1
|
Fernandes-Henriques C, Guetta Y, Sclar MG, Zhang R, Miura Y, Surrence KR, Friedman AK, Likhtik E. Infralimbic Projections to the Substantia Innominata-Ventral Pallidum Constrain Defensive Behavior during Extinction Learning. J Neurosci 2025; 45:e1001242025. [PMID: 40262898 PMCID: PMC12121716 DOI: 10.1523/jneurosci.1001-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Fear extinction is critical for decreasing fear responses to a stimulus that is no longer threatening. While it is known that the infralimbic (IL) region of the medial prefrontal cortex mediates retrieval of an extinction memory through projections to the basolateral amygdala (BLA), IL pathways contributing to extinction learning are not well understood. Given the dense projection from the IL to the substantia innominata-ventral pallidum (SI/VP), an area that processes aversive and appetitive cues, we compared how the IL→SI/VP functions in extinction compared with the IL→BLA pathway in male mice. Using retrograde tracing, we demonstrate that IL projections to the SI/VP originate from superficial [Layer (L)2/3] and deep cortical layers (L5) and that they are denser than IL projections to the BLA. Next, combining retrograde tracing with labeling for the immediate early gene cFos, we show increased activity of L5 IL→SI/VP output during extinction learning and increased activity of L2/3 IL→BLA output during extinction retrieval. Then, using in vitro recordings, we demonstrate that neurons in the IL→SI/VP pathway are more excitable during extinction learning than retrieval. Finally, using optogenetics, we inactivate the IL→SI/VP pathway and show that this increases defensive freezing during extinction learning and re-extinction, without affecting memory. Taken together, we demonstrate that the IL→SI/VP pathway is active during extinction learning, when it constrains the defensive freezing response. We propose that the IL acts as a switchboard operator, increasing IL L5 communication with the SI/VP during extinction learning and IL L2/3 communication with the BLA during extinction retrieval.
Collapse
Affiliation(s)
- Carolina Fernandes-Henriques
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Yuval Guetta
- Psychology, Hunter College, CUNY, New York 10065
| | - Mia G Sclar
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Rebecca Zhang
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Yuka Miura
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | | | - Allyson K Friedman
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Ekaterina Likhtik
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| |
Collapse
|
2
|
Ubri CE, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Impairs Fear Extinction and Network Excitability in the Infralimbic Cortex. J Neurotrauma 2025. [PMID: 40401451 DOI: 10.1089/neu.2025.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with mild TBI (concussions) representing over 80% of cases. Although often considered benign, mild TBI is associated with persistent neuropsychiatric conditions, including post-traumatic stress disorder, anxiety, and depression. A hallmark of these conditions is impaired fear extinction (FE), the process by which learned fear responses are inhibited in safe contexts. This dysfunction contributes to maladaptive fear expression and is linked to altered neurocircuitry, particularly in the infralimbic cortex (IL), a key region in FE. Despite extensive evidence of impaired FE in patients with mild TBI and animal models, the specific mechanisms underlying this deficit remain poorly understood. This study aimed to address this gap by combining cued-FE behavior, local field potential recordings, and whole-cell patch-clamp techniques to investigate how mild TBI affects IL network activity and excitability in a mouse model of TBI. Our results demonstrate that mild lateral fluid percussion injury significantly impairs FE memory, as evidenced by an elevated cued-fear response during extinction testing 10 days post-injury. Field potential recordings revealed decreased activation of the IL network in both layers II/III and V, which was consistent with the observed behavioral deficits. Further analysis of synaptic physiology revealed an imbalance in excitatory and inhibitory neurotransmission (E/I imbalance) in the IL, characterized by reduced excitatory input and enhanced inhibitory input to neurons in both layers. Moreover, intrinsic excitability was altered in IL neurons after mild TBI. This study provides novel insights into how mild TBI disrupts the neurocircuitry underlying FE, specifically by suppressing IL excitability. These results highlight the importance of understanding the mechanistic disruptions in IL activity for developing therapeutic strategies to address fear-based disorders in patients with mild TBI.
