1
|
Smith GC, Griffith KR, Sicher AR, Brockway DF, Proctor EA, Crowley NA. Alcohol consumption confers lasting impacts on prefrontal cortical neuron intrinsic excitability and spontaneous neurotransmitter signaling in the aging brain in mice. Neurobiol Aging 2025; 145:42-54. [PMID: 39476434 PMCID: PMC11725176 DOI: 10.1016/j.neurobiolaging.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Both alcohol use disorder (AUD) and cognitive decline include disruption in the balance of excitation and inhibition in the cortex, but the potential role of alcohol use on excitation and inhibition on the aging brain is unclear. We examined the effect of moderate voluntary binge alcohol consumption on the aged, pre-disease neuronal environment by measuring intrinsic excitability and spontaneous neurotransmission on prefrontal cortical pyramidal (excitatory, glutamatergic) and non-pyramidal (inhibitory, GABAergic) neurons following a prolonged period of abstinence from alcohol in mice. Results highlight that binge alcohol consumption has lasting impacts on the electrophysiological properties of prefrontal cortical neurons. A profound increase in excitatory events onto layer 2/3 non-pyramidal neurons following alcohol consumption was seen, along with altered intrinsic excitability of pyramidal neurons, which could have a range of effects on cognitive disorder progression, such as Alzheimer's Disease, in humans. These results indicate that moderate voluntary alcohol influences the pre-disease environment in aging and highlight the need for further mechanistic investigation into this risk factor.
Collapse
Affiliation(s)
- Grace C Smith
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA
| | - Keith R Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA
| | - Avery R Sicher
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA
| | - Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA
| | - Elizabeth A Proctor
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, University Park, PA 16802, USA; Departments of Neurosurgery Penn State College of Medicine, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA; Departments of Neurosurgery Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Departments of Neurosurgery Penn State College of Medicine, University Park, PA 16802, USA; Penn State Neuroscience Institute, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Hughes BA, O'Buckley TK, Boero G, Morrow AL. Interneuron-selective HCN channel knockdown in prelimbic cortex of female rats mimics effects of chronic ethanol exposure. Alcohol 2024; 121:59-67. [PMID: 39033967 PMCID: PMC11637936 DOI: 10.1016/j.alcohol.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Our laboratory has previously shown that chronic ethanol exposure elicits enhanced working memory performance in female, but not male, adult Sprague-Dawley rats, indicative of a fundamental sex difference in cortical plasticity. Recent studies have furthermore revealed that females display markedly reduced HCN-mediated channel activity in inhibitory Martinotti interneurons after chronic ethanol exposure that is similarly not observed in males. From these observations we hypothesized that alcohol induces facilitated working memory performance via down-regulation of these channels' activity specifically within interneurons. To test this hypothesis, we employed a Pol-II compatible shRNA expression system to elicit targeted knockdown of HCN channel activity in these cells, and measured performance on a delayed Non-Match-to-Sample (NMS) T-maze test to gauge effects on working memory performance. A significant baseline enhancement of working memory performance with HCN channel knockdown was observed, indicative of a critical role for interneuron-expressed HCNs in maintaining optimal cortical network activity during cognitively-demanding tasks. Consistent with previous observations, ethanol exposure resulted in enhanced NMS T-maze performance, however elevated working memory performance was observed in both scram- and hcn-shRNA infected groups after alcohol administration. We therefore conclude that interneuron-expressed HCN channels, despite representing a minor population of total cortical HCN expression, contribute substantially to maintaining working memory processes. Downregulated HCN channel activity, though, does not alone appear sufficient to manifest alcohol-induced enhancement of working memory performance observed in female rats during acute withdrawal.
