When applied in a splinted excisional wound diabetic rodent model, PC improves re-epithelialization, granulation tissue formation, and neovascularization. It also reduces inflammation and oxidative stress in the wound environment. Most importantly, it improves the regenerated tissue quality with enhanced mechanical strength and electrical properties. Therefore, PC could potentially improve wound care management for diabetic patients and play a beneficial role in other tissue regeneration applications.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Chongwen Duan
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Rebecca L. Keate
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Guillermo A. Ameer
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of SurgeryFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- International Institute for NanotechnologyNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
21
|
Ullah R, Lee EJ. Advances in Amyloid-β Clearance in the Brain and Periphery: Implications for Neurodegenerative Diseases. Exp Neurobiol 2023; 32:216-246. [PMID: 37749925 PMCID: PMC10569141 DOI: 10.5607/en23014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
This review examines the role of impaired amyloid-β clearance in the accumulation of amyloid-β in the brain and the periphery, which is closely associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The molecular mechanism underlying amyloid-β accumulation is largely unknown, but recent evidence suggests that impaired amyloid-β clearance plays a critical role in its accumulation. The review provides an overview of recent research and proposes strategies for efficient amyloid-β clearance in both the brain and periphery. The clearance of amyloid-β can occur through enzymatic or non-enzymatic pathways in the brain, including neuronal and glial cells, blood-brain barrier, interstitial fluid bulk flow, perivascular drainage, and cerebrospinal fluid absorption-mediated pathways. In the periphery, various mechanisms, including peripheral organs, immunomodulation/immune cells, enzymes, amyloid-β-binding proteins, and amyloid-β-binding cells, are involved in amyloid-β clearance. Although recent findings have shed light on amyloid-β clearance in both regions, opportunities remain in areas where limited data is available. Therefore, future strategies that enhance amyloid-β clearance in the brain and/or periphery, either through central or peripheral clearance approaches or in combination, are highly encouraged. These strategies will provide new insight into the disease pathogenesis at the molecular level and explore new targets for inhibiting amyloid-β deposition, which is central to the pathogenesis of sporadic AD (amyloid-β in parenchyma) and CAA (amyloid-β in blood vessels).
Collapse
Affiliation(s)
- Rahat Ullah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
22
|
Klostermeier S, Li A, Hou HX, Green U, Lennerz JK. Exploring the Skin Brain Link: Biomarkers in the Skin with Implications for Aging Research and Alzheimer's Disease Diagnostics. Int J Mol Sci 2023; 24:13309. [PMID: 37686115 PMCID: PMC10487444 DOI: 10.3390/ijms241713309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are challenging to diagnose. Currently the field must rely on imperfect diagnostic modalities. A recent study identified differences in several key bio-mechano-physiological parameters of the skin between AD patients and healthy controls. Here, we visually align these differences with the relevant histological, aging, and embryological paradigms to raise awareness for these potential biomarkers. In a study conducted by Wu et al., a series of n = 41 patients (n = 29 with AD and n = 12 healthy controls) were evaluated, demonstrating that AD patients exhibit a less acidic skin pH, increased skin hydration, and reduced skin elasticity compared to healthy controls. We constructed a visual overview and explored the relevant paradigms. We present a visual comparison of these factors, highlighting four paradigms: (1) the findings emphasize a shared ectodermal origin of the brain and the skin; (2) functional systems such as micro-vascularization, innervation, eccrine excretory functions, and the extracellular matrix undergo distinct changes in patients with AD; (3) the human skin mirrors the alterations in brain stiffness observed in aging studies; (4) assessment of physiological features of the skin is cost-effective, accessible, and easily amenable for monitoring and integration with cognitive assessment studies. Understanding the relationship between aging skin and aging brain is an exciting frontier, holding great promise for improved diagnostics. Further prospective and larger-scale investigations are needed to solidify the brain-skin link and determine the extent to which this relationship can be leveraged for diagnostic applications.
Collapse
Affiliation(s)
- Stefanie Klostermeier
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Annie Li
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.L.); (H.X.H.); (U.G.)
| | - Helen X. Hou
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.L.); (H.X.H.); (U.G.)
| | - Ula Green
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.L.); (H.X.H.); (U.G.)
| | - Jochen K. Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.L.); (H.X.H.); (U.G.)
| |
Collapse
|
23
|
Sillevis R, Cuenca-Zaldívar JN, Fernández-Carnero S, García-Haba B, Sánchez Romero EA, Selva-Sarzo F. Neuromodulation of the Autonomic Nervous System in Chronic Low Back Pain: A Randomized, Controlled, Crossover Clinical Trial. Biomedicines 2023; 11:1551. [PMID: 37371646 DOI: 10.3390/biomedicines11061551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic pain is a societal concern influencing the autonomic nervous system. This system can be captured with automated pupillometry. The direct connection between the epidermal cells and the brain is presented as part of the central nervous system, reflecting the modulation of the autonomic system. This study's aim was to investigate if tape containing magnetic particles (TCMP) has an immediate effect on the autonomic nervous system (ANS) and influences chronic low back pain. Twenty-three subjects completed this study. Subjects were randomized to either receive the control tape (CT) or TCMP first. Each subject underwent a pain provocative pressure test on the spinous process, followed by the skin pinch test and automated pupillometry. Next, the TCMP/control tape was applied. After tape removal, a second provocative spinous process pressure test and skin pinch test were performed. Subjects returned for a second testing day to receive the other tape application. The results demonstrate that TCMP had an immediate significant effect on the autonomic nervous system and resulted in decreased chronic lower back pain. We postulate that this modulation by TCMP s has an immediate effect on the autonomic system and reducing perceived pain, opening a large field of future research.
Collapse
Affiliation(s)
- Rob Sillevis
- Department of Rehabilitation Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Juan Nicolás Cuenca-Zaldívar
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de Investigación en Fisioterapia y Dolor, 28801 Alcalá de Henares, Spain
- Research Group in Nursing and Health Care, Puerta de Hierro Health Research Institute-Segovia de Arana (IDIPHISA), 28222 Majadahonda, Spain
- Physical Therapy Unit, Primary Health Care Center "El Abajón", 28231 Las Rozas de Madrid, Spain
- Interdisciplinary Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Samuel Fernández-Carnero
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de Investigación en Fisioterapia y Dolor, 28801 Alcalá de Henares, Spain
- Interdisciplinary Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | - Eleuterio A Sánchez Romero
- Interdisciplinary Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Physiotherapy and Orofacial Pain Working Group, Sociedad Española de Disfunción Craneomandibular y Dolor Orofacial (SEDCYDO), 28009 Madrid, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
| | | |
Collapse
|