1
|
Zhong M, Hou W, Liu Z, Wang F, Yang J, Xu Y, Long X, Chen Y, Kang Y, Wang Y, Wang Y, Zhang M, Yang J. Temporal dynamic changes of intrinsic brain regional activity in depression with smoking. J Affect Disord 2025; 377:175-183. [PMID: 39988134 DOI: 10.1016/j.jad.2025.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Depression is often accompanied by high levels of smoking behavior, and smoking can act as a risk factor for depression. However, there is limited neuroimaging evidence regarding the association between depression and smoking, especially the impact of this association on the brain stability remains unclear. Therefore, this study aimed to assess the interaction effect between smoking and depression from a neurodynamic perspective. METHOD We assessed the resting-state functional magnetic resonance imaging from 193 participants (55 depressed smokers; 51 depressed non-smokers; 25 healthy smokers; 62 healthy non-smokers) and calculated 3 regional activity dynamic indicators, including dynamic regional homogeneity (dReHo), dynamic amplitude of low-frequency fluctuations (dALFF), and dynamic fractional ALFF (dfALFF). Principal component analysis was conducted on these 3 dynamic indicators, and the first component was extracted for the subsequent 2 × 2 factor designs statistical analysis. RESULT We observed the interaction between smoking and depression increases the instability of regional activity in the precentral gyrus and precuneus. Compared with HCs, patients with depression showed increased instability of regional activity across widespread regions such as the precentral gyrus, thalamus, and medial frontal gyrus. No main effects of smoking were observed. In depressed smokers, the instability of regional activity in left precuneus is positively correlated with anxiety symptoms. CONCLUSIONS Our findings indicate that smoking potentially exacerbates brain abnormal instability in depression, implying a clinical need to require patients with depression to abstain from smoking.
Collapse
Affiliation(s)
- Maoxing Zhong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wenfei Hou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feiwen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - YiFan Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xinrui Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yaxuan Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yiping Kang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuxi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yiju Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Miao Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Alwesmi MB, Hawamdeh S, Alotaibi SF, Alfohaid MA, Alharbi FM, Alghamdi NA, Alghamdi JK, Aseeri FA, Alqhatani RA, Saleh A. Exploring the association between anhedonia and nicotine dependence: A study among female undergraduate students in Saudi Arabia. Tob Induc Dis 2025; 23:TID-23-52. [PMID: 40309026 PMCID: PMC12042275 DOI: 10.18332/tid/203551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
INTRODUCTION Nicotine dependence and its psychological foundations, including anhedonia, are major public health issues, especially among young adults. There is a dearth of knowledge regarding nicotine dependence and anhedonia especially among female young adults. Thus, this study aimed to investigate the associations between anhedonia and nicotine dependence among female undergraduate students. METHODS A cross-sectional study was conducted in March 2024, among 449 female undergraduate students, in Saudi Arabia. Data were collected using the Fagerström test for nicotine dependence (FTND) and the Snaith-Hamilton Pleasure Scale (SHAPS). RESULTS A total of 449 female undergraduate students participated in the study. The majority were aged 18-20 years (62.8%). The study found that 11.4% of participants reported nicotine use, primarily e-cigarettes (66.7%). Nicotine users reported higher parental [45.1% vs 26.4%, χ2(1)=7.770, p=0.005] and sibling nicotine use [52.9% vs 30.7%, χ2(1)=17.992, p=0.001]. Mental health conditions were more prevalent in nicotine users [39.2% vs 15.1%, χ2(1)=17.992, p<0.001]. Logistic regression identified mental health conditions (OR=4.44, p<0.001), sibling nicotine use (OR=2.37, p=0.006), and parental nicotine use (OR=2.27, p=0.01) as key predictors of nicotine use. Anhedonia was present in 19.8% of participants, associated with mental health conditions [38.2% vs 12.8%, χ2(1)=31.501, p<0.001], nicotine use [27% vs 7.5%, χ2(1)=8.309, p=0.005] and sibling nicotine use [46.1% vs 30%, χ2(1)=26.857, p<0.001]. Mental health conditions (OR=3.47, p<0.001) and nicotine use (OR=3.34, p<0.001) strongly predicted anhedonia. CONCLUSIONS The study's results support the notion that psychological discomfort influences nicotine use, demonstrating a substantial association between anhedonia and nicotine use. Given the influence of familial nicotine use, there is an immediate need for targeted interventions that address both social and psychological aspects.
Collapse
Affiliation(s)
- Mai B. Alwesmi
- Department of Medical-Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sana Hawamdeh
- School of Nursing, University of Pennsylvania, Philadelphia, United States
| | - Sondus F. Alotaibi
- College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May A. Alfohaid
- College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Futun M. Alharbi
- College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nourah A. Alghamdi
- College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Jumanah K. Alghamdi
- College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fai A. Aseeri
- College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Raghad A. Alqhatani
- College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Adam Saleh
- Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
3
|
Montemitro C, Ossola P, Ross TJ, Huys QJM, Fedota JR, Salmeron BJ, di Giannantonio M, Stein EA. Longitudinal changes in reinforcement learning during smoking cessation: a computational analysis using a probabilistic reward task. Sci Rep 2024; 14:32171. [PMID: 39741189 PMCID: PMC11688494 DOI: 10.1038/s41598-024-84091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025] Open
Abstract
Despite progress in smoking reduction in the past several decades, cigarette smoking remains a significant public health concern world-wide, with many smokers attempting but ultimately failing to maintain abstinence. However, little is known about how decision-making evolves in quitting smokers. Based on preregistered hypotheses and analysis plan ( https://osf.io/yq5th ), we examined the evolution of reinforcement learning (RL), a key component of decision-making, in smokers during acute and extended nicotine abstinence. In a longitudinal, within-subject design, we used a probabilistic reward task (PRT) to assess RL in twenty smokers who successfully refrained from smoking for at least 30 days. We evaluated changes in reward-based decision-making using signal-detection analysis and five RL models across three sessions during 30 days of nicotine abstinence. Contrary to our preregistered hypothesis, punishment sensitivity emerged as the only parameter that changed during smoking cessation. While it is plausible that some changes in task performance could be attributed to task repetition effects, we observed a clear impact of the Nicotine Withdrawal Syndrome (NWS) on RL, and a dynamic relationship between craving and reward and punishment sensitivity over time, suggesting a significant recalibration of cognitive processes during abstinence. In this context, the heightened sensitivity to negative outcomes observed at the last session (30 days after quitting) compared to the previous sessions, may be interpreted as a cognitive adaptation aimed at fostering long-term abstinence. While further studies are needed to clarify the mechanisms underlying punishment sensitivity during nicotine abstinence, these results highlight the need for personalized treatment approaches tailored to individual needs.
