1
|
Sebastian R, Sun EG, Fedkenheuer M, Fu H, Jung S, Thakur BL, Redon CE, Pegoraro G, Tran AD, Gross JM, Mosavarpour S, Kusi NA, Ray A, Dhall A, Pongor LS, Casellas R, Aladjem MI. Mechanism for local attenuation of DNA replication at double-strand breaks. Nature 2025; 639:1084-1092. [PMID: 39972127 DOI: 10.1038/s41586-024-08557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/09/2024] [Indexed: 02/21/2025]
Abstract
DNA double-strand breaks (DSBs) disrupt the continuity of the genome, with consequences for malignant transformation. Massive DNA damage can elicit a cellular checkpoint response that prevents cell proliferation1,2. However, how highly aggressive cancer cells, which can tolerate widespread DNA damage, respond to DSBs alongside continuous chromosome duplication is unknown. Here we show that DSBs induce a local genome maintenance mechanism that inhibits replication initiation in DSB-containing topologically associating domains (TADs) without affecting DNA synthesis at other genomic locations. This process is facilitated by mediators of replication and DSBs (MRDs). In normal and cancer cells, MRDs include the TIMELESS-TIPIN complex and the WEE1 kinase, which actively dislodges the TIMELESS-TIPIN complex from replication origins adjacent to DSBs and prevents initiation of DNA synthesis at DSB-containing TADs. Dysregulation of MRDs, or disruption of 3D chromatin architecture by dissolving TADs, results in inadvertent replication in damaged chromatin and increased DNA damage in cancer cells. We propose that the intact MRD cascade precedes DSB repair to prevent genomic instability, which is otherwise observed when replication is forced, or when genome architecture is challenged, in the presence of DSBs3-5. These observations reveal a previously unknown vulnerability in the DNA replication machinery that may be exploited to therapeutically target cancer cells.
Collapse
Affiliation(s)
- Robin Sebastian
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric G Sun
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Fedkenheuer
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - SeolKyoung Jung
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bhushan L Thakur
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andy D Tran
- CCR Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jacob M Gross
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara Mosavarpour
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nana Afua Kusi
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anagh Ray
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anjali Dhall
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics and Epigenetics Core Group, HCEMM, Szeged, Hungary
| | - Rafael Casellas
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Mahiny D, Hauck L, Premsingh B, Grothe D, Billia F. Cdk1 Deficiency Extends the Postnatal Window of Cardiomyocyte Proliferation and Restores Cardiac Function after Myocardial Infarction. Int J Mol Sci 2024; 25:10824. [PMID: 39409153 DOI: 10.3390/ijms251910824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is a master regulator of the G2-M transition between DNA replication and cell division. This study investigates the regulation of cardiomyocyte (CM) proliferation during the early neonatal period and following ischemic injury in adult mice. We analyzed cell cycle dynamics with the assessment of DNA synthesis, and cytokinesis in murine hearts during the first 15 days after birth. A distinct proliferative block was observed at 1 day, followed by a second wave of DNA synthesis at 4 days, leading to CM binucleation (CMBN) by day 5. Genome-wide mRNA profiling revealed the differential expression of cell cycle regulatory genes during this period, with a downregulation of factors involved in cell division and mitosis. The loss of Cdk1 impaired CMBN but extended the neonatal CM proliferation window until day 10 post-birth. In adult hearts, the cardiac-specific ablation of Cdk1 triggered CM proliferation post-myocardial-infarction (MI) in specific zones, driven by the activation of EGFR1 signaling and suppression of the anti-proliferative p38 and p53 signaling. This was accompanied by restoration of fractional shortening, mitochondrial function, and decreased reactive oxygen species. Additionally, cardiac hypertrophy was mitigated, and survival rates post-MI were increased in Cdk1-knockout mice. These findings reveal a novel role of Cdk1 in regulating cell cycle exit and re-entry in differentiated CMs and offer insights into potential strategies for cardiac repair.
Collapse
Affiliation(s)
- Donya Mahiny
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
| | - Ludger Hauck
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
| | - Benny Premsingh
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
| | - Daniela Grothe
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, 100 College St., Toronto, ON M5G 1L7, Canada
- Division of Cardiology, University Health Network (UHN), 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| |
Collapse
|
3
|
Paul Chowdhuri S, Das BB. TDP1 phosphorylation by CDK1 in mitosis promotes MUS81-dependent repair of trapped Top1-DNA covalent complexes. EMBO J 2024; 43:3710-3732. [PMID: 39014228 PMCID: PMC11377750 DOI: 10.1038/s44318-024-00169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Topoisomerase 1 (Top1) controls DNA topology, relieves DNA supercoiling during replication and transcription, and is critical for mitotic progression to the G1 phase. Tyrosyl-DNA phosphodiesterase 1 (TDP1) mediates the removal of trapped Top1-DNA covalent complexes (Top1cc). Here, we identify CDK1-dependent phosphorylation of TDP1 at residue S61 during mitosis. A TDP1 variant defective for S61 phosphorylation (TDP1-S61A) is trapped on the mitotic chromosomes, triggering DNA damage and mitotic defects. Moreover, we show that Top1cc repair in mitosis occurs via a MUS81-dependent DNA repair mechanism. Replication stress induced by camptothecin or aphidicolin leads to TDP1-S61A enrichment at common fragile sites, which over-stimulates MUS81-dependent chromatid breaks, anaphase bridges, and micronuclei, ultimately culminating in the formation of 53BP1 nuclear bodies during G1 phase. Our findings provide new insights into the cell cycle-dependent regulation of TDP1 dynamics for the repair of trapped Top1-DNA covalent complexes during mitosis that prevents genomic instability following replication stress.
