1
|
The Protective Effect of Social Reward on Opioid and Psychostimulant Reward and Relapse: Behavior, Pharmacology, and Brain Regions. J Neurosci 2022; 42:9298-9314. [PMID: 36517252 PMCID: PMC9794371 DOI: 10.1523/jneurosci.0931-22.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/30/2022] Open
Abstract
Until recently, most modern neuroscience research on addiction using animal models did not incorporate manipulations of social factors. Social factors play a critical role in human addiction: social isolation and exclusion can promote drug use and relapse, while social connections and inclusion tend to be protective. Here, we discuss the state of the literature on social factors in animal models of opioid and psychostimulant preference, self-administration, and relapse. We first summarize results from rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of traditional experimenter-controlled social interaction procedures on opioid and psychostimulant conditioned place preference, self-administration, and relapse. Next, we summarize behavioral and brain-mechanism results from studies using newer operant social-interaction procedures that inhibit opioid and psychostimulant self-administration and relapse. We conclude by discussing how the reviewed studies point to future directions for the addiction field and other neuroscience and psychiatric fields, and their implications for mechanistic understanding of addiction and development of new treatments.SIGNIFICANCE STATEMENT In this review, we propose that incorporating social factors into modern neuroscience research on addiction could improve mechanistic accounts of addiction and help close gaps in translating discovery to treatment. We first summarize rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of both traditional experimenter-controlled and newer operant social-interaction procedures. We then discuss potential future directions and clinical implications.
Collapse
|
2
|
Moore AM, Coolen LM, Lehman MN. In vivo imaging of the GnRH pulse generator reveals a temporal order of neuronal activation and synchronization during each pulse. Proc Natl Acad Sci U S A 2022; 119:e2117767119. [PMID: 35110409 PMCID: PMC8833213 DOI: 10.1073/pnas.2117767119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 01/08/2023] Open
Abstract
A hypothalamic pulse generator located in the arcuate nucleus controls episodic release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) and is essential for reproduction. Recent evidence suggests this generator is composed of arcuate "KNDy" cells, the abbreviation based on coexpression of kisspeptin, neurokinin B, and dynorphin. However, direct visual evidence of KNDy neuron activity at a single-cell level during a pulse is lacking. Here, we use in vivo calcium imaging in freely moving female mice to show that individual KNDy neurons are synchronously activated in an episodic manner, and these synchronized episodes always precede LH pulses. Furthermore, synchronization among KNDy cells occurs in a temporal order, with some subsets of KNDy cells serving as "leaders" and others as "followers" during each synchronized episode. These results reveal an unsuspected temporal organization of activation and synchronization within the GnRH pulse generator, suggesting that different subsets of KNDy neurons are activated at pulse onset than afterward during maintenance and eventual termination of each pulse. Further studies to distinguish KNDy "leader" from "follower" cells is likely to have important clinical significance, since regulation of pulsatile GnRH secretion is essential for normal reproduction and disrupted in pathological conditions such as polycystic ovary syndrome and hypothalamic amenorrhea.
Collapse
Affiliation(s)
- Aleisha M Moore
- Brain Health Research Institute, Kent State University, Kent, OH 44242;
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, OH 44242
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, OH 44242
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| |
Collapse
|
3
|
Moore AM, Lohr DB, Coolen LM, Lehman MN. Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome. Endocrinology 2021; 162:bqab158. [PMID: 34346492 PMCID: PMC8402932 DOI: 10.1210/endocr/bqab158] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 02/08/2023]
Abstract
Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Dayanara B Lohr
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Lique M Coolen
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Kuiper LB, Lucas KA, Mai V, Coolen LM. Enhancement of Drug Seeking Following Drug Taking in a Sexual Context Requires Anterior Cingulate Cortex Activity in Male Rats. Front Behav Neurosci 2020; 14:87. [PMID: 32670029 PMCID: PMC7330085 DOI: 10.3389/fnbeh.2020.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Individual variance in vulnerability to develop addictions is influenced by social factors. Specifically, drug-taking in a sexual context appears to enhance further drug-seeking behavior in human users, as these users identify the effects of drugs to enhance sexual pleasure as a primary reason for continued drug use. Methamphetamine (Meth) is commonly used in this context. Similarly, male rats that self-administered Meth immediately followed by sexual behavior display enhanced drug-seeking behavior, including attenuation of extinction and increased reinstatement to seeking of Meth-associated cues. Hence, drug-taking in a sexual context enhances vulnerability for addiction. However, the neural mechanisms by which this occurs are unknown. Here the hypothesis was tested that medial prefrontal cortex is essential for this effect of Meth and sex when experienced concurrently. First it was shown that CaMKII neurons in the anterior cingulate area (ACA) were co-activated by both Meth and sex. Next, chemogenetic inactivation of ACA CaMKII cells using AAV5-CaMKIIa-hM4Di-mCherry was shown not to affect Meth-induced locomotor activity or sexual behavior. Subsequently, chemogenetic inactivation of ACA CaMKII neurons during Meth self-administration followed by sexual behavior was shown to prevent the effects of Meth and sex on enhanced reinstatement of Meth-seeking but did not affect enhanced drug-seeking during extinction tests. These results indicate that ACA CaMKII cell activation during exposure to Meth in a sexual context plays an essential role in the subsequent enhancement of drug-seeking during reinstatement tests.