Collapse
Affiliation(s)
- Chiara Montemitro
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| | - Paolo Ossola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Mental Health, AUSL Parma, Parma, Italy
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Quentin J M Huys
- Applied Computational Psychiatry Laboratory, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| | - John R Fedota
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Behavioral and Cognitive Neuroscience Branch, Division of Neuroscience and Behavior, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Massimo di Giannantonio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
4
|
Velioglu HA, Yıldız S, Ozdemir-Oktem E, Cankaya S, Lundmark AK, Ozsimsek A, Hanoglu L, Yulug B. Smoking affects global and regional brain entropy in depression patients regardless of depression: Preliminary findings. J Psychiatr Res 2024; 177:147-152. [PMID: 39018709 DOI: 10.1016/j.jpsychires.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE This study examines the effect of smoking on global and regional brain entropy in patients with Major Depressive Disorder (MDD), aiming to elucidate the relationship between smoking habits and brain network complexity in depression. METHODS The study enrolled 24 MDD patients, divided into smokers and non-smokers, from Alanya Alaaddin Keykubat University and Istanbul Medipol University. Resting-state fMRI data were acquired and processed. The complexity of neuronal activity was assessed using dispersion entropy, with statistical significance determined by a suite of tests including Kolmogorov-Smirnov, Student's t-test, and Mann-Whitney U test. RESULTS The smoking cohort exhibited higher global brain entropy compared to the non-smoking group (p = 0.033), with significant differences in various brain networks, indicating that smoking may alter global brain activity and network dynamics in individuals with MDD. CONCLUSION The study provides evidence that smoking is associated with increased brain entropy in MDD patients, suggesting that chronic smoking may influence cognitive and emotional networks. This underscores the importance of considering smoking history in the treatment and prognosis of MDD. The findings call for further research to understand the mechanistic links between smoking, brain entropy, and depression.
Collapse
Affiliation(s)
- Halil Aziz Velioglu
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Sultan Yıldız
- School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey; Program of Neuroscience Ph.D., Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Ece Ozdemir-Oktem
- Department of Neurology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Seyda Cankaya
- Department of Neurology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | | | - Ahmet Ozsimsek
- Department of Neurology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Lütfü Hanoglu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey.
| |
Collapse
|
5
|
Cao Y, Sun J, Wang X, Zhang X, Tian H, Huang L, Huang Z, Zhang Y, Zhang J, Li L, Zhou S. The double-edged nature of nicotine: toxicities and therapeutic potentials. Front Pharmacol 2024; 15:1427314. [PMID: 39206262 PMCID: PMC11350241 DOI: 10.3389/fphar.2024.1427314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotine is the primary addictive component of cigarette smoke and is associated with various smoking-related diseases. However, recent research has revealed its broader cognitive-enhancing and anti-inflammatory properties, suggesting its potential therapeutic applications in several conditions. This review aims to examine the double-edged nature of nicotine, encompassing its positive and negative effects. We provide a concise overview of the physiochemical properties and pharmacology of nicotine, including insights into nicotine receptors. Therefore, the article is divided into two main sections: toxicity and therapeutic potential. We comprehensively explored nicotine-related diseases, focusing on specific signaling pathways and the underlying mechanisms that contribute to its effects. Furthermore, we addressed the current research challenges and future development perspectives. This review aims to inspire future researchers to explore the full medical potential of nicotine, which holds significant promise for the clinical management of specific diseases.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jiali Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Xiaofeng Wang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Xiaoyu Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Huijuan Tian
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lingling Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yaping Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jin Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Shun Zhou
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| |
Collapse
|
6
|
Guhathakurta D, Petrušková A, Akdaş EY, Perelló-Amorós B, Frischknecht R, Anni D, Weiss EM, Walter M, Fejtová A. Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression. Transl Psychiatry 2024; 14:47. [PMID: 38253622 PMCID: PMC10803733 DOI: 10.1038/s41398-024-02744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Ketamine is clinically used fast-acting antidepressant. Its metabolite hydroxynorketamine (HNK) shows a robust antidepressant effect in animal studies. It is unclear, how these chemically distinct compounds converge on similar neuronal effects. While KET acts mostly as N-methyl-d-aspartate receptor (NMDAR) antagonist, the molecular target of HNK remains enigmatic. Here, we show that KET and HNK converge on rapid inhibition of glutamate release by reducing the release competence of synaptic vesicles and induce nuclear translocation of pCREB that controls expression of neuroplasticity genes connected to KET- and HNK-mediated antidepressant action. Ro25-6981, a selective antagonist of GluN2B, mimics effect of KET indicating that GluN2B-containing NMDAR might mediate the presynaptic effect of KET. Selective antagonist of α7 nicotinic acetylcholine receptors (α7nAChRs) or genetic deletion of Chrna7, its pore-forming subunit, fully abolishes HNK-induced synaptic and nuclear regulations, but leaves KET-dependent cellular effects unaffected. Thus, KET or HNK-induced modulation of synaptic transmission and nuclear translocation of pCREB can be mediated by selective signaling via NMDAR or α7nAChRs, respectively. Due to the rapid metabolism of KET to HNK, it is conceivable that subsequent modulation of glutamatergic and cholinergic neurotransmission affects circuits in a cell-type-specific manner and contributes to the therapeutic potency of KET. This finding promotes further exploration of new combined medications for mood disorders.
Collapse
Affiliation(s)
- Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aneta Petrušková
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Enes Yağız Akdaş
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bartomeu Perelló-Amorós
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Anni
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Jena, Jena, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Nicotine's effect on cognition, a friend or foe? Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110723. [PMID: 36736944 DOI: 10.1016/j.pnpbp.2023.110723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.