Collapse
Affiliation(s)
- Catherine E Ubri
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M Farrugia
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Akiva S Cohen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Laymon JL, Whitten CJ, Radford AF, Brewer AR, Deo YS, Hooker MK, Geddati AA, Cooper MA. Distinguishing neural ensembles in the infralimbic cortex that regulate stress vulnerability and coping behavior. Neurobiol Stress 2025; 36:100720. [PMID: 40230624 PMCID: PMC11994976 DOI: 10.1016/j.ynstr.2025.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Neural ensembles in the medial prefrontal cortex regulate several types of responses to stress. We used a Syrian hamster model to investigate the role of infralimbic (IL) neurons in coping with social defeat stress and vulnerability to subsequent anxiety-like behavior. We created social dominance relationships in male and female hamsters, used a robust activity marker (RAM) approach to label IL neural ensembles activated during social defeat stress, and employed light-dark (LD), social avoidance (SA), and conditioned defeat (CD) tests to assess anxiety-like behavior. We found that dominant animals were less anxious in LD tests compared to subordinate animals after achieving their higher status. Also, status-dependent differences in anxiety-like behavior were maintained following social defeat in males, but not females. Subordinate males showed greater RAM-mKate2 expression in IL parvalbumin (PV) cells during social defeat exposure compared to dominant males, and submissive behavior during CD testing was correlated with RAM/PV co-expression. In contrast, greater RAM-mKate2 expression in IL neurons was correlated with a longer latency to submit during social defeat in dominant females, although the correlation of RAM/PV co-expression and defeat-induced anxiety in females was mixed. Overall, these findings suggest that activation of IL PV cells during social defeat predicts the development stress vulnerability in males, whereas activation of IL neurons is associated with a proactive response to social defeat exposure in females. Understanding how social dominance generates plasticity in IL PV cells should improve our understanding of the mechanisms by which behavioral treatments prior to stress might promote stress resilience.
Collapse
Affiliation(s)
- Jenna L. Laymon
- Translational Neuroscience Program, Wayne State University School of Medicine, USA
| | | | - Anna F. Radford
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | - Yash S. Deo
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | - Akhil A. Geddati
- Department of Psychology, University of Tennessee Knoxville, USA
| | | |
Collapse
|
4
|
Subramanian R, Bauman A, Carpenter O, Cho C, Coste G, Dam A, Drake K, Ehnstrom S, Fitzgerald N, Jenkins A, Koolpe H, Liu R, Paserman T, Petersen D, Chavez DS, Rozental S, Thompson H, Tsukuda T, Zweig S, Gall M, Zupan B, Bergstrom H. An infralimbic cortex engram encoded during learning attenuates fear generalization. J Neurosci 2025; 45:e2120242025. [PMID: 40147934 PMCID: PMC12060607 DOI: 10.1523/jneurosci.2120-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Generalization allows previous experience to adaptively guide behavior when conditions change. The infralimbic (IL) subregion of the ventromedial prefrontal cortex plays a known role in generalization processes, although mechanisms remain unclear. A basic physical unit of memory storage and expression in the brain is a sparse, distributed group of neurons known as an engram. Here, we set out to determine whether an engram established during learning contributes to generalized responses in IL. Generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following Pavlovian defensive (fear) conditioning. The first experiment was designed to test a global role for IL in generalization using chemogenetic manipulations. Results show IL regulates defensive behavior in response to ambiguous stimuli. IL silencing led to a switch in defensive state, from vigilant scanning to generalized freezing, while IL stimulation reduced freezing in favor of scanning. Leveraging activity-dependent "tagging" technology (ArcCreERT2 x eYFP system), an engram, preferentially located in IL Layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 days) following learning. When an IL engram established during learning was selectively chemogenetically silenced, freezing increased. Conversely, IL engram stimulation reduced freezing, suggesting attenuated fear generalization. Overall, these data identify a crucial role for IL in suppressing generalized conditioned responses. Further, an IL engram formed during learning functions to later attenuate a conditioned response in the presence of ambiguous threat stimuli.Significance statement Generalization refers to the ability for organisms to use previous experience to guide behavior when environmental conditions change. Despite the immense importance of generalization in adaptive behavior, the precise brain mechanisms remain unknown. Here we identified a small population of neurons, known as an engram, in a discrete region of the frontal cortex that was associated with the expression of generalization related to a threatening situation. When these cells were turned off, generalization increased. When they were turned on, generalization decreased. Considering that over-generalization of threatening stimuli is a known fundamental dimension of both anxiety and post-traumatic stress disorders, these findings have implications not only for our understanding of intrinsic generalization processes but also highly prevalent clinical disorders.
