1
|
Ming X, Huang G, Chen X, Liao M, Liu L. A Systematic Review and Meta-Analysis of Perceptual Learning and Video Game Training for Adults with Monocular Amblyopia. Ophthalmol Ther 2025; 14:857-881. [PMID: 40146483 PMCID: PMC12006629 DOI: 10.1007/s40123-025-01128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
INTRODUCTION Amblyopia is a neurodevelopmental disorder characterized by a reduction in best-corrected visual acuity (BCVA). This meta-analysis aimed to analyze the effectiveness of perceptual learning and video game training for adults with amblyopia. METHODS Following Cochrane guidelines (PROSPERO CRD42024504502), we conducted a systematic search across multiple databases. Randomized controlled trials (RCTs) on adults with amblyopia receiving behavioral therapies were included. Data on interventions, sample size, and logMAR visual acuity were extracted and analyzed using Review Manager 5.4 and Stata 17.0. RESULTS A total of 6439 studies were identified, with 22 meeting the inclusion criteria after screening. The meta-analysis included 422 adult patients with amblyopia across these studies. Quality assessment revealed that 78% of studies had a low risk of bias. The analysis showed a statistically significant standardized mean difference (SMD) of -0.68 in the experimental group compared with controls, indicating an improvement in visual acuity (P < 0.05). Subgroup analyses indicated that perceptual learning and video game training also resulted in visual improvement (P < 0.05). In addition, the results indicated a significant improvement in visual acuity with dichoptic training or monocular training, reaching visual acuity improvement (P < 0.05). CONCLUSIONS These findings indicate that targeted visual training facilitates neural plasticity, reduces interocular suppression, and reinforces neural pathways associated with visual processing. While video game-based interventions represent a viable and engaging rehabilitation strategy, a combined approach may be most effective in enhancing monocular and binocular functions. Future research should focus on refining training protocols to enhance both monocular and binocular visual function more effectively.
Collapse
Affiliation(s)
- Xiaolu Ming
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Optometry and Vision Science, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Gantian Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Optometry and Vision Science, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaohang Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Optometry and Vision Science, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Meng Liao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Optometry and Vision Science, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Optometry and Vision Science, West China School of Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhang X, Wu M, Cheng L, Cao W, Liu Z, Yang SB, Kim MS. Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia. Mol Psychiatry 2025; 30:693-704. [PMID: 39695324 DOI: 10.1038/s41380-024-02756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Central nervous system parvalbumin-positive interneurons (PV-INs) are crucial and highly vulnerable to various stressors. They also play a significant role in the pathological processes of many neuropsychiatric diseases, especially those associated with cognitive impairment, such as Alzheimer's disease (AD), vascular dementia (VD), Lewy body dementia, and schizophrenia. Although accumulating evidence suggests that the loss of PV-INs is associated with memory impairment in dementia, the precise molecular mechanisms remain elusive. In this review, we delve into the current evidence regarding the physiological properties of PV-INs and summarize the latest insights into how their loss contributes to cognitive decline in dementia, particularly focusing on AD and VD. Additionally, we discuss the influence of PV-INs on brain development, the variations in their characteristics across different types of dementia, and how their loss affects the etiology and progression of cognitive impairments. Ultimately, our goal is to provide a comprehensive overview of PV-INs and to consider their potential as novel therapeutic targets in dementia treatment.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wa Cao
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Ziying Liu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Seung-Bum Yang
- Department of Paramedicine, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
3
|
Brunello CA, Cannarozzo C, Castrén E. Rethinking the role of TRKB in the action of antidepressants and psychedelics. Trends Neurosci 2024; 47:865-874. [PMID: 39304417 DOI: 10.1016/j.tins.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion article, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.