Collapse
|
8
|
Carlton CN, Antezana L, Richey JA. Associations between resting-state neural connectivity and positive affect in social anxiety disorder. Brain Behav 2023; 13:e3006. [PMID: 37062915 PMCID: PMC10275543 DOI: 10.1002/brb3.3006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION Social anxiety disorder (SAD) has been characterized by deficits in social motivation and lack of reactivity to pleasurable stimuli (i.e., positive affect; [PA]). Recent neuroimaging work has shifted toward examining positively valenced motivational systems in SAD focused on reward responses. However, little is known about the associations of reward connectivity and PA in individuals with SAD. As such, the purpose of the current study was to determine whether connectivity among key units of reward neurocircuitry meaningfully relate to PA and whether these key units are more heterogeneous in SAD as compared to controls. METHODS Thirty-one participants who met diagnostic criteria for SAD and 33 control participants were included (Mage = 24.8, SD = 6.9; 55% cisgender man). Seed-based timeseries correlations were conducted in NiTime to extract region of interest (ROI) coupling correlation strength values. ANOVAs were carried out to assess whether individuals with SAD differed in ROI-to-ROI connectivity strength as compared to controls. Correlations and variance analyses were also conducted to examine the relationship between ROI-to-ROI connectivity strength and PA, as well as heterogeneity in connectivity strength and PA expression. RESULTS Weaker connectivity between the left and right orbital frontal cortex was observed when comparing the SAD to the control group. Within the SAD group, PA was associated with several reward-related ROI couplings; however, these links were not observed among controls. Results further demonstrated that individuals with SAD had significantly more variability in reward connectivity strength as compared to controls. CONCLUSION Overall, these results provide emergent evidence for the association between reward regions and PA in individuals with SAD. Additionally, these findings show that individuals with SAD demonstrate greater heterogeneity in reward connectivity.
Collapse
Affiliation(s)
| | | | - John A. Richey
- Department of PsychologyVirginia TechBlacksburgVirginia
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| |
Collapse
|
9
|
Zhao Y, Dahmani L, Li M, Hu Y, Ren J, Lui S, Wang D, Kuang W, Gong Q, Liu H. Individualized Functional Connectome Identified Replicable Biomarkers for Dysphoric Symptoms in First-Episode Medication-Naïve Patients With Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:42-51. [PMID: 34995770 DOI: 10.1016/j.bpsc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a heterogeneous syndrome and can be conceptualized as a mixture of dimensional abnormalities across several specific brain circuits. The neural underpinnings of different symptom dimensions in MDD are not well understood. We aimed to identify robust, generalizable, functional connectivity (FC)-based biomarkers for different symptom dimensions in MDD using individualized functional connectomes. METHODS Patterns of FC associated with symptom severity were identified using a novel, individualized, functional network parcellation analysis in conjunction with hierarchical clustering. Dimension-specific prediction models were trained to estimate symptom severity in first-episode medication-naïve patients (discovery dataset, n = 95) and replicated in an independent validation dataset (n = 94). The correlation between FC changes and symptom changes was further explored in a treatment dataset (n = 55). RESULTS Two distinct symptom clusters previously identified in patients with MDD, namely dysphoric and anxiosomatic clusters, were robustly replicated in our data. A connectivity biomarker associated with dysphoric symptoms was identified, which mainly involved the default, dorsal attention, and limbic networks. Critically, this brain-symptom association was confirmed in the validation dataset. Moreover, the marker also tracked dysphoric symptom improvement following a 2-week antidepressant treatment. For comparison, we repeated our analyses using a nonindividualized approach and failed to identify replicable brain-symptom biomarkers. Further quantitative analysis indicated that the generalizability of the connectivity-symptom association was hampered when functional regions were not localized in individuals. CONCLUSIONS This work reveals robust, replicable FC biomarkers for dysphoric symptoms in MDD, demonstrates the advantage of individual-oriented approach, and emphasizes the importance of independent validation in psychiatric neuroimaging analysis.
Collapse
Affiliation(s)
- Youjin Zhao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Louisa Dahmani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Meiling Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Yongbo Hu
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jianxun Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
10
|
Ding YD, Chen X, Chen ZB, Li L, Li XY, Castellanos FX, Bai TJ, Bo QJ, Cao J, Chang ZK, Chen GM, Chen NX, Chen W, Cheng C, Cheng YQ, Cui XL, Duan J, Fang YR, Gong QY, Hou ZH, Hu L, Kuang L, Li F, Li HX, Li KM, Li T, Liu YS, Liu ZN, Long YC, Lu B, Luo QH, Meng HQ, Peng DH, Qiu HT, Qiu J, Shen YD, Shi YS, Si TM, Tang YQ, Wang CY, Wang F, Wang K, Wang L, Wang X, Wang Y, Wang YW, Wu XP, Wu XR, Xie CM, Xie GR, Xie HY, Xie P, Xu XF, Yang H, Yang J, Yao JS, Yao SQ, Yin YY, Yuan YG, Zang YF, Zhang AX, Zhang H, Zhang KR, Zhang L, Zhang ZJ, Zhao JP, Zhou RB, Zhou YT, Zhu JJ, Zhu ZC, Zou CJ, Zuo XN, Yan CG, Guo WB. Reduced nucleus accumbens functional connectivity in reward network and default mode network in patients with recurrent major depressive disorder. Transl Psychiatry 2022; 12:236. [PMID: 35668086 PMCID: PMC9170720 DOI: 10.1038/s41398-022-01995-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and 465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for individual diagnosis to differentiate patients with recurrent MDD from healthy controls.
Collapse
Affiliation(s)
- Yu-Dan Ding
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, China
| | - Zuo-Bing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Le Li
- Center for Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
| | - Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, 31 NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | - Qi-Jing Bo
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jun Cao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Kai Chang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Guan-Mao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ning-Xuan Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chang Cheng
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi-Long Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jia Duan
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yi-Ru Fang
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Yong Gong
- Huanxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zheng-Hua Hou
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lan Hu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Hui-Xian Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Ming Li
- Huanxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhe-Ning Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi-Cheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Hua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua-Qing Meng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dai-Hui Peng
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Tang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yue-Di Shen
- Department of Diagnostics, Affiliated Hospital, Hangzhou Normal University Medical School, Hangzhou, Zhejiang, China
| | - Yu-Shu Shi
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yan-Qing Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Chuan-Yue Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Fei Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Kai Wang
- Anhui Medical University, Hefei, Anhui, China
| | - Li Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Xin-Ran Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Guang-Rong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hai-Yan Xie
- Department of Psychiatry, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Feng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Yang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Jia-Shu Yao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu-Qiao Yao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying-Ying Yin
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yong-Gui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Ai-Xia Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong Zhang
- Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Ke-Rang Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Jing-Ping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ru-Bai Zhou
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ting Zhou
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Juan Zhu
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chen Zhu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chao-Jie Zou
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Bin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
11
|
Alcohol- and non-alcohol-related interference: An fMRI study of treatment-seeking adults with alcohol use disorder. Drug Alcohol Depend 2022; 235:109462. [PMID: 35462263 PMCID: PMC9106927 DOI: 10.1016/j.drugalcdep.2022.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Individuals with alcohol use disorder (AUD) have difficulty diverting attention away from alcohol-related stimuli and towards non-alcohol-related goals (i.e., alcohol-related attention interference). It remains unclear whether regulatory brain function differs during alcohol and non-alcohol-related interference. This study compares brain reactivity during the alcohol and classic Stroop and whether such brain function relates to AUD severity. METHODS 46 participants with AUD completed alcohol and classic color-word Stroop tasks during fMRI. Brain activity was compared during alcohol and classic Stroop interference in the rostral and dorsal anterior cingulate cortices (rACC and dACC) and correlated with self-reported AUD severity. Exploratory whole-brain analyses were also conducted. RESULTS Behavioral interference (i.e., slower reaction times) was observed during alcohol and classic Stroop. rACC activity was significantly higher during the alcohol > neutral contrast versus the incongruent > congruent contrast. dACC activity did not differ between the Stroop tasks. dACC activity during incongruent > congruent was positively associated with AUD severity. CONCLUSIONS Activity in ACC subregions differed during alcohol and non-alcohol interference. Increased alcohol-related activity in the rACC, a region linked to emotional conflict resolution, suggests an interfering effect of self-relevant alcohol cues on non-alcohol-related processing. AUD severity was related to greater dACC reactivity during classic Stroop interference, suggesting that non-drug-related cognitive control impairments are more pronounced in those with more problematic alcohol use.
