1
|
Zhou Y, Li N, Fan X, Xu M, Wang B. Intranasal streptococcal infection exacerbates psoriasis-like dermatitis via the induction of skin tissue-resident memory T cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166629. [PMID: 36563916 DOI: 10.1016/j.bbadis.2022.166629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Recurrent streptococcal tonsillitis exacerbates psoriasis. Studies have indicated that T cells responding to streptococcal antigens in the skin are involved in the pathogenesis of the disease. However, a direct link between streptococcal tonsillitis and psoriasis has not been evidenced. In the present study, the impact of intranasal (i.n.) streptococcal infection on psoriasis was investigated using the imiquimod (IMQ) psoriasis mouse model. The results showed that repeated i.n. infection with group A Streptococcus (GAS) induced a robust and persistent Th17 response in the nasal-associated lymphoid tissue (NALT) and exacerbated IMQ-mediated psoriatic skin lesions. ELISpot and flow cytometry analyses revealed that GAS-reactive tissue-resident memory T cells (TRM) were present in the skin of GAS-infected mice and produced IL-17/IL-23 axis cytokines in response to IMQ, compared to mice uninfected with GAS. In addition, i.n. infection with Streptococcus pneumoniae (Sp), a pathogen not associated with the development of psoriasis, also induced a persistent Th17 response in NALT but did not exacerbate IMQ-induced psoriatic inflammation nor elicited Sp-specific T cells in the skin. The results provide in vivo evidence that GAS-associated psoriasis is dependent on the skin GAS-specific TRM cells induced by GAS nasopharyngeal infection and can be later activated by environmental triggers, leading to psoriatic inflammation. Reducing the reservoir of Th17 cells, which are source of skin TRM cells, may constitute a promising treatment for psoriasis.
Collapse
Affiliation(s)
- Ya Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Meiyi Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Beinan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Xu R, Jacques LC, Khandaker S, Beentjes D, Leon-Rios M, Wei X, French N, Neill DR, Kadioglu A. TNFR2 + regulatory T cells protect against bacteremic pneumococcal pneumonia by suppressing IL-17A-producing γδ T cells in the lung. Cell Rep 2023; 42:112054. [PMID: 36724074 DOI: 10.1016/j.celrep.2023.112054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen of global morbidity and mortality. Pneumococcal pneumonia can lead to systemic infections associated with high rates of mortality. We find that, upon pneumococcal infection, pulmonary Treg cells are activated and have upregulated TNFR2 expression. TNFR2-deficient mice have compromised Treg cell responses and highly activated IL-17A-producing γδ T cell (γδT17) responses, resulting in significantly enhanced neutrophil infiltration, tissue damage, and rapid development of bacteremia, mirroring responses in Treg cell-depleted mice. Deletion of total Treg cells predominantly activate IFNγ-T cell responses, whereas adoptive transfer of TNFR2+ Treg cells specifically suppress the γδT17 response, suggesting a targeted control of γδT17 activation by TNFR2+ Treg cells. Blocking IL-17A at early stage of infection significantly reduces bacterial blood dissemination and improves survival in TNFR2-deficient mice. Our results demonstrate that TNFR2 is critical for Treg cell-mediated regulation of pulmonary γδT17-neutrophil axis, with impaired TNFR2+ Treg cell responses increasing susceptibility to disease.
Collapse
Affiliation(s)
- Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Daan Beentjes
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Miguel Leon-Rios
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Xiaoqing Wei
- Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK.
