1
|
Li S, He S, Xue H, He Y. Impact of endogenous viral elements on glioma clinical phenotypes by inducing OCT4 in the host. Front Cell Infect Microbiol 2024; 14:1474492. [PMID: 39588508 PMCID: PMC11586349 DOI: 10.3389/fcimb.2024.1474492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Endogenous viral elements (EVEs) are viral sequences integrated within the host genome that can influence gene regulation and tumor development. While EVEs have been implicated in cancer, their role in regulating key transcription factors in glioblastoma (GBM) remains underexplored. This study investigates the relationship between EVEs and the activation of OCT4, a critical transcription factor in GBM progression. Methods We utilized CancerHERVdb and HervD Atlas databases to identify potential interactions between EVEs and key genes involved in GBM. Data from 273 GBM patient samples in the TCGA database were analyzed to examine the correlation between OCT4 expression and mutations in glioma-related genes. Furthermore, glioblastoma stem cells (GSCs) were assessed for the expression levels of OCT4 and SOX2, and Pearson correlation analysis was performed. Results Our analysis revealed that OCT4 is a pivotal gene activated by EVEs in GBM. OCT4 expression was significantly correlated with mutations in key glioma-associated genes. Higher OCT4 levels were associated with poorer patient prognosis, higher tumor grades, and older age. Additionally, GSCs exhibited elevated expression of both OCT4 and SOX2, with a positive correlation observed between these two genes in GBM patients. Discussion This study highlights the potential role of EVEs in driving GBM progression through the activation of OCT4. The findings emphasize the importance of OCT4 in GBM malignancy and suggest that targeting EVE-mediated pathways may provide new therapeutic approaches for GBM treatment.
Collapse
Affiliation(s)
- Shirong Li
- Department of Neurosurgery and Laboratory of Animal Tumor Models, Cancer Center and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai He
- Department of Neurosurgery and Laboratory of Animal Tumor Models, Cancer Center and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Xue
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yi He
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
2
|
Shen L, Yue S. M6A-related bioinformatics analysis indicates that LRPPRC is an immune marker for ischemic stroke. Sci Rep 2024; 14:8852. [PMID: 38632288 PMCID: PMC11024132 DOI: 10.1038/s41598-024-57507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Ischemic stroke (IS) is a common cerebrovascular disease whose pathogenesis involves a variety of immune molecules, immune channels and immune processes. 6-methyladenosine (m6A) modification regulates a variety of immune metabolic and immunopathological processes, but the role of m6A in IS is not yet understood. We downloaded the data set GSE58294 from the GEO database and screened for m6A-regulated differential expression genes. The RF algorithm was selected to screen the m6A key regulatory genes. Clinical prediction models were constructed and validated based on m6A key regulatory genes. IS patients were grouped according to the expression of m6A key regulatory genes, and immune markers of IS were identified based on immune infiltration characteristics and correlation. Finally, we performed functional enrichment, protein interaction network analysis and molecular prediction of the immune biomarkers. We identified a total of 7 differentially expressed genes in the dataset, namely METTL3, WTAP, YWHAG, TRA2A, YTHDF3, LRPPRC and HNRNPA2B1. The random forest algorithm indicated that all 7 genes were m6A key regulatory genes of IS, and the credibility of the above key regulatory genes was verified by constructing a clinical prediction model. Based on the expression of key regulatory genes, we divided IS patients into 2 groups. Based on the expression of the gene LRPPRC and the correlation of immune infiltration under different subgroups, LRPPRC was identified as an immune biomarker for IS. GO enrichment analyses indicate that LRPPRC is associated with a variety of cellular functions. Protein interaction network analysis and molecular prediction indicated that LRPPRC correlates with a variety of immune proteins, and LRPPRC may serve as a target for IS drug therapy. Our findings suggest that LRPPRC is an immune marker for IS. Further analysis based on LRPPRC could elucidate its role in the immune microenvironment of IS.