Collapse
|
12
|
Hong SW, Teesdale-Spittle P, Page R, Ellenbroek B, Truman P. Biologically Active Compounds Present in Tobacco Smoke: Potential Interactions Between Smoking and Mental Health. Front Neurosci 2022; 16:885489. [PMID: 35557609 PMCID: PMC9087043 DOI: 10.3389/fnins.2022.885489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022] Open
Abstract
Tobacco dependence remains one of the major preventable causes of premature morbidity and mortality worldwide. There are well over 8,000 compounds present in tobacco and tobacco smoke, but we do not know what effect, if any, many of them have on smokers. Major interest has been on nicotine, as well as on toxic and carcinogenic effects and several major and minor components of tobacco smoke responsible for the negative health effects of smoking have been elucidated. Smokers themselves report a variety of positive effects from smoking, including effects on depression, anxiety and mental acuity. Smoking has also been shown to have protective effects in Parkinson’s Disease. Are the subjective reports of a positive effect of smoking due to nicotine, of some other components of tobacco smoke, or are they a manifestation of the relief from nicotine withdrawal symptoms that smoking provides? This mini-review summarises what is currently known about the components of tobacco smoke with potential to have positive effects on smokers.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Bart Ellenbroek
- Department of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
13
|
Wang H, Xu J, Yu M, Ma X, Li Y, Pan C, Ren J, Liu W. Altered functional connectivity of ventral striatum subregions in de-novo parkinson’s disease with depression. Neuroscience 2022; 491:13-22. [DOI: 10.1016/j.neuroscience.2022.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
14
|
Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nat Med 2022; 28:528-534. [DOI: 10.1038/s41591-022-01683-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
|
15
|
Abstract
Prior findings indicate that trait anhedonia enhances the likelihood of becoming a tobacco smoker, and preliminary evidence suggests that smoking abstinence leads to anhedonic states in some individuals and situations, and nicotine administration reduces anhedonic states. Nevertheless, many vital questions exist concerning relationships between anhedonia and nicotine dependence, including situational and individual difference factors that may moderate the strength of these associations. This chapter provides a critical review of the literature assessing relationships of anhedonia to nicotine dependence and the effects of acute nicotine through the lenses of the Research Domain Criteria's (RDoC) Positive Valence Systems (NIMH, RDoC changes to the matrix (CMAT) workgroup update: proposed positive valence domain revisions. A report by the national advisory mental health council workgroup on changes to the research domain criteria matrix, 2018) and the Situation x Trait Affective Response (STAR) model of nicotine's effects and nicotine dependence (Gilbert, Smoking individual differences, psychopathology, and emotion. Taylor and Francis, Washington, DC, 1995; Gilbert, Hum Psychopharmacol Clin Exp 12:S89-S102, 1997). The effects of nicotine and nicotine withdrawal on subjective, behavioral, and brain indices vary across the three RDoC Positive Valences Systems (Reward Responsiveness, Reward Learning, and Reward Valuation) in a manner that supports the research and potential clinical utility of using RDoC criteria and the STAR model to guide research and clinical innovation. We provide a revision of the STAR model that incorporates the three RDoC Positive Valence Systems with evidence that nicotine's effects on hedonic and affective processes vary as a function of the dominance/salience of (1) situational hedonic and affective cues and task/active coping cues, and (2) state executive functioning level/capacity and state reward sensitivity such that these effects of nicotine are maximal during states of suboptimal cognitive functioning and reward sensitivity, combined with low situational stimulus salience and low task-related cues/demands.
Collapse
Affiliation(s)
- David G Gilbert
- School of Psychological and Social Sciences, Southern Illinois University-Carbondale, Carbondale, IL, USA.
| | - Bryant M Stone
- School of Psychological and Social Sciences, Southern Illinois University-Carbondale, Carbondale, IL, USA
| |
Collapse
|
16
|
Hoirisch-Clapauch S. Mechanisms affecting brain remodeling in depression: do all roads lead to impaired fibrinolysis? Mol Psychiatry 2022; 27:525-533. [PMID: 34404914 DOI: 10.1038/s41380-021-01264-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Fibrinolysis occurs when plasminogen activators, such as tissue plasminogen activator (tPA), convert plasminogen to plasmin, which dissolves the fibrin clot. The proteolytic activity of tPA and plasmin is not restricted to fibrin degradation. In the extravascular space, these two proteases modify a variety of substrates other than fibrin, playing a crucial role in physiological and pathological tissue remodeling. In the brain, for example, tPA and plasmin mediate the conversion of brain-derived neurotrophic factor precursor (proBDNF) to mature brain-derived neurotrophic factor precursor (BDNF). Thus, the fibrinolytic system influences processes reported to be dysfunctional in depression, including neurogenesis, synaptic plasticity, and reward processing. The hypothesis that decreased fibrinolytic activity is an important element in the pathogenesis of depression is supported by the association between depression and increased levels of plasminogen activator inhibitor (PAI)-1, the main inhibitor of tPA. Also, various biochemical markers of depression induce PAI-1 synthesis, including hypercortisolism, hyperinsulinemia, hyperleptinemia, increased levels of cytokines, and hyperhomocysteinemia. Moreover, hypofibrinolysis provides a link between depression and emotional eating, binge eating, vegetarianism, and veganism. This paper discusses the role of reduced fibrinolytic activity in the bidirectional interplay between depression and its somatic manifestations and complications. It also reviews evidence that abnormal fibrinolysis links heterogeneous conditions associated with treatment-resistant depression. Understanding the role of hypofibrinolysis in depression may open new avenues for its treatment.