Collapse
Affiliation(s)
- Benjamin A Hughes
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - A Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Przybysz KR, Shillinglaw JE, Wheeler SR, Glover EJ. Chronic ethanol exposure produces long-lasting, subregion-specific physiological adaptations in RMTg-projecting mPFC neurons. Neuropharmacology 2024; 259:110098. [PMID: 39117106 PMCID: PMC11714651 DOI: 10.1016/j.neuropharm.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) that are thought to facilitate maladaptive behaviors that interfere with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is functionally altered by chronic ethanol exposure. Our recent work identified dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE exposure significantly increased intrinsic excitability as well as spontaneous excitatory and inhibitory postsynaptic currents (sE/IPSCs) in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE exposure also increased the frequency of sEPSCs in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol exposure. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Joel E Shillinglaw
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Shannon R Wheeler
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Liss A, Siddiqi M, Podder D, Scroger M, Vessey G, Martin K, Paperny N, Vo K, Astefanous A, Belachew N, Idahor E, Varodayan F. Ethanol drinking sex-dependently alters cortical IL-1β synaptic signaling and cognitive behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617276. [PMID: 39416094 PMCID: PMC11483015 DOI: 10.1101/2024.10.08.617276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Individuals with alcohol use disorder (AUD) struggle with inhibitory control, decision making, and emotional processing. These cognitive symptoms reduce treatment adherence, worsen clinical outcomes, and promote relapse. Neuroimmune activation is a key factor in the pathophysiology of AUD, and targeting this modulatory system is less likely to produce unwanted side effects compared to directly targeting neurotransmitter dysfunction. Notably, the cytokine interleukin-1β (IL-1β) has been broadly associated with the cognitive symptoms of AUD, though the underlying mechanisms are not well understood. Here we investigated how chronic intermittent 24-hour access two bottle choice ethanol drinking affects medial prefrontal cortex (mPFC)-related cognitive function and IL-1 synaptic signaling in male and female C57BL/6J mice. In both sexes, ethanol drinking decreased reference memory and increased mPFC IL-1 receptor 1 (IL-1R1) mRNA levels. In neurons, IL-1β can activate either pro-inflammatory or neuroprotective intracellular pathways depending on the isoform of the accessory protein (IL-1RAcP) recruited to the IL-1R1 complex. Moreover, ethanol drinking sex-dependently shifted mPFC IL-1RAcP isoform gene expression and IL-1β regulation of mPFC GABA synapses, both of which may contribute to female mPFC resiliency and male mPFC susceptibility. This type of signaling bias has become a recent focus of rational drug development. Therefore, in addition to increasing our understanding of how IL-1β sex-dependently contributes to mPFC dysfunction in AUD, our current findings also support the development of a new class of pharmacotherapeutics based on biased IL-1 signaling.
Collapse
|
5
|
Sedhom S, Hammond N, Thanos KZ, Blum K, Elman I, Bowirrat A, Dennen CA, Thanos PK. Potential Link Between Exercise and N-Methyl-D-Aspartate Glutamate Receptors in Alcohol Use Disorder: Implications for Therapeutic Strategies. Psychol Res Behav Manag 2024; 17:2363-2376. [PMID: 38895648 PMCID: PMC11185169 DOI: 10.2147/prbm.s462403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant risk factor, accounting for approximately 13% of all deaths in the US. AUD not only destroys families but also causes economic losses due to reduced productivity, absenteeism, and healthcare expenses. Statistics revealing the sustained number of individuals affected by AUD over the years underscore the need for further understanding of the underlying pathophysiology to advance novel therapeutic strategies. Previous research has implicated the limbic brain regions N-methyl-D-aspartate glutamate receptors (NMDAR) in the emotional and behavioral effects of AUD. Given that aerobic exercise can modulate NMDAR activity and sensitivity to alcohol, this review presents a summary of clinical and basic science studies on NMDAR levels induced by alcohol consumption, as well as acute and protracted withdrawal, highlighting the potential role of aerobic exercise as an adjunctive therapy for AUD. Based on our findings, the utility of exercise in the modulation of reward-linked receptors and AUD may be mediated by its effects on NMDA signaling. These data support further consideration of the potential of aerobic exercise as a promising adjunctive therapy for AUD.
