1
|
Fu S, Wang X, Chen Z, Huang Z, Feng Y, Xie Y, Li X, Yang C, Xu S. Abnormalities in brain complexity in children with autism spectrum disorder: a sleeping state functional MRI study. BMC Psychiatry 2025; 25:257. [PMID: 40108560 PMCID: PMC11921608 DOI: 10.1186/s12888-025-06689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVE The theory of complexity loss in neurodivergent brain is widely acknowledged. However, the findings of autism research do not seem to align well with this theory. We aim to investigate the brain complexity in children with ASD (Autism Spectrum Disorders) compared with the TD (Typical Developed) children in sleeping state. METHOD 42 ASD children and 42 TD children were imaged using sleep-state functional magnetic resonance imaging (ss-fMRI), and brain complexity was analyzed by employing sample entropy (SampEn) and transfer entropy (TE). For the ASD group, we also investigated the relationship of symptom severity with SampEn and with TE. RESULTS In compared with TD group, ASD group showed significant increased SampEn in the right inferior frontal gyrus. However, in the group of TD, 13 pairs of brain regions exhibit higher TE compared to the ASD group. In the ASD group, the TE of 5 pairs of brain regions is higher than in the TD group. CONCLUSION This sleeping-state fMRI study provide evidence that ASD children exhibited aberrant brain complexity in compare with the TD children. The complexity of the autistic brain is composed of aberrant randomness in brain activity and anomalous information transmission between brain regions. We believe that brain complexity in ASD is a highly valuable area of research. Differences in the entropy of local brain regions, as well as in the transfer entropy between brain regions, may be related to the brain complexity observed in children with ASD.
Collapse
Affiliation(s)
- Shishun Fu
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Chen
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Zengfa Huang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Feng
- Department of Radiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yuanliang Xie
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Li
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlan Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Shoujun Xu
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Yenkoyan K, Grigoryan A, Kutna V, Shorter S, O'Leary VB, Asadollahi R, Ovsepian SV. Cerebellar impairments in genetic models of autism spectrum disorders: A neurobiological perspective. Prog Neurobiol 2024; 242:102685. [PMID: 39515458 DOI: 10.1016/j.pneurobio.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive. Studies in experimental animals have been critical in uncovering molecular pathology and neuro-behavioural correlates, providing a model for investigating complex disease conditions. Herein, we review commonalities and differences of the most extensively characterised genetic lines of ASD with reference to the cerebellum. We revisit structural, functional, and molecular alterations which may contribute to neurobehavioral phenotypes. The cross-model analysis of this study provides an integrated outlook on the role of cerebellar alterations in pathobiology of ASD that may benefit future translational research and development of therapies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia.
| | - Artem Grigoryan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia
| | - Viera Kutna
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10000, Czech Republic
| | - Reza Asadollahi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom.
| |
Collapse
|
3
|
Aziz-Zadeh L, Mayer E, Labus J, Ringold S, Jayashankar A, Kilroy E, Butera C, Jacobs J, Tanartkit S, Joshi S, Dapretto M. Relationships between tryptophan-related gut metabolites, brain activity, and autism symptomatology. RESEARCH SQUARE 2024:rs.3.rs-4559624. [PMID: 39108481 PMCID: PMC11302680 DOI: 10.21203/rs.3.rs-4559624/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Gut microbial metabolites have been theorized to play a causative role in the pathophysiology of autism spectrum disorder (ASD). This hypothesis is based on results from mechanistic preclinical studies and several correlational studies showing differences in gut microbial composition between ASD subjects and neurotypical (NT) controls. However, alterations in how the human brain interacts with the gut microbiome in ASD have not been examined. In this cross-sectional, case-control observational study, fecal metabolomics, task-based functional magnetic resonance imaging (fMRI), and behavioral assessments were obtained from 43 ASD and 41 NT children aged 8-17. The fMRI tasks were based on socio-emotional and sensory paradigms that commonly show strong evoked brain differences in ASD participants. General linear models and mediational modeling were applied to examine the links between tryptophan metabolism and evoked brain activity and behavior. Results indicated that fecal levels of specific tryptophan-related metabolites were associated with: 1) brain activity atypicalities in regions previously implicated in ASD (i.e., insula and cingulate); and 2) ASD severity and symptomatology (i.e., ADOS scores, disgust propensity, and sensory sensitivities). Importantly, activity in the mid-insula and mid-cingulate significantly mediated relationships between the microbial tryptophan metabolites, indolelactate and tryptophan betaine, and ASD severity and disgust sensitivity. To our knowledge, this is the first study to elucidate how interactions between gut metabolites and brain activity may impact autism symptomatology, particularly in functional brain pathways associated with vagal and interoceptive/emotion processing.