Collapse
|
17
|
Pisoni A, Davis SW, Smoski M. Neural signatures of saliency-mapping in anhedonia: A narrative review. Psychiatry Res 2021; 304:114123. [PMID: 34333324 PMCID: PMC8759627 DOI: 10.1016/j.psychres.2021.114123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
Anhedonia is the loss of pleasure or motivation to engage in previously enjoyable activities, and is a transdiagnostic symptom associated with significant clinical impairment. Anhedonia is implicated in several different psychiatric disorders, presenting a promising opportunity for transdiagnostic treatment. Thus, developing targeted treatments for anhedonia is of critical importance for population mental health. An important first step in doing so is establishing a thorough understanding of the neural correlates of anhedonia. The Triple Network Model of Psychopathology provides a frame for how brain activity may go awry in anhedonia, specifically in the context of Salience Network (SN) function (i.e., saliency-mapping). We present a narrative review examining saliency-mapping as it relates to anhedonia severity in depressed and transdiagnostic adult samples. Results revealed increased anhedonia to be associated with hyperactivity of the SN at rest and in the context of negative stimuli, as well as a global lack of SN engagement in the context of positive stimuli. Potential treatments for anhedonia are placed within this model, and future directions for research are discussed.
Collapse
Affiliation(s)
- Angela Pisoni
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| | - Simon W. Davis
- Department of Neurology, Duke University Medical Center, Durham, NC, USA,Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Moria Smoski
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
18
|
Farchione TJ, Fitzgerald HE, Curreri A, Janes AC, Gallagher MW, Sbi S, Eustis EH, Barlow DH. Efficacy of the Unified Protocol for the treatment of comorbid alcohol use and anxiety disorders: Study protocol and methods. Contemp Clin Trials 2021; 108:106512. [PMID: 34284152 PMCID: PMC9353761 DOI: 10.1016/j.cct.2021.106512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
Alcohol Use Disorder (AUD) and anxiety disorders (ANX) are each highly prevalent and frequently co-occur, resulting in a complex clinical presentation. The existing literature to date has not yet identified how to best treat comorbid AUD/ANX, partially due to limitations in understanding what factors and mechanisms are implicated in their co-occurrence. This manuscript describes the rationale and methods for an ongoing randomized-controlled trial designed to evaluate the efficacy of a cognitive behavioral intervention, the Unified Protocol for Transdiagnostic Treatment of Emotional Disorders (UP), compared to Take Control (TC), a psychosocial and motivational treatment serving as a control condition in this study, for comorbid AUD/ANX. Sixty individuals with comorbid AUD/ANX will be randomized to UP or TC, and complete assessments at pre- and post-treatment, as well as one- and six-month follow-up points. We hypothesize that the UP, compared to TC, will result in significantly greater reductions in drinking-related outcomes, as well as anxiety and depressive-related outcomes. Additionally, the current study is designed to evaluate exploratory aims to contribute to our theoretical understanding of why AUD and ANX frequently co-occur. Specifically, we will examine the relationship between changes in AUD and ANX symptoms in relation to changes in emotional disorder mechanisms, such as emotion regulation. Because the UP is a transdiagnostic treatment that specifically targets underlying components of emotional disorders generally, it may be well suited to effectively target comorbid AUD/ANX.
Collapse
Affiliation(s)
- Todd J Farchione
- The Center for Anxiety and Related Disorders, Boston University, 900 Commonwealth Avenue, 2nd Floor, Boston, MA 02215, United States of America.
| | - Hayley E Fitzgerald
- The Center for Anxiety and Related Disorders, Boston University, 900 Commonwealth Avenue, 2nd Floor, Boston, MA 02215, United States of America
| | - Andrew Curreri
- The Center for Anxiety and Related Disorders, Boston University, 900 Commonwealth Avenue, 2nd Floor, Boston, MA 02215, United States of America
| | - Amy C Janes
- McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States of America; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States of America
| | - Matthew W Gallagher
- Department of Psychology, Texas Institute for MeasurementEvaluation, and Statistics, University of Houston, 4849 Calhoun Rd, Rm 483, Houston, TX, 77004, United States of America
| | - Sophia Sbi
- The Center for Anxiety and Related Disorders, Boston University, 900 Commonwealth Avenue, 2nd Floor, Boston, MA 02215, United States of America
| | - Elizabeth H Eustis
- The Center for Anxiety and Related Disorders, Boston University, 900 Commonwealth Avenue, 2nd Floor, Boston, MA 02215, United States of America
| | - David H Barlow
- The Center for Anxiety and Related Disorders, Boston University, 900 Commonwealth Avenue, 2nd Floor, Boston, MA 02215, United States of America
| |
Collapse
|
19
|
Nicotine acutely alters temporal properties of resting brain states. Drug Alcohol Depend 2021; 226:108846. [PMID: 34198131 PMCID: PMC8355138 DOI: 10.1016/j.drugalcdep.2021.108846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Nicotine-dependent individuals have altered activity in neurocognitive networks such as the default mode (DMN), salience (SN) and central executive networks (CEN). One theory suggests that, among chronic tobacco smokers, nicotine abstinence drives more DMN-related internal processing while nicotine replacement suppresses DMN and enhances SN and CEN. Whether acute nicotine impacts network dynamics in non-smokers is, however, unknown. METHODS In a randomized double-blind crossover study, 17 healthy non-smokers (8 females) were administered placebo and nicotine (2-mg lozenge) on two different days prior to collecting resting-state functional magnetic resonance imaging (fMRI). Previously defined brain states in 462 individuals that spatially overlap with well-characterized resting-state networks including the DMN, SN, and CEN were applied to compute state-specific dynamics at rest: total time spent in state, persistence in each state after entry, and frequency of state transitions. We examined whether nicotine acutely alters these resting-state dynamics. RESULTS A significant drug-by-state interaction emerged; post-hoc analyses clarified that, relative to placebo, nicotine suppressed time spent in a frontoinsular-DMN state (posterior cingulate cortex, medial prefrontal cortex, anterior insula, striatum and orbitofrontal cortex) and enhanced time spent in a SN state (anterior cingulate cortex and insula). No significant findings were observed for persistence and frequency. CONCLUSIONS In non-smokers, nicotine biases resting-state brain function away from the frontoinsular-DMN and toward the SN, which may reduce internally focused cognition and enhance salience processing. While past work suggests nicotine impacts DMN activity, the current work shows nicotinic influences on a specific DMN-like network that has been linked with rumination and depression.