Collapse
Affiliation(s)
- Susan Sedhom
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Przybysz KR, Shillinglaw JE, Wheeler SR, Glover EJ. Chronic ethanol exposure produces long-lasting, subregion-specific physiological adaptations in RMTg-projecting mPFC neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592759. [PMID: 38766178 PMCID: PMC11100703 DOI: 10.1101/2024.05.06.592759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) which facilitate the maladaptive behaviors interfering with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is a GABAergic midbrain region involved in aversive signaling and is functionally altered by chronic ethanol exposure. Our recent work identified a dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE significantly increased intrinsic excitability as well as excitatory and inhibitory synaptic drive in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE also increased excitatory synaptic drive in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol.
Collapse
|
7
|
Crofton EJ, O'Buckley TK, Bohnsack JP, Morrow AL, Herman MA. Divergent Population-Specific Effects of Chronic Ethanol Exposure on Excitability and Inhibitory Transmission in Male and Female Rat Central Amygdala. J Neurosci 2023; 43:7056-7068. [PMID: 37657933 PMCID: PMC10586533 DOI: 10.1523/jneurosci.0717-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The central nucleus of the amygdala (CeA) is implicated in alcohol use disorder (AUD) and AUD-associated plasticity. The CeA is a primarily GABAergic nucleus that is subdivided into lateral and medial compartments with genetically diverse subpopulations. GABAA receptors are heteromeric pentamers with subunits conferring distinct physiological characteristics. GABAA receptor signaling in the CeA has been implicated in ethanol-associated plasticity; however, population-specific changes in inhibitory signaling and subunit expression remain unclear. Here, we combined electrophysiology with single-cell gene expression analysis of population markers and GABAA receptor subunits to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure. We found that chronic ethanol exposure and withdrawal produced global changes in GABAA receptor subunit expression at the transcript and protein levels, increased excitability in female CeA neurons, and increased inhibitory synaptic transmission in male CeA neurons. When we examined CeA neurons at the single-cell level we found heterogenous populations, as previously reported. We observed ethanol-induced increases in excitability only in somatostatin neurons in the CeA of females, decreases in excitability only in the protein kinase C delta (PKCd) population in males, and ethanol-induced increases in inhibitory transmission in male PKCd and calbindin 2-expressing CeA neurons. There were no population-specific differences in GABAA receptor (Gabr) subunits in males but reduced GabrA5 expression in female somatostatin neurons. Collectively, these findings suggest that defined CeA populations display differential ethanol sensitivity in males and females, which may play a role in sex differences in vulnerability to AUD or expression of AUD pathology.SIGNIFICANCE STATEMENT The CeA is involved in the effects of ethanol in the brain; however, the population-specific changes in CeA activity remain unclear. We used recordings of CeA neuronal activity and single-cell gene expression to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure and found sex- and population-specific effects of chronic ethanol exposure and withdrawal. Specifically, female CeA neurons displayed increased excitability in the somatostatin CeA population, whereas male CeA neurons displayed increased inhibitory control in both PKCd and calbindin populations and decreased excitability in the PKCd population. These findings identify CeA populations that display differential sensitivity to ethanol exposure, which may contribute to sex differences in vulnerability to alcohol use disorder.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychology and Neuroscience, Emmanuel College, Boston, Massachusetts 02115
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - John P Bohnsack
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - A Leslie Morrow
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Melissa A Herman
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Lawson K, Scarlata MJ, Cho WC, Mangan C, Petersen D, Thompson HM, Ehnstrom S, Mousley AL, Bezek JL, Bergstrom HC. Adolescence alcohol exposure impairs fear extinction and alters medial prefrontal cortex plasticity. Neuropharmacology 2022; 211:109048. [PMID: 35364101 PMCID: PMC9067297 DOI: 10.1016/j.neuropharm.2022.109048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