Collapse
Affiliation(s)
- Lianwei Shen
- Rehabitation Center, Qilu Hospital of Shandong University, No. 107, West Culture Road, Lixia District, Jinan, 250012, Shandong, China
| | - Shouwei Yue
- Rehabitation Center, Qilu Hospital of Shandong University, No. 107, West Culture Road, Lixia District, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Wang X, Lin Y, Li Z, Li Y, Chen M. Alternative Polyadenylation Regulatory Factors Signature for Survival Prediction in Kidney Renal Cell Carcinoma. Cancer Inform 2024; 23:11769351231180789. [PMID: 38617569 PMCID: PMC11015750 DOI: 10.1177/11769351231180789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 04/16/2024] Open
Abstract
Background Alternative polyadenylation (APA) plays a vital regulatory role in various diseases. It is widely accepted that APA is regulated by APA regulatory factors. Objective Whether APA regulatory factors affect the prognosis of renal cell carcinoma remains unclear, and this is the main topic of this study. Methods We downloaded the transcriptome and clinical data from The Cancer Genome Atlas (TCGA) database. We used the Lasso regression system to construct an APA model for analyzing the relationship between common APA regulatory factors and renal cell carcinoma. We also validated our APA model using independent GEO datasets (GSE29609, GSE76207). Results It was found that the expression levels of 5 APA regulatory factors (CPSF1, CPSF2, CSTF2, PABPC1, and PABPC4) were significantly associated with tumor gene mutation burden (TMB) score in renal clear cell carcinoma, and the risk score constructed using the expression level of 5 key APA regulatory factors could be used to predict the outcome of renal clear cell carcinoma. The TMB score is associated with the remodeling of the immune microenvironment. Conclusions By identifying key APA regulatory factors in renal cell carcinoma and constructing risk scores for key APA regulatory factors, we showed that key APA regulators affect prognosis of renal clear cell carcinoma patients. In addition, the risk score level is associated with TMB, indicating that APA may affect the efficacy of immunotherapy through immune microenvironment-related genes. This helps us better understand the mRNA processing mechanism of renal clear cell carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yao Lin
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zheng Li
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yueqi Li
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingcong Chen
- Department of Orthopedics and Traumatology, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
4
|
Chu J, Zheng R, Chen H, Chen Y, Lin Y, Li J, Wei W, Chen R, Deng P, Su J, Jiang J, Ye L, Liang H, An S. Dynamic m 6 A profiles reveal the role of YTHDC2-TLR2 signaling axis in Talaromyces marneffei infection. J Med Virol 2024; 96:e29466. [PMID: 38344929 DOI: 10.1002/jmv.29466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Talaromyces marneffei (TM) immune evasion is an important factor leading to the high mortality rate of Penicilliosis marneffei. N6 -methyladenosine (m6 A) plays important roles in host immune response to various pathogen infections, yet its role in TM and HIV/TM coinfection remains largely unexplored. Here we reported genome-wide transcriptional m6 A profiles of TM mono-infection and HIV/TM coinfection. Our finding revealed dynamic alterations in global m6 A levels and upregulation of the m6 A reader YTH N6 -methyladenosine RNA binding protein C2 (YTHDC2) in TM-infected macrophages. Knockdown of YTHDC2 in TM-infected cells showed an elevated expression of TLR2 through m6 A-dependence, along with upregulation of TNF-α and IL1-β. Overall, we characterized the m6 A profiles of the host and fungus before and after TM infection, and demonstrated that YTHDC2 mediates the key m6 A site of TLR2 to exert its function. These findings provide new insights into the underlying mechanisms and novel therapeutic approaches for TM diseases.
Collapse
Affiliation(s)
- Jiemei Chu
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Ruili Zheng
- Department of Laboratory Medicine, Changxing People's Hospital of Chongming District, Shanghai, China
| | - Hubin Chen
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Yaxin Chen
- Frontiers Science Center for Disease-related Molecular Network, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Lin
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingyi Li
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Rongfeng Chen
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Peixue Deng
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinming Su
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sanqi An
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Wu LZ, Zou Y, Wang BR, Ni HF, Kong YG, Hua QQ, Chen SM. Enhancing nasopharyngeal carcinoma cell radiosensitivity by suppressing AKT/mTOR via CENP-N knockdown. J Transl Med 2023; 21:792. [PMID: 37940975 PMCID: PMC10631041 DOI: 10.1186/s12967-023-04654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE Investigating the impact of centromere protein N (CENP-N) on radiosensitivity of nasopharyngeal carcinoma (NPC) cells. METHODS Using immunohistochemistry and immunofluorescence to detect CENP-N expression in tissues from 35 patients with radiosensitive or radioresistant NPC. Assessing the effect of combined CENP-N knockdown and radiotherapy on various cellular processes by CCK-8, colony formation, flow cytometry, and Western blotting. Establishing a NPC xenograft model. When the tumor volume reached 100 mm3, a irradiation dose of 6 Gy was given, and the effects of the combined treatment were evaluated in vivo using immunofluorescence and Western blotting techniques. RESULTS The level of CENP-N was significantly reduced in radiosensitive tissues of NPC (p < 0.05). Knockdown of CENP-N enhanced NPC radiosensitivity, resulting in sensitizing enhancement ratios (SER) of 1.44 (5-8 F) and 1.16 (CNE-2Z). The combined treatment showed significantly higher levels of proliferation suppression, apoptosis, and G2/M phase arrest (p < 0.01) compared to either CENP-N knockdown alone or radiotherapy alone. The combined treatment group showed the highest increase in Bax and γH2AX protein levels, whereas the protein Cyclin D1 exhibited the greatest decrease (p < 0.01). However, the above changes were reversed after treatment with AKT activator SC79. In vivo, the mean volume and weight of tumors in the radiotherapy group were 182 ± 54 mm3 and 0.16 ± 0.03 g. The mean tumor volume and weight in the combined treatment group were 84 ± 42 mm3 and 0.04 ± 0.01 g. CONCLUSION Knockdown of CENP-N can enhance NPC radiosensitivity by inhibiting AKT/mTOR.