Collapse
Affiliation(s)
| | - Emeran Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA; Institute for Genomics and Bioinformatics, University of California, Irvine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Whelan TP, Daly E, Puts NA, Smith P, Allison C, Baron-Cohen S, Malievskaia E, Murphy DGM, McAlonan GM. The 'PSILAUT' protocol: an experimental medicine study of autistic differences in the function of brain serotonin targets of psilocybin. BMC Psychiatry 2024; 24:319. [PMID: 38658877 PMCID: PMC11044362 DOI: 10.1186/s12888-024-05768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The underlying neurobiology of the complex autism phenotype remains obscure, although accumulating evidence implicates the serotonin system and especially the 5HT2A receptor. However, previous research has largely relied upon association or correlation studies to link differences in serotonin targets to autism. To directly establish that serotonergic signalling is involved in a candidate brain function our approach is to change it and observe a shift in that function. We will use psilocybin as a pharmacological probe of the serotonin system in vivo. We will directly test the hypothesis that serotonergic targets of psilocybin - principally, but not exclusively, 5HT2A receptor pathways-function differently in autistic and non-autistic adults. METHODS The 'PSILAUT' "shiftability" study is a case-control study autistic and non-autistic adults. How neural responses 'shift' in response to low doses (2 mg and 5 mg) of psilocybin compared to placebo will be examined using multimodal techniques including functional MRI and EEG. Each participant will attend on up to three separate visits with drug or placebo administration in a double-blind and randomized order. RESULTS This study will provide the first direct evidence that the serotonin targets of psilocybin function differently in the autistic and non-autistic brain. We will also examine individual differences in serotonin system function. CONCLUSIONS This work will inform our understanding of the neurobiology of autism as well as decisions about future clinical trials of psilocybin and/or related compounds including stratification approaches. TRIAL REGISTRATION NCT05651126.
Collapse
Affiliation(s)
- Tobias P Whelan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- COMPASS Pathfinder Ltd, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Paula Smith
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Carrie Allison
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
- NIHR-Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK.
- NIHR-Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
5
|
Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS. The brain serotonin system in autism. Rev Neurosci 2024; 35:1-20. [PMID: 37415576 DOI: 10.1515/revneuro-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Dmitry A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe Highway 24, Moscow 115522, Russia
- Sechenov's University, 8-2 Trubetskaya Str., Moscow 119991, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Poudineh M, Parvin S, Omidali M, Nikzad F, Mohammadyari F, Sadeghi Poor Ranjbar F, Rasouli F, Nanbakhsh S, Olangian-Tehrani S. The Effects of Vitamin Therapy on ASD and ADHD: A Narrative Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:711-735. [PMID: 35585808 DOI: 10.2174/1871527321666220517205813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
The effects of a sufficient amount of vitamins and nutrients on the proper function of the nervous system have always been regarded by scientists. In recent years, many studies have been done on controlling or improving the symptoms of neurological and behavioral disorders created by changes in the level of vitamins and other nutrition, such as omega-3 and iron supplements. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that disrupts individual communication, especially in social interactions. Its symptoms include anxiety, violence, depression, self-injury, trouble with social contact and pervasive, stereotyped, and repetitive behavior. ASD is most noticeable in early childhood. Attention Deficit Hyperactivity Disorder (ADHD) is a lasting pattern of inattention with or without hyperactivity that causes functional disruption in daily life. ADHD symptoms included; impulsivity, hyperactivity, inattention, restlessness, talkativeness, excessive fidgeting in situations such as sitting, meetings, lectures, or at the movies, boredom, inability to make decisions, and procrastination. The exact etiology of ADHD has not yet been found, but several observations have assumed the reduced function of the brain leads to deficits in motor planning and cognitive processing. It has been shown that Pro-inflammatory cytokines and oxidative stress biomarkers could be increased in both ASD and ADHD. Several studies have been done to illustrate if vitamins and other dietary supplements are effective in treating and preventing ASD and ADHD. In this review, we aim to evaluate the effects of vitamins and other dietary supplements (e.g., melatonin, zinc supplements, magnesium supplements) on ASD and ADHD.