After experiencing a traumatic event people often turn to alcohol to cope with symptoms. In those with post-traumatic stress disorder (PTSD) and a co-occurring alcohol use disorder (AUD), PTSD symptoms can worsen, suggesting that alcohol changes how traumatic memory is expressed. The objective of this series of experiments is to identify how alcohol drinking (EtOH), following cued fear conditioning and extinction, impacts fear expression in mice. Molecular (activity-regulated cytoskeleton-associated protein, Arc/arg3.1) and structural (dendrite and spine morphometry) markers of neuronal plasticity were measured following remote extinction retrieval. Mouse age (adolescent and adult) and sex were included as interacting variables in a full factorial design. Females drank more EtOH than males and adolescents drank more EtOH than adults. Adolescent females escalated EtOH intake across drinking days. Adolescent drinkers exhibited more conditioned freezing during extinction retrieval, an effect that persisted for at least 20 days. Heightened cued freezing in the adolescent group was associated with greater Arc/arg3.1 expression in layer (L) 2/3 prelimbic (PL) cortex, greater spine density, and reduced basal dendrite complexity. In adults, drinking was associated with reduced L2/3 infralimbic (IL) Arc expression but no behavioral differences. Few sex interactions were uncovered throughout. Overall, these data identify prolonged age-related differences in alcohol-induced fear extinction impairment and medial prefrontal cortex neuroadaptations.
Collapse
Affiliation(s)
- K Lawson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - M J Scarlata
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - W C Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - C Mangan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - D Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H M Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - S Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - A L Mousley
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - J L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA.
| |
Collapse
|
9
|
Crofton EJ, Zhu M, Curtis KN, Nolan GW, O’Buckley TK, Morrow AL, Herman MA. Medial prefrontal cortex-basolateral amygdala circuit dysfunction in chronic alcohol-exposed male rats. Neuropharmacology 2022; 205:108912. [PMID: 34883134 PMCID: PMC8800149 DOI: 10.1016/j.neuropharm.2021.108912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Alcohol is a commonly used drug that can produce alcohol use disorders (AUDs). Few individuals with AUDs receive treatment and treatment options are complicated by issues with effectiveness and compliance. Alcohol has been shown to differentially affect specific brain regions and an improved understanding of circuit-specific dysregulation caused by alcohol is warranted. Previous work has implicated both the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) in alcohol-associated plasticity, however studies directly examining the impact of alcohol exposure on this circuit are lacking. The current study employed an optogenetic strategy to investigate the prelimbic mPFC to BLA circuit and changes in circuit activity following chronic intragastric ethanol exposure in male Sprague Dawley rats. We observed monosynaptic connections with light-evoked stimulation of mPFC terminals in the BLA with efficacy and short latency. We also found that mPFC-BLA projections are primarily glutamatergic under basal inhibitory control, with a lesser population of GABAergic projections. We examined optically-evoked glutamate currents in the BLA using repeated trains of stimulation that displayed accommodation, or a reduction in evoked current amplitude over repeated stimulations. We found that following chronic ethanol exposure mPFC-BLA glutamatergic connections were dysregulated such that there were decreases in overall function, notably in synaptic strength and accommodation, with no change in probability of evoked glutamate release. The lesser GABAergic component of the mPFC-BLA circuit was not altered by chronic ethanol exposure. Collectively these data indicate that mPFC-BLA circuitry is a significant target of alcohol-associated plasticity, which may contribute to pathological behavior associated with AUDs.
Collapse
Affiliation(s)
- Elizabeth J. Crofton
- Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Department of Psychology and Neuroscience, Emmanuel College, Boston, MA, USA
| | - ManHua Zhu
- Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katelin N. Curtis
- Department of Psychology and Neuroscience, Emmanuel College, Boston, MA, USA
| | - Gavin W. Nolan
- Department of Psychology and Neuroscience, Emmanuel College, Boston, MA, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - A. Leslie Morrow
- Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Melissa A. Herman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|