Collapse
Affiliation(s)
- Li-Zhi Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Bin-Ru Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hai-Feng Ni
- Department of Otolaryngology Head and Neck surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Identifying Potential Tumor Antigens and Antigens-Related Subtypes in Hepatocellular Carcinoma for mRNA Vaccine Development. JOURNAL OF ONCOLOGY 2022; 2022:6851026. [PMID: 36072981 PMCID: PMC9444406 DOI: 10.1155/2022/6851026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Background The mRNA vaccine has become a promising platform for cancer therapy. Lots of studies have been focusing on discovering novel potent cancer-associated antigens to develop mRNA vaccines against cancers. Besides, immunotyping shows the immune status, and immune microenvironment of immunotyping is related with therapeutic reaction. However, potential antigens for mRNA vaccines and immunotyping of liver hepatocellular carcinoma (LIHC) remain far from being understood. Methods In this study, we collected gene expression data and clinical information data from ICGC and TCGA databases. Using GEPIA2, we calculated differential expression genes and prognostic indices. We applied TIMER to calculate the correlation coefficient between immune infiltrating cells and each gene. Consensus cluster was used for immunotyping of LIHC. Results We uncovered four most potential candidates including PES1, MCM3, PPM1G, and KPNA2, which were all related with antigen-presenting cell (APC) infiltration and poor survival in LIHC in two independent datasets. Furthermore, three immune-related subtypes (IS1-IS3) of LIHC were identified. All these results were validated in two independent datasets. Furthermore, we validated our results in vitro. Conclusions The above candidates will be expected to be potential antigen genes for developing anti-LIHC mRNA vaccine, and furthermore, patients with IS2 and IS3 tumors are supposed to be appropriate for mRNA vaccine in LIHC.
Collapse
|
7
|
Falco MM, Peña-Chilet M, Loucera C, Hidalgo MR, Dopazo J. Mechanistic models of signaling pathways deconvolute the glioblastoma single-cell functional landscape. NAR Cancer 2020; 2:zcaa011. [PMID: 34316686 PMCID: PMC8210212 DOI: 10.1093/narcan/zcaa011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Single-cell RNA sequencing is revealing an unexpectedly large degree of heterogeneity in gene expression levels across cell populations. However, little is known on the functional consequences of this heterogeneity and the contribution of individual cell fate decisions to the collective behavior of the tissues these cells are part of. Here, we use mechanistic modeling of signaling circuits, which reveals a complex functional landscape at single-cell level. Different clusters of neoplastic glioblastoma cells have been defined according to their differences in signaling circuit activity profiles triggering specific cancer hallmarks, which suggest different functional strategies with distinct degrees of aggressiveness. Moreover, mechanistic modeling of effects of targeted drug inhibitions at single-cell level revealed, how in some cells, the substitution of VEGFA, the target of bevacizumab, by other expressed proteins, like PDGFD, KITLG and FGF2, keeps the VEGF pathway active, insensitive to the VEGFA inhibition by the drug. Here, we describe for the first time mechanisms that individual cells use to avoid the effect of a targeted therapy, providing an explanation for the innate resistance to the treatment displayed by some cells. Our results suggest that mechanistic modeling could become an important asset for the definition of personalized therapeutic interventions.
Collapse
Affiliation(s)
- Matías M Falco
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Marta R Hidalgo
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|