| |
Collapse
|
3
|
Intranasal administration of abatacept enhances IL-35+ and IL-10+ producing Bregs in lung tissues of ovalbumin-sensitized asthmatic mice model. PLoS One 2022; 17:e0271689. [PMID: 36067164 PMCID: PMC9447931 DOI: 10.1371/journal.pone.0271689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Backgrounds Treating asthmatic rheumatoid arthritis patients with abatacept has been shown to associate with better control of asthma symptoms. However, the mechanism behind that is not investigated. Methods Ovalbumin (OVA)- sensitized BALB/c female mice were treated intranasally (IN) or intraperitoneally (IP) with abatacept 4 hrs before the OVA challenge. The effects of abatacept IN or IP on the lungs and blood levels of Tregs and Bregs and their production of immunosuppressive cytokines, were determined using FACS analysis and ELISA assay. Results Treating OVA- sensitized asthmatic mice model with abatacept, IN or IP, reduced lung inflammation. IN treatment with abatacept increased the frequency of IL-35 and IL-10 producing Bregs in the lung tissues to a higher level compared to IP treatment. Moreover, the frequency of lungs LAG3+ Tregs was significantly increased following treatment. This was also associated with a reduction in lung tissue and serum IL-17 levels of treated mice. Conclusions These results suggest that abatacept by enhancing IL-35+IL-10+ Bregs and LAG3+ Tregs might reverse IL-17 induced lung inflammation during asthma.
Collapse
|
4
|
Staphylococcus aureus-induced immunosuppression mediated by IL-10 and IL-27 facilitates nasal colonisation. PLoS Pathog 2022; 18:e1010647. [PMID: 35776778 PMCID: PMC9282462 DOI: 10.1371/journal.ppat.1010647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/14/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus persistently colonises the anterior nares of a significant proportion of the healthy population, however the local immune response elicited during S. aureus nasal colonisation remains ill-defined. Local activation of IL-17/IL-22 producing T cells are critical for controlling bacterial clearance from the nasal cavity. However, recurrent and long-term colonisation is commonplace indicating efficient clearance does not invariably occur. Here we identify a central role for the regulatory cytokine IL-10 in facilitating bacterial persistence during S. aureus nasal colonisation in a murine model. IL-10 is produced rapidly within the nasal cavity following S. aureus colonisation, primarily by myeloid cells. Colonised IL-10-/- mice demonstrate enhanced IL-17+ and IL-22+ T cell responses and more rapidly clear bacteria from the nasal tissues as compared with wild-type mice. S. aureus also induces the regulatory cytokine IL-27 within the nasal tissue, which acts upstream of IL-10 promoting its production. IL-27 blockade reduces IL-10 production within the nasal cavity and improves bacterial clearance. TLR2 signalling was confirmed to be central to controlling the IL-10 response. Our findings conclude that during nasal colonisation S. aureus creates an immunosuppressive microenvironment through the local induction of IL-27 and IL-10, to dampen protective T cell responses and facilitate its persistence. Nasal colonisation by the bacterium Staphylococcus aureus is a very common occurrence in the human population. However there is a lack of knowledge on the immune response that controls nasal colonisation. It is known that a local pro-inflammatory immune response is important for bacterial clearance, however sustained colonisation is commonplace suggesting efficient clearance may not be occurring. Here we demonstrate for the first time that S. aureus is manipulating the host immune response by promoting immunosuppression in the nasal cavity which enables bacterial survival. We found that the regulatory proteins IL-10 and IL-27 are central to this suppressive response and result in reduced protective T cell responses. We also demonstrate that S. aureus is inducing IL-27 production to enhance IL-10 production in order to prolong bacterial colonisation. Our findings show that the host-pathogen interaction during nasal colonisation is more complex than previously described and that S. aureus is capable of manipulating the regulatory immune response of the host for its’ own benefit.
Collapse
|
5
|
Tang Y, Ma T, Jia S, Zhang Q, Liu S, Qi L, Yang L. The Mechanism of Interleukin-35 in Chronic Hepatitis B. Semin Liver Dis 2021; 41:516-524. [PMID: 34233371 DOI: 10.1055/s-0041-1731708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interleukin-35 (IL-35) is a newly identified inhibitory cytokine. It has recently been found to play an extremely important role in chronic hepatitis B disease, which makes it likely to be a target for new therapies for hepatitis B malady. IL-35 modulates a variety of immune mechanisms to cause persistent viral infections, such as affecting the ratio of helper T cells, reducing the activity of cytotoxic T cells, hindering the antigen presentation capacity for dendritic cells, and increasing the transcription level of hepatitis B virus. On the other hand, IL-35 can control the inflammation caused by hepatitis B liver injury. Therefore, to seek a breakthrough in curing hepatitis B disease, the contradictory part of IL-35 in the occurrence and development of this sickness is worthy of further discussion and research. This article will systematically review the biological effects of IL-35 and the specific mechanisms affecting the disease.