Collapse
|
20
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Franklin TR, Jagannathan K, Spilka NH, Keyser H, Rao H, Ely AV, Janes AC, Wetherill RR. Smoking-induced craving relief relates to increased DLPFC-striatal coupling in nicotine-dependent women. Drug Alcohol Depend 2021; 221:108593. [PMID: 33611027 PMCID: PMC8026729 DOI: 10.1016/j.drugalcdep.2021.108593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Craving is a major contributor to drug-seeking and relapse. Although the ventral striatum (VS) is a primary neural correlate of craving, strategies aimed at manipulating VS function have not resulted in efficacious treatments. This incongruity may be because the VS does not influence craving in isolation. Instead, craving is likely mediated by communication between the VS and other neural substrates. Thus, we examined how striatal functional connectivity (FC) with key nodes of networks involved in addiction affects relief of craving, which is an important step in identifying viable treatment targets. METHODS Twenty-four nicotine-dependent non-abstinent women completed two resting-state (rs) fMRI scans, one before and one following smoking a cigarette in the scanner, and provided craving ratings before and after smoking the cigarette. A seed-based approach was used to examine rsFC between the VS, putamen and germane craving-related brain regions; the dorsolateral prefrontal cortex (dlPFC), the posterior cingulate cortex, and the anterior ventral insula. RESULTS Smoking a cigarette was associated with a decrease in craving. Relief of craving correlated with increases in right dlPFC- bilateral VS (r = 0.57, p = 0.003, corrected) as did increased right dlPFC-left putamen coupling (r = 0.62, p = 0.001, corrected). CONCLUSIONS Smoking-induced relief of craving is associated with enhanced rsFC between the dlPFC, a region that plays a pivotal role in decision making, and the striatum, the neural structure underlying motivated behavior. These findings are highly consistent with a burgeoning literature implicating dlPFC-striatal interactions as a neurobiological substrate of craving.
Collapse
Affiliation(s)
- Teresa R Franklin
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA.
| | - Kanchana Jagannathan
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| | - Nathaniel H Spilka
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| | - Heather Keyser
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| | - Hengy Rao
- Center for Functional Neuroimaging, Department of Neurology, The University of Pennsylvania Perelman School of Medicine, 3700 Hamilton Walk, Philadelphia, PA, USA
| | - Alice V Ely
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| | - Amy C Janes
- Functional Integration of Addiction Research Lab, Department of Psychiatry, Harvard Medical School/McLean Hospital, 115 Mill St. Belmont, MA, 02478, USA
| | - Reagan R Wetherill
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
GIPSON CD, BIMONTE-NELSON HA. Interactions between reproductive transitions during aging and addiction: promoting translational crosstalk between different fields of research. Behav Pharmacol 2021; 32:112-122. [PMID: 32960852 PMCID: PMC7965232 DOI: 10.1097/fbp.0000000000000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Discovery of neural mechanisms underlying neuropsychiatric disorders within the aging and addiction fields has been a main focus of the National Institutes of Health. However, there is a dearth of knowledge regarding the biological interactions of aging and addiction, which may have important influences on progression of disease and treatment outcomes in aging individuals with a history of chronic drug use. Thus, there is a large gap in these fields of research, which has slowed progress in understanding and treating substance use disorders (SUDs) as well as age-related diseases, specifically in women who experience precipitous reproductive cycle transitions during aging. The goal of this review is to highlight overlap of SUDs and age-related processes with a specific focus on menopause and smoking, and identify critical gaps. We have narrowed the focus of the review to smoking, as the majority of findings on hormonal and aging influences on drug use have come from this area of research. Further, we highlight female-specific issues such as transitional menopause and exogenous estrogen use. These issues may impact drug use cessation as well as outcomes with aging and age-related neurodegenerative diseases in women. We first review clinical studies for smoking, normal aging, and pathological aging, and discuss the few aging-related studies taking smoking history into account. Conversely, we highlight the dearth of clinical smoking studies taking age as a biological variable into account. Preclinical and clinical literature show that aging, age-related pathological brain disease, and addiction engage overlapping neural mechanisms. We hypothesize that these putative drivers interact in meaningful ways that may exacerbate disease and hinder successful treatment outcomes in such comorbid populations. We highlight areas where preclinical studies are needed to uncover neural mechanisms in aging and addiction processes. Collectively, this review highlights the need for crosstalk between different fields of research to address medical complexities of older adults, and specifically women, who smoke.
Collapse
Affiliation(s)
- Cassandra D. GIPSON
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Arizona Alzheimer’s Consortium
| | | |
Collapse
|
23
|
Liu R, Wang Y, Chen X, Zhang Z, Xiao L, Zhou Y. Anhedonia correlates with functional connectivity of the nucleus accumbens subregions in patients with major depressive disorder. Neuroimage Clin 2021; 30:102599. [PMID: 33662708 PMCID: PMC7930634 DOI: 10.1016/j.nicl.2021.102599] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND The nucleus accumbens (NAc) is an important region in reward circuit that has been linked with anhedonia, which is a characteristic symptom of major depressive disorder (MDD). However, the relationship between the functional connectivity of the NAc subregions and anhedonia in MDD patients remains unclear. METHODS We acquired resting-state functional magnetic resonance imaging (fMRI) scans from fifty-one subjects (23 MDD patients and 28 healthy controls). We assessed subjects' trait anhedonia with the Temporal Experience of Pleasure Scale (TEPS). Seed-based resting-state functional connectivity (rsFC) was conducted for each of the NAc subregions (bilateral core-like and shell-like subdivisions) separately to identify regions whose rsFCs with the NAc subregions were altered in the MDD patients and regions whose rsFCs with the NAc subregions showed different correlates with anhedonia between the MDD patients and the healthy controls. RESULTS Compared with the health controls, the MDD patients showed decreased rsFCs of the right NAc core-like subdivision with the left mid-anterior orbital prefrontal cortex and the right inferior parietal lobe as well as decreased rsFC of the left NAc core-like subdivision with the right middle frontal gyrus. Moreover, the severity of anhedonia by the group interaction was significant for the rsFC of the right NAc shell-like subdivision with the subgenual/pregenual anterior cingulate cortex and the rsFC of the right NAc core-like subdivision with the precuneus. CONCLUSIONS We found that the neural correlates of anhedonia indicated by the rsFCs of the NAc subregions were modulated by depression. The modulation effect was regionally-dependent. These findings enrich our understanding of the neural basis of anhedonia in MDD.