Collapse
Affiliation(s)
| | - Sadaf Parvin
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrnia Omidali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Nikzad
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Avicennet, Tehran, Iran
| | | | | | - Fayaz Rasouli
- Department of Medicine, Mashhad Islamic Azad University, Mashhad, Iran
| | - Sepehr Nanbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sepehr Olangian-Tehrani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| |
Collapse
|
7
|
Wong NM, Dipasquale O, Turkheimer F, Findon JL, Wichers RH, Dimitrov M, Murphy CM, Stoencheva V, Robertson DM, Murphy DG, Daly E, McAlonan GM. Differences in social brain function in autism spectrum disorder are linked to the serotonin transporter: A randomised placebo-controlled single-dose crossover trial. J Psychopharmacol 2022; 36:723-731. [PMID: 35491679 DOI: 10.1177/02698811221092509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alterations in the serotonergic control of brain pathways responsible for facial emotion processing in people with autism spectrum disorder (ASD) may be a target for intervention. However, the molecular underpinnings of autistic-neurotypical serotonergic differences are challenging to access in vivo. Receptor-Enriched Analysis of functional Connectivity by Targets (REACT) has helped define molecular-enriched functional magnetic resonance imaging (fMRI) brain networks based on a priori information about the spatial distribution of neurochemical systems from available PET templates. METHODS We used REACT to estimate the dominant fMRI signal related to the serotonin (5-HT) transporter (SERT) distribution during processing of aversive facial emotion in adults with and without ASD. We first predicted a group difference in baseline (placebo) functioning of this system. We next used a single 20 mg oral dose of citalopram, a serotonin reuptake inhibitor, to test the hypothesis that network activity in people with and without ASD would respond differently to inhibition of SERT. To confirm the specificity of our findings, we also repeated the analysis with 5-HT1A, 5-HT1B, 5-HT2A and 5-HT4 receptor maps. RESULTS Using REACT with the SERT map, we found a baseline group difference in the SERT-enriched response to faces in the ventromedial prefrontal cortex. A single oral dose of citalopram 'shifted' the response in the ASD group towards the neurotypical baseline but did not alter response in the control group. Similar differences in SERT-enriched response were observed after controlling for other 5-HT maps. CONCLUSIONS Our findings suggest that the SERT-enriched functional network is dynamically different in ASD during processing of socially relevant stimuli. Whether this acute neurobiological response to citalopram in ASD translates to a clinical target will be an important next step.
Collapse
Affiliation(s)
- Nichol Ml Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology & Neuroscience, South London and Maudsley NHS Foundation Trust, UK.,Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James L Findon
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert H Wichers
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Behavioural Genetics Clinic, Adult Autism and ADHD Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Clodagh M Murphy
- Behavioural Genetics Clinic, Adult Autism and ADHD Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
| | - Vladimira Stoencheva
- Behavioural Genetics Clinic, Adult Autism and ADHD Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
| | - Dene M Robertson
- Behavioural Genetics Clinic, Adult Autism and ADHD Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
| | - Declan G Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology & Neuroscience, South London and Maudsley NHS Foundation Trust, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology & Neuroscience, South London and Maudsley NHS Foundation Trust, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
8
|
Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021; 13:nu13124497. [PMID: 34960049 PMCID: PMC8704412 DOI: 10.3390/nu13124497] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.
Collapse
Affiliation(s)
- Michelle A. Chernikova
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Genesis D. Flores
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Emily Kilroy
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Gonda (Goldschmied) Neuroscience and Genetics Research Center, Brain Research Institute UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| |
Collapse
|
9
|
Baizer JS. Functional and Neuropathological Evidence for a Role of the Brainstem in Autism. Front Integr Neurosci 2021; 15:748977. [PMID: 34744648 PMCID: PMC8565487 DOI: 10.3389/fnint.2021.748977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The brainstem includes many nuclei and fiber tracts that mediate a wide range of functions. Data from two parallel approaches to the study of autistic spectrum disorder (ASD) implicate many brainstem structures. The first approach is to identify the functions affected in ASD and then trace the neural systems mediating those functions. While not included as core symptoms, three areas of function are frequently impaired in ASD: (1) Motor control both of the limbs and body and the control of eye movements; (2) Sensory information processing in vestibular and auditory systems; (3) Control of affect. There are critical brainstem nuclei mediating each of those functions. There are many nuclei critical for eye movement control including the superior colliculus. Vestibular information is first processed in the four nuclei of the vestibular nuclear complex. Auditory information is relayed to the dorsal and ventral cochlear nuclei and subsequently processed in multiple other brainstem nuclei. Critical structures in affect regulation are the brainstem sources of serotonin and norepinephrine, the raphe nuclei and the locus ceruleus. The second approach is the analysis of abnormalities from direct study of ASD brains. The structure most commonly identified as abnormal in neuropathological studies is the cerebellum. It is classically a major component of the motor system, critical for coordination. It has also been implicated in cognitive and language functions, among the core symptoms of ASD. This structure works very closely with the cerebral cortex; the cortex and the cerebellum show parallel enlargement over evolution. The cerebellum receives input from cortex via relays in the pontine nuclei. In addition, climbing fiber input to cerebellum comes from the inferior olive of the medulla. Mossy fiber input comes from the arcuate nucleus of the medulla as well as the pontine nuclei. The cerebellum projects to several brainstem nuclei including the vestibular nuclear complex and the red nucleus. There are thus multiple brainstem nuclei distributed at all levels of the brainstem, medulla, pons, and midbrain, that participate in functions affected in ASD. There is direct evidence that the cerebellum may be abnormal in ASD. The evidence strongly indicates that analysis of these structures could add to our understanding of the neural basis of ASD.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|