Collapse
Affiliation(s)
- Ying Tang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Tianyi Ma
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Shengnan Jia
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Qian Zhang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Siqi Liu
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Ling Qi
- Department of Core Medical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lanlan Yang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
6
|
Deacy AM, Gan SKE, Derrick JP. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Front Immunol 2021; 12:731845. [PMID: 34616400 PMCID: PMC8488440 DOI: 10.3389/fimmu.2021.731845] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Superantigens are unconventional antigens which recognise immune receptors outside their usual recognition sites e.g. complementary determining regions (CDRs), to elicit a response within the target cell. T-cell superantigens crosslink T-cell receptors and MHC Class II molecules on antigen-presenting cells, leading to lymphocyte recruitment, induction of cytokine storms and T-cell anergy or apoptosis among many other effects. B-cell superantigens, on the other hand, bind immunoglobulins on B-cells, affecting opsonisation, IgG-mediated phagocytosis, and driving apoptosis. Here, through a review of the structural basis for recognition of immune receptors by superantigens, we show that their binding interfaces share specific physicochemical characteristics when compared with other protein-protein interaction complexes. Given that antibody-binding superantigens have been exploited extensively in industrial antibody purification, these observations could facilitate further protein engineering to optimize the use of superantigens in this and other areas of biotechnology.
Collapse
Affiliation(s)
- Anthony M. Deacy
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre – Bioinformatics Institute (EDDC-BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore
- James Cook University, Singapore, Singapore
| | - Jeremy P. Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Williams A, Rogers H, Williams D, Wei XQ, Farnell D, Wozniak S, Jones A. Higher Number of EBI3 Cells in Mucosal Chronic Hyperplastic Candidiasis May Serve to Regulate IL-17-Producing Cells. J Fungi (Basel) 2021; 7:jof7070533. [PMID: 34209407 PMCID: PMC8306506 DOI: 10.3390/jof7070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Previous research into the inflammatory cell infiltrate of chronic hyperplastic candidosis (CHC) determined that the immune response is primarily composed of T cells, the majority of which are T helper (CD4+) cells. This present investigation used immunohistochemistry to further delineate the inflammatory cell infiltrate in CHC. Cells profiled were those expressing IL-17A cytokine, EBI3 and IL-12A subunits of the IL-35 cytokine, and FoxP3+ cells. Squamous cell papilloma (with Candida infection) and oral lichen planus tissues served as comparative controls to understand the local immune responses to Candida infection. The results demonstrated that Candida-induced inflammation and immune regulation co-exist in the oral mucosa of CHC and that high prevalence of cells expressing the EBI3 cytokine subunit may play an important role in this regulation. This balance between inflammation and immune tolerance toward invading Candida in the oral mucosa may be critical in determining progress of infection.
Collapse
Affiliation(s)
- Ailish Williams
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (A.W.); (X.-Q.W.); (D.F.)
| | - Helen Rogers
- Bristol Dental School, Lower Maudlin Street, Bristol BS1 3NU, UK;
| | - David Williams
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (A.W.); (X.-Q.W.); (D.F.)
- Correspondence:
| | - Xiao-Qing Wei
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (A.W.); (X.-Q.W.); (D.F.)
| | - Damian Farnell
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (A.W.); (X.-Q.W.); (D.F.)
| | - Sue Wozniak
- Dental Hospital, University Hospital of Wales, Heath Park, Cardiff CF14 4XY, UK; (S.W.); (A.J.)
| | - Adam Jones
- Dental Hospital, University Hospital of Wales, Heath Park, Cardiff CF14 4XY, UK; (S.W.); (A.J.)
| |
Collapse
|