Collapse
Affiliation(s)
- Rajani Subramanian
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Avery Bauman
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Olivia Carpenter
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Chris Cho
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Gabrielle Coste
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Ahona Dam
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Kasey Drake
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Sara Ehnstrom
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Naomi Fitzgerald
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Abigail Jenkins
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hannah Koolpe
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Runqi Liu
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Tamar Paserman
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - David Petersen
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Diego Scala Chavez
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Stefano Rozental
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hannah Thompson
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Tyler Tsukuda
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Sasha Zweig
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Megan Gall
- Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12603
| | - Bojana Zupan
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hadley Bergstrom
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| |
Collapse
|
5
|
Shansky RM, Greiner EM. A covert cortical ensemble for learned fear suppression. Neuropsychopharmacology 2024; 49:1949-1950. [PMID: 39285227 PMCID: PMC11480451 DOI: 10.1038/s41386-024-01991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/17/2024]
Affiliation(s)
| | - Eliza M Greiner
- Dept. of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
Subramanian R, Bauman A, Carpenter O, Cho C, Coste G, Dam A, Drake K, Ehnstrom S, Fitzgerald N, Jenkins A, Koolpe H, Liu R, Paserman T, Petersen D, Chavez DS, Rozental S, Thompson H, Tsukuda T, Zweig S, Gall M, Zupan B, Bergstrom H. An infralimbic cortex neuronal ensemble encoded during learning attenuates fear generalization expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608308. [PMID: 39229064 PMCID: PMC11370439 DOI: 10.1101/2024.08.18.608308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Generalization allows previous experience to adaptively guide behavior when conditions change. The infralimbic (IL) subregion of the ventral medial prefrontal cortex plays a known role in generalization processes, although mechanisms remain unclear. A basic physical unit of memory storage and expression in the brain are sparse, distributed groups of neurons known as ensembles (i.e., the engram). Here, we set out to determine whether neuronal ensembles established in the IL during learning contribute to generalized responses. Generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following Pavlovian defensive (fear) conditioning. The first experiment was designed to test a role for IL in generalization using chemogenetic manipulations. Results show IL regulates defensive behavior in response to ambiguous stimuli. IL silencing led to a switch in defensive state, from vigilant scanning to generalized freezing, while IL stimulation reduced freezing in favor of scanning. Leveraging activity-dependent "tagging" technology (ArcCreERT2 × eYFP system), a neuronal ensemble, preferentially located in IL Layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 days) following learning. When an IL neuronal ensemble established during learning was selectively chemogenetically silenced, generalization increased. Conversely, IL neuronal ensemble stimulation reduced generalization. Overall, these data identify a crucial role for IL in suppressing generalized responses. Further, an IL neuronal ensemble, formed during learning, functions to later attenuate the expression of generalization in the presence of ambiguous threat stimuli.
Collapse
Affiliation(s)
- Rajani Subramanian
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Avery Bauman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Olivia Carpenter
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Chris Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Gabrielle Coste
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Ahona Dam
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Kasey Drake
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sara Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Naomi Fitzgerald
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Abigail Jenkins
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Koolpe
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Runqi Liu
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tamar Paserman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - David Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Diego Scala Chavez
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Stefano Rozental
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tyler Tsukuda
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sasha Zweig
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Megan Gall
- Department of Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Bojana Zupan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hadley Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| |
Collapse
|