Collapse
Affiliation(s)
| | | | - Eero Castrén
- Neuroscience Center - HILIFE, University of Helsinki, Finland.
| |
Collapse
|
4
|
Dadkhah M, Afshari S, Samizadegan T, Shirmard LR, Barin S. Pegylated chitosan nanoparticles of fluoxetine enhance cognitive performance and hippocampal brain derived neurotrophic factor levels in a rat model of local demyelination. Exp Gerontol 2024; 195:112533. [PMID: 39134215 DOI: 10.1016/j.exger.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cognitive impairment is a common feature in neurodegenerative diseases such as multiple sclerosis (MS). This study aims to explore the potential of enhancing the beneficial effects of fluoxetine (FLX), a neuroprotective agent known for its ability to increase neural plasticity by utilizing nanoparticles. The study specifically focuses on the synthesis and evaluation of PEGylated chitosan nanoparticles of FLX and its effect on demyelination and the subsequent cognitive impairment (CI) in the hippocampus of rats induced by local injection of lysophosphatidylcholine (LPC). Chitosan/polyethylene glycol nanoparticles were synthesized, and their properties were analyzed. Demyelination was induced in rats via hippocampal injections of lysolecithin. Behavioral assessments included open field maze, elevated plus maze, and novel object recognition memory (NORM) tests. Hippocampal levels of insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) were measured using enzyme-linked immunoassay (ELISA). The extent of remyelination was quantified using Luxol fast blue staining. Nanoparticle size measured 240.2 nm with 53 % encapsulation efficacy. Drug release exhibited a slow pattern, with 76 % released within 4 h. Nanoparticle-treated rats displayed reduced anxiety-like behavior, improved memory, increased BDNF levels, and a reduced extent of demyelination, with no change in IGF- levels. In addition, FLX -loaded chitosan nanoparticles had better effect on cognitive improvement, BDNF levels in the hippocampus that FLX. Altering pharmacokinetics and possibly pharmacodynamics. These findings highlight the potential of innovative drug delivery systems, encouraging further research in this direction.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tara Samizadegan
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Sajjad Barin
- Department of Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Nguyen DD, Mansur S, Ciesla L, Gray NE, Zhao S, Bao Y. A Combined Computational and Experimental Approach to Studying Tropomyosin Kinase Receptor B Binders for Potential Treatment of Neurodegenerative Diseases. Molecules 2024; 29:3992. [PMID: 39274839 PMCID: PMC11396239 DOI: 10.3390/molecules29173992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Tropomyosin kinase receptor B (TrkB) has been explored as a therapeutic target for neurological and psychiatric disorders. However, the development of TrkB agonists was hindered by our poor understanding of the TrkB agonist binding location and affinity (both affect the regulation of disorder types). This motivated us to develop a combined computational and experimental approach to study TrkB binders. First, we developed a docking method to simulate the binding affinity of TrkB and binders identified by our magnetic drug screening platform from Gotu kola extracts. The Fred Docking scores from the docking computation showed strong agreement with the experimental results. Subsequently, using this screening platform, we identified a list of compounds from the NIH clinical collection library and applied the same docking studies. From the Fred Docking scores, we selected two compounds for TrkB activation tests. Interestingly, the ability of the compounds to increase dendritic arborization in hippocampal neurons matched well with the computational results. Finally, we performed a detailed binding analysis of the top candidates and compared them with the best-characterized TrkB agonist, 7,8-dyhydroxyflavon. The screening platform directly identifies TrkB binders, and the computational approach allows for the quick selection of top candidates with potential biological activities based on the docking scores.
Collapse
Affiliation(s)
- Duc D. Nguyen
- Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA
| | - Shomit Mansur
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Lukasz Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Shan Zhao
- Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
6
|
Théberge S, Belliveau C, Xie D, Khalaf R, Perlman K, Rahimian R, Davoli MA, Turecki G, Mechawar N. Parvalbumin interneurons in human ventromedial prefrontal cortex: a comprehensive post-mortem study of myelination and perineuronal nets in neurotypical individuals and depressed suicides with and without a history of child abuse. Cereb Cortex 2024; 34:bhae197. [PMID: 38760318 PMCID: PMC11101286 DOI: 10.1093/cercor/bhae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Cortical parvalbumin interneurons (PV+) are major regulators of excitatory/inhibitory information processing, and their maturation is associated with the opening of developmental critical periods (CP). Recent studies reveal that cortical PV+ axons are myelinated, and that myelination along with perineuronal net (PNN) maturation around PV+ cells is associated with the closures of CP. Although PV+ interneurons are susceptible to early-life stress, their relationship between their myelination and PNN coverage remains unexplored. This study compared the fine features of PV+ interneurons in well-characterized human post-mortem ventromedial prefrontal cortex samples (n = 31) from depressed suicides with or without a history of child abuse (CA) and matched controls. In healthy controls, 81% of all sampled PV+ interneurons displayed a myelinated axon, while a subset (66%) of these cells also displayed a PNN, proposing a relationship between both attributes. Intriguingly, a 3-fold increase in the proportion of unmyelinated PV+ interneurons with a PNN was observed in CA victims, along with greater PV-immunofluorescence intensity in myelinated PV+ cells with a PNN. This study, which is the first to provide normative data on myelination and PNNs around PV+ interneurons in human neocortex, sheds further light on the cellular and molecular consequences of early-life adversity on cortical PV+ interneurons.