Collapse
Affiliation(s)
- Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Le Xiao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology & Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Temporal Dynamics of Large-Scale Networks Predict Neural Cue Reactivity and Cue-Induced Craving. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1011-1018. [PMID: 32900658 DOI: 10.1016/j.bpsc.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cue reactivity, a core characteristic of substance use disorders, commonly recruits brain regions that are key nodes in neurocognitive networks, including the default mode network (DMN) and salience network (SN). Whether resting-state temporal dynamic properties of these networks relate to subsequent cue reactivity and cue-induced craving is unknown. METHODS The resting-state data of 46 nicotine-dependent participants were assessed to define temporal dynamic properties of DMN and SN states. Temporal dynamics focused on the total time across the scan session that brain activity resides in these specific states. Using regression models, we examined how the total time in each state related to neural reactivity to smoking cues within key DMN (posterior cingulate cortex, medial prefrontal cortex) or SN (anterior insula, dorsal anterior cingulate cortex) nodes. Mediation analyses were subsequently conducted to study how neural cue reactivity mediates the relationship between total time in state at rest and subjective cue-induced craving. RESULTS Increased time spent in the DMN state and decreased time spent in the SN state predicted subsequent cue-induced increases in the anterior insula and dorsal anterior cingulate cortex, respectively. Cue-induced anterior insula and dorsal anterior cingulate cortex activity significantly mediated the relationship between time spent in DMN/SN and cue-induced subjective craving. CONCLUSIONS Our findings showed a significant relationship between resting-state dynamics of the DMN/SN and task-activated SN nodes that together predicted cue-induced craving changes in nicotine-dependent individuals. These findings propose a neurobiological pathway for cue-induced craving that begins with resting-state temporal dynamics, suggesting that brain responding to external stimuli is driven by resting temporal dynamics.
Collapse
|
25
|
Wang KS, Zegel M, Molokotos E, Moran LV, Olson DP, Pizzagalli DA, Janes AC. The acute effects of nicotine on corticostriatal responses to distinct phases of reward processing. Neuropsychopharmacology 2020; 45:1207-1214. [PMID: 31931509 PMCID: PMC7235267 DOI: 10.1038/s41386-020-0611-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/09/2022]
Abstract
Nicotine enhances the reinforcement of non-drug rewards by increasing nucleus accumbens (NAcc) reactivity to anticipatory cues. This anticipatory effect is selective as no clear evidence has emerged showing that nicotine acutely changes reward receipt reactivity. However, repeated rewarding experiences shift peak brain reactivity from hedonic reward outcome to the motivational anticipatory cue yielding more habitual cue-induced behavior. Given nicotine's influence on NAcc reactivity and connectivity, it is plausible that nicotine acutely induces this shift and alters NAcc functional connectivity during reward processing. To evaluate this currently untested hypothesis, a randomized crossover design was used in which healthy non-smokers were administered placebo and nicotine (2-mg lozenge). Brain activation to monetary reward anticipation and outcome was evaluated with functional magnetic resonance imaging. Relative to placebo, nicotine induced more NAcc reactivity to reward anticipation. Greater NAcc activation during anticipation was significantly associated with lower NAcc activation to outcome. During outcome, nicotine reduced NAcc functional connectivity with cortical regions including the anterior cingulate cortex, orbitofrontal cortex, and insula. These regions showed the same negative relationship between reward anticipation and outcome as noted in the NAcc. The current findings significantly improve our understanding of how nicotine changes corticostriatal circuit function and communication during distinct phases of reward processing and critically show that these alterations happen acutely following a single dose. The implications of this work explain nicotinic modulation of general reward function, which offer insights into the initial drive to smoke and the subsequent difficulty in cessation.
Collapse
Affiliation(s)
- Kainan S. Wang
- 0000 0000 8795 072Xgrid.240206.2McLean Imaging Center, McLean Hospital, Belmont, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - Maya Zegel
- 0000 0000 8795 072Xgrid.240206.2McLean Imaging Center, McLean Hospital, Belmont, MA USA
| | - Elena Molokotos
- 0000 0000 8795 072Xgrid.240206.2McLean Imaging Center, McLean Hospital, Belmont, MA USA ,0000 0001 0684 8852grid.264352.4Department of Psychology, Suffolk University, Boston, MA USA
| | - Lauren V. Moran
- 0000 0000 8795 072Xgrid.240206.2McLean Imaging Center, McLean Hospital, Belmont, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - David P. Olson
- 0000 0000 8795 072Xgrid.240206.2McLean Imaging Center, McLean Hospital, Belmont, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - Diego A. Pizzagalli
- 0000 0000 8795 072Xgrid.240206.2McLean Imaging Center, McLean Hospital, Belmont, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - Amy C. Janes
- 0000 0000 8795 072Xgrid.240206.2McLean Imaging Center, McLean Hospital, Belmont, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| |
Collapse
|
26
|
Fan YS, Yang S, Li Z, Li J, Guo X, Han S, Guo J, Duan X, Cui Q, Du L, Liao W, Chen H. A temporal chronnectomic framework: Cigarette smoking preserved the prefrontal dysfunction in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109860. [PMID: 31927054 DOI: 10.1016/j.pnpbp.2020.109860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
The widespread cigarette smoking behavior in schizophrenia is generally attributed to its alleviation of patients' symptomatology by the self-medication hypothesis. The prefrontal cortex (PFC), which predominantly supports orchestrating thoughts and actions, might underlie the biological underpinnings of smoking behavior in schizophrenia. However, few studies have focused on the impact of smoking on the prefrontal function in schizophrenia. This study assumed that smoking-related alterations on the prefrontal dynamics of information integration (chronnectome) were different between healthy control (HC) and schizophrenia patient (SP). We recruited SP smokers (N = 22)/nonsmokers (N = 27) and HC smokers (N = 22)/nonsmokers (N = 21) who underwent resting-state functional magnetic resonance imaging (rsfMRI) with a total of 240 volumes (lasting for 480 s). We employed a chronnectomic density analysis on the rsfMRI signal by using a sliding-window method. We examined the interaction effect between smoking status and diagnosis utilizing two-way analysis of covariance under permutation test. Whereas disease-related reduced effects were found on the bilateral dorsolateral PFC chronnectomic density, no smoking effect was observed. As regards interaction effect, a smoking-related reduced effect was found on the right dorsolateral PFC chronnectomic density in HC, while a smoking-related increased effect was observed in SP. Nevertheless, post-hoc analysis revealed significant group difference between SP smokers and HC nonsmokers. Therefore, these results indicated a smoking-related preservation effect on disrupted prefrontal dynamics in schizophrenia that cannot restore it to normal levels. The novel findings yield a prefrontal-based chronnectome framework to elaborate upon the self-medication hypothesis in schizophrenia.