Collapse
Affiliation(s)
- Lindsey B Kuiper
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kathryn A Lucas
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vy Mai
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
5
|
Müller CP. Drug instrumentalization. Behav Brain Res 2020; 390:112672. [PMID: 32442549 DOI: 10.1016/j.bbr.2020.112672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Psychoactive drugs with addiction potential are widely used by people of virtually all cultures in a non-addictive way. In order to understand this behaviour, its population penetrance, and its persistence, drug instrumentalization was suggested as a driving force for this consumption. Drug instrumentalization theory holds that psychoactive drugs are consumed in a very systematic way in order to make other, non-drug-related behaviours more efficient. Here, we review the evolutionary origin of this behaviour and its psychological mechanisms and explore the neurobiological and neuropharmacological mechanisms underlying them. Instrumentalization goals are discussed, for which an environmentally selective and mental state-dependent consumption of psychoactive drugs can be learned and maintained in a non-addictive way. A small percentage of people who regularly instrumentalize psychoactive drugs make a transition to addiction, which often starts with qualitative and quantitative changes in the instrumentalization goals. As such, addiction is proposed to develop from previously established long-term drug instrumentalization. Thus, preventing and treating drug addiction in an individualized medicine approach may essentially require understanding and supporting personal instrumentalization goals.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
6
|
Moore AM, Coolen LM, Lehman MN. Kisspeptin/Neurokinin B/Dynorphin (KNDy) cells as integrators of diverse internal and external cues: evidence from viral-based monosynaptic tract-tracing in mice. Sci Rep 2019; 9:14768. [PMID: 31611573 PMCID: PMC6791851 DOI: 10.1038/s41598-019-51201-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/25/2019] [Indexed: 02/01/2023] Open
Abstract
Neurons in the hypothalamic arcuate nucleus (ARC) that co-express kisspeptin, neurokinin B and dynorphin (KNDy cells) are essential for mammalian reproduction as key regulators of gonadotropin-releasing hormone (GnRH) secretion. Although multiple endogenous and exogenous signals act indirectly via KNDy neurons to regulate GnRH, the identity of upstream neurons that provide synaptic input to this subpopulation is unclear. We used rabies-mediated tract-tracing in transgenic Kiss1-Cre mice combined with whole-brain optical clearing and multiple-label immunofluorescence to create a comprehensive and quantitative brain-wide map of neurons providing monosynaptic input to KNDy cells, as well as identify the estrogen receptor content and peptidergic phenotype of afferents. Over 90% of monosynaptic input to KNDy neurons originated from hypothalamic nuclei in both male and female mice. The greatest input arose from non-KNDy ARC neurons, including proopiomelanocortin-expressing cells. Significant female-dominant sex differences in afferent input were detected from estrogen-sensitive hypothalamic nuclei critical for reproductive endocrine function and sexual behavior in mice, indicating KNDy cells may provide a unique site for the coordination of sex-specific behavior and gonadotropin release. These data provide key insight into the structural framework underlying the ability of KNDy neurons to integrate endogenous and environmental signals important for the regulation of reproductive function.
Collapse
Affiliation(s)
- Aleisha M Moore
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA.
| | - Lique M Coolen
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA
| | - Michael N Lehman
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|