1
|
Poggi G, Treccani G, von der Bey M, Tanti A, Schmeisser MJ, Müller M. Canonical and non-canonical roles of oligodendrocyte precursor cells in mental disorders. NPJ MENTAL HEALTH RESEARCH 2025; 4:19. [PMID: 40374740 DOI: 10.1038/s44184-025-00133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025]
Abstract
Psychiatric research has shifted from a neuroncentric view to understanding mental disorders as disturbances of heterogeneous brain networks. Oligodendrocyte precursor cells (OPCs)- actively involved in the modulation of neuronal functions - are altered in psychiatric patients, but the extent and related consequences are unclear. This review explores canonical and non-canonical OPC-related pathways in schizophrenia, bipolar disorder, post-traumatic stress disorder, and depression in humans, highlighting potential mechanisms shared across diagnostic entities.
Collapse
Affiliation(s)
- Giulia Poggi
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Giulia Treccani
- Department of Systemic Neuroscience Institute of Anatomy and Cell Biology, Philipps Universität Marburg, Marburg, Germany
| | - Martina von der Bey
- Molecular and Translational Neuroscience, Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Arnaud Tanti
- Inserm, UMR 1253, iBrain, Université de Tours, Tours, France
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marianne Müller
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
2
|
Tizabi Y, Antonelli MC, Tizabi D, Aschner M. Role of Glial Cells and Receptors in Schizophrenia Pathogenesis. Neurochem Res 2025; 50:85. [PMID: 39869278 DOI: 10.1007/s11064-025-04336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr. Arne Schousboe's passion) and two of their most implicated receptors, toll-like receptors (TLRs), and nicotinic cholinergic receptors, in SCZ pathology with suggestions as potential targets in this devastating neuropsychiatric condition.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| | - Marta C Antonelli
- Facultad de Medicina, UBA, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Buenos Aires, Argentina
| | - Daniela Tizabi
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Liu Y, Wei C, Yang Y, Zhu Z, Ren Y, Pi R. In situ chemical reprogramming of astrocytes into neurons: A new hope for the treatment of central neurodegenerative diseases? Eur J Pharmacol 2024; 982:176930. [PMID: 39179093 DOI: 10.1016/j.ejphar.2024.176930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
Central neurodegenerative disorders (e.g. Alzheimer's disease (AD) and Parkinson's disease (PD)) are tightly associated with extensive neuron loss. Current therapeutic interventions merely mitigate the symptoms of these diseases, falling short of addressing the fundamental issue of neuron loss. Cell reprogramming, involving the transition of a cell from one gene expression profile to another, has made significant strides in the conversion between diverse somatic cell types. This advancement has been facilitated by gene editing techniques or the synergistic application of small molecules, enabling the conversion of glial cells into functional neurons. Despite this progress, the potential for in situ reprogramming of astrocytes in treating neurodegenerative disorders faces challenges such as immune rejection and genotoxicity. A novel avenue emerges through chemical reprogramming of astrocytes utilizing small molecules, circumventing genotoxic effects and unlocking substantial clinical utility. Recent studies have successfully demonstrated the in situ conversion of astrocytes into neurons using small molecules. Nonetheless, these findings have sparked debates, encompassing queries regarding the origin of newborn neurons, pivotal molecular targets, and alterations in metabolic pathways. This review succinctly delineates the background of astrocytes reprogramming, meticulously surveys the principal classes of small molecule combinations employed thus far, and examines the complex signaling pathways they activate. Finally, this article delves into the potential vistas awaiting exploration in the realm of astrocytes chemical reprogramming, heralding a promising future for advancing our understanding and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Cailv Wei
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zeyu Zhu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Ren
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Rongbiao Pi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Shenzhen, 518107, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
5
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
6
|
Yamada J, Maeda S, Tojo M, Hayashida M, Iinuma KM, Jinno S. Altered regulation of oligodendrocytes associated with parvalbumin neurons in the ventral hippocampus underlies fear generalization in male mice. Neuropsychopharmacology 2023; 48:1668-1679. [PMID: 37277574 PMCID: PMC10516901 DOI: 10.1038/s41386-023-01611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Fear generalization is a neurobiological process by which an organism interprets a novel stimulus as threatening because of its similarity to previously learned fear-inducing stimuli. Because recent studies have suggested that the communication between oligodendrocyte precursor cells (OPCs) and parvalbumin (PV)-expressing GABAergic neurons (PV neurons) may play critical roles in stress-related disorders, we examined the involvement of these cells in fear generalization. We first tested the behavioral characteristics of mouse models for conventional fear conditioning (cFC) and modified FC (mFC) with severe electric foot shocks and found that fear generalization was observed in mice treated with mFC but not in mice treated with cFC. The expression levels of genes related to OPCs, oligodendrocytes (OLs), and myelin in the ventral hippocampus were lower in mFC mice than in cFC mice. The densities of OPCs and OLs were decreased in the ventral hippocampus of mFC mice compared to cFC mice. The myelination ratios of PV neurons in the ventral hippocampus were lower in mFC mice than in cFC mice. The chemogenetic activation of PV neurons in the ventral hippocampus of mFC mice reduced fear generalization. The expression levels of genes related to OPCs, OLs, and myelin were recovered following the activation of PV neurons. Finally, the myelination ratios of PV neurons were increased after the activation of PV neurons. Our results suggest that altered regulation of OLs specifically associated with axons of PV neurons in the ventral hippocampus may underlie the generalization of remote fear memory following severe stress exposure.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miori Tojo
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miyuki Hayashida
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Belliveau C, Mechawar N, Tanti A. Reply to: "NG2-glia: rising stars in stress-related mental disorders?". Mol Psychiatry 2023; 28:521-522. [PMID: 36481933 DOI: 10.1038/s41380-022-01889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada. .,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, McGill University, Montréal, QC, Canada.
| | - Arnaud Tanti
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France.
| |
Collapse
|