Collapse
Affiliation(s)
- Stéphanie Théberge
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Dongyue Xie
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Roy Khalaf
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montréal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montréal, QC, Canada
| |
Collapse
|
7
|
Paveliev M, Egorchev AA, Musin F, Lipachev N, Melnikova A, Gimadutdinov RM, Kashipov AR, Molotkov D, Chickrin DE, Aganov AV. Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence. Int J Mol Sci 2024; 25:4227. [PMID: 38673819 PMCID: PMC11049984 DOI: 10.3390/ijms25084227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer's disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN microstructure in brain pathologies has remained largely unstudied until recently. Here, we review recent research implicating PNN microstructural changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the mutual functional regulation between the ECM and the synaptic terminal. We also review some updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based methods are now arriving as a new tool that may have the potential to grasp the brain's complexity through a wide range of organization levels-from synaptic molecular events to large scale tissue rearrangements and the whole-brain connectome function. This scope matches exactly the complex role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN mesh contour tracing.
Collapse
Affiliation(s)
- Mikhail Paveliev
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Anton A. Egorchev
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Foat Musin
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Nikita Lipachev
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| | - Anastasiia Melnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karl Marx 74, Kazan 420015, Tatarstan, Russia;
| | - Rustem M. Gimadutdinov
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Aidar R. Kashipov
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Dmitry Molotkov
- Biomedicum Imaging Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland;
| | - Dmitry E. Chickrin
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Albert V. Aganov
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| |
Collapse
|
8
|
Liu S, Lu Y, Tian D, Zhang T, Zhang C, Hu CY, Chen P, Meng Y. Hydroxytyrosol Alleviates Obesity-Induced Cognitive Decline by Modulating the Expression Levels of Brain-Derived Neurotrophic Factors and Inflammatory Factors in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6250-6264. [PMID: 38491001 DOI: 10.1021/acs.jafc.3c08319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Hydroxytyrosol (HT; 3,4-dihydroxyphenyl ethanol) is an important functional polyphenol in olive oil. Our study sought to evaluate the protective effects and underlying mechanisms of HT on obesity-induced cognitive impairment. A high-fat and high-fructose-diet-induced obese mice model was treated with HT for 14 weeks. The results show that HT improved the learning and memory abilities and enhanced the expressions of brain-derived neurotrophic factors (BDNFs) and postsynaptic density proteins, protecting neuronal and synaptic functions in obese mice. Transcriptomic results further confirmed that HT improved cognitive impairment by regulating gene expression in neural system development and synaptic function-related pathways. Moreover, HT treatment alleviated neuroinflammation in the brain of obese mice. To sum up, our results indicated that HT can alleviate obesity-induced cognitive dysfunction by enhancing BDNF expression and alleviating neuroinflammation in the brain, which also means that HT may become a potentially useful nutritional supplement to alleviate obesity-induced cognitive decline.
Collapse
Affiliation(s)
- Shenlin Liu
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Yalong Lu
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Dan Tian
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Tingting Zhang
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Chaoqun Zhang
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| | - Ching Yuan Hu
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Ping Chen
- Shaanxi Provincial Center for Disease Control and Prevention, Xian, Shaanxi 710054, P. R. China
| | - Yonghong Meng
- The Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, P. R. China
| |
Collapse
|