Collapse
Affiliation(s)
- Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zehan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Lian Du
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China..
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China..
| |
Collapse
|
27
|
Nicotine induces resilience to chronic social defeat stress in a mouse model of water pipe tobacco exposure by activating BDNF signaling. Behav Brain Res 2020; 382:112499. [DOI: 10.1016/j.bbr.2020.112499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
|
28
|
Hong W, Zhao Z, Wang D, Li M, Tang C, Li Z, Xu R, Chan CCH. Altered gray matter volumes in post-stroke depressive patients after subcortical stroke. NEUROIMAGE-CLINICAL 2020; 26:102224. [PMID: 32146322 PMCID: PMC7063237 DOI: 10.1016/j.nicl.2020.102224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Stroke survivors are known to suffer from post-stroke depression (PSD). However, the likelihood of structural changes in the brains of PSD patients has not been explored. This study aims to extract changes in the gray matter of these patients and test how these changes account for the PSD symptoms. High-resolution T1 weighted images were collected from 23 PSD patients diagnosed with subcortical stroke. Voxel-based morphometry and support vector machine analyses were used to analyze the data. The results were compared with those collected from 33 non-PSD patients. PSD group showed decreased gray matter volume (GMV) in the left middle frontal gyrus (MFG) when compared to the non-PSD patients. Together with the clinical and demographic variables, the MFG's GMV predictive model was able to distinguish PSD from the non-PSD patients (0•70 sensitivity and 0•88 specificity). The changes in the left inferior frontal gyrus (61%) and dorsolateral prefrontal cortex (39%) suggest that the somatic/affective symptoms in PSD is likely to be due to patients' problems with understanding and appraising negative emotional stimuli. The impact brought by the reduced prefrontal to limbic system connectivity needs further exploration. These findings indicate possible systemic involvement of the frontolimbic network resulting in PSD after brain lesions which is likely to be independent from the location of the lesion. The results inform specific clinical interventions to be provided for treating depressive symptoms in post-stroke patients.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Dongmei Wang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Chaozheng Tang
- State Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, China.
| | - Zheng Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
29
|
Janes AC, Krantz NL, Nickerson LD, Frederick BB, Lukas SE. Craving and Cue Reactivity in Nicotine-Dependent Tobacco Smokers Is Associated With Different Insula Networks. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:76-83. [PMID: 31706906 DOI: 10.1016/j.bpsc.2019.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 09/15/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The insula has a well-established role in nicotine dependence and is a node of the salience network, which integrates internal and external information to guide behavior. Recent findings reveal that internal and external processing occurs in the ventral anterior insula (vAI) and dorsal anterior insula (dAI), respectively. Whether vAI/dAI network connectivity differentially reflects internally generated craving and externally triggered smoking cue reactivity was tested. METHODS Thirty-six male and female nicotine-dependent individuals smoked 1 hour before functional magnetic resonance imaging. Baseline craving was measured, followed by resting-state and smoking cue reactivity scans and then another assessment of craving. Craving and cue reactivity interactions were measured by focusing on specific nodes of the salience network: the vAI/dAI and anterior cingulate cortex. RESULTS Resting-state vAI/dAI networks overlapped with the prototypical salience network, yet they possessed distinct patterns, linking the vAI with nodes of the internally focused default mode network and the dAI with nodes of the external, goal-related frontoparietal network. Internally generated baseline craving was associated with enhanced vAI connectivity, whereas rostral anterior cingulate cortex reactivity to external smoking cues was associated with greater dAI connectivity. We also found that cue reactivity in the rostral anterior cingulate cortex was associated with a rise in subjective cue-induced craving, whereas baseline subjective craving did not influence brain cue reactivity. CONCLUSIONS These data show that brain reactivity to smoking cues is associated with a subsequent increase in craving. In addition, separate insula networks have a role in an individual's vulnerability to internally related craving and externally triggered cue reactivity, which could guide the development of new, neurobiologically targeted therapies.
Collapse
Affiliation(s)
- Amy C Janes
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Nathan L Krantz
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Lisa D Nickerson
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Blaise B Frederick
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Scott E Lukas
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
McCarthy JM, Dumais KM, Zegel M, Pizzagalli DA, Olson DP, Moran LV, Janes AC. Sex differences in tobacco smokers: Executive control network and frontostriatal connectivity. Drug Alcohol Depend 2019; 195:59-65. [PMID: 30592997 PMCID: PMC6625360 DOI: 10.1016/j.drugalcdep.2018.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Women experience greater difficulty quitting smoking than men, which may be explained by sex differences in brain circuitry underlying cognitive control. Prior work has linked reduced interhemispheric executive control network (ECN) coupling with poor executive function, shorter time to relapse, and greater substance use. Lower structural connectivity between a key ECN hub, the dorsolateral prefrontal cortex (DLPFC), and the dorsal striatum (DS) also contributes to less efficient cognitive control recruitment, and reduced intrahemispheric connectivity between these regions has been associated with smoking relapse. Therefore, sex differences were probed by evaluating interhemispheric ECN and intrahemispheric DLPFC-DS connectivity. To assess the potential sex by nicotine interaction, a pilot sample of non-smokers was evaluated following acute nicotine and placebo administration. METHODS Thirty-five smokers (19 women) completed one resting state functional magnetic resonance imaging scan. Seventeen non-smokers (8 women) were scanned twice using a repeated measures design where they received 2 and 0 mg nicotine. RESULTS In smokers, women had less interhemispheric ECN and DLPFC-DS coupling than men. In non-smokers, there was a drug x sex interaction where women, relative to men, had weaker ECN coupling following nicotine but not placebo administration. CONCLUSIONS The current work indicates that nicotine-dependent women, versus men, have weaker connectivity in brain networks critically implicated in cognitive control. How these connectivity differences contribute to the behavioral aspects of smoking requires more testing. However, building on the literature, it is likely these deficits in functional connectivity contribute to the lower abstinence rates noted in women relative to men.
Collapse
Affiliation(s)
- Julie M McCarthy
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA.
| | - Kelly M Dumais
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Maya Zegel
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA
| | - Diego A Pizzagalli
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - David P Olson
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Lauren V Moran
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Amy C Janes
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| |
Collapse
|