Collapse
Affiliation(s)
- Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
4
|
Wang S, Xiong Y, Luo Y, Shen Y, Zhang F, Lan H, Pang Y, Wang X, Li X, Zheng X, Lu X, Liu X, Cheng Y, Wu T, Dong Y, Lu Y, Cui J, Jia X, Yang S, Wang L, Wang Y. Genome-wide CRISPR screens identify PKMYT1 as a therapeutic target in pancreatic ductal adenocarcinoma. EMBO Mol Med 2024; 16:1115-1142. [PMID: 38570712 PMCID: PMC11099189 DOI: 10.1038/s44321-024-00060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an overall 5-year survival rate of <12% due to the lack of effective treatments. Novel treatment strategies are urgently needed. Here, PKMYT1 is identified through genome-wide CRISPR screens as a non-mutant, genetic vulnerability of PDAC. Higher PKMYT1 expression levels indicate poor prognosis in PDAC patients. PKMYT1 ablation inhibits tumor growth and proliferation in vitro and in vivo by regulating cell cycle progression and inducing apoptosis. Moreover, pharmacological inhibition of PKMYT1 shows efficacy in multiple PDAC cell models and effectively induces tumor regression without overt toxicity in PDAC cell line-derived xenograft and in more clinically relevant patient-derived xenograft models. Mechanistically, in addition to its canonical function of phosphorylating CDK1, PKMYT1 functions as an oncogene to promote PDAC tumorigenesis by regulating PLK1 expression and phosphorylation. Finally, TP53 function and PRKDC activation are shown to modulate the sensitivity to PKMYT1 inhibition. These results define PKMYT1 dependency in PDAC and identify potential therapeutic strategies for clinical translation.
Collapse
Affiliation(s)
- Simin Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yangjie Xiong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuxiang Luo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanying Shen
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Fengrui Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, China
| | - Haoqi Lan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuzhi Pang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaofang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaoqi Li
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xufen Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaojing Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yumei Cheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Tanwen Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yue Dong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuan Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 200011, Shanghai, China
| | - Jiujie Cui
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiaona Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Liwei Wang
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
5
|
Joyce AW, Searle BC. Computational approaches to identify sites of phosphorylation. Proteomics 2024; 24:e2300088. [PMID: 37897210 DOI: 10.1002/pmic.202300088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can present challenges in bottom-up mass spectrometry-based workflows as search engine scores alone are often not enough to confidently distinguish them. Additional scoring algorithms can remedy this by providing confidence metrics in addition to these search results, reducing ambiguity. Here we describe challenges to interpreting phosphoproteomics data and review several different approaches to determine sites of phosphorylation for both data-dependent and data-independent acquisition-based workflows. Finally, we discuss open questions regarding neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by both types of acquisition workflows and best practices for managing ambiguity in phosphosite determination.
Collapse
Affiliation(s)
- Alex W Joyce
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Brian C Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Dragoi CM, Kaur E, Barr AR, Tyson JJ, Novák B. The oscillation of mitotic kinase governs cell cycle latches in mammalian cells. J Cell Sci 2024; 137:jcs261364. [PMID: 38206091 PMCID: PMC10911285 DOI: 10.1242/jcs.261364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.
Collapse
Affiliation(s)
- Calin-Mihai Dragoi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ekjot Kaur
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alexis R. Barr
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
7
|
Han B, Chen Y, Song C, Chen Y, Chen Y, Ferguson D, Yang Y, He A. Autophagy modulates the stability of Wee1 and cell cycle G2/M transition. Biochem Biophys Res Commun 2023; 677:63-69. [PMID: 37549603 PMCID: PMC10900895 DOI: 10.1016/j.bbrc.2023.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
The mammalian cell cycle is divided into four sequential phases, namely G1 (Gap 1), S (synthesis), G2 (Gap 2), and M (mitosis). Wee1, whose turnover is tightly and finely regulated, is a well-known kinase serving as a gatekeeper for the G2/M transition. However, the mechanism underlying the turnover of Wee1 is not fully understood. Autophagy, a highly conserved cellular process, maintains cellular homeostasis by eliminating intracellular aggregations, damaged organelles, and individual proteins. In the present study, we found autophagy deficiency in mouse liver caused G2/M arrest in two mouse models, namely Fip200 and Atg7 liver-specific knockout mice. To uncover the link between autophagy deficiency and G2/M transition, we combined transcriptomic and proteomic analysis for liver samples from control and Atg7 liver-specific knockout mice. The data suggest that the inhibition of autophagy increases the protein level of Wee1 without any alteration of its mRNA abundance. Serum starvation, an autophagy stimulus, downregulates the protein level of Wee1 in vitro. In addition, the half-life of Wee1 is extended by the addition of chloroquine, an autophagy inhibitor. LC3, a central autophagic protein functioning in autophagy substrate selection and autophagosome biogenesis, interacts with Wee1 as assessed by co-immunoprecipitation assay. Furthermore, overexpression of Wee1 leads to G2/M arrest both in vitro and in vivo. Collectively, our data indicate that autophagy could degrade Wee1-a gatekeeper of the G2/M transition, whereas the inhibition of autophagy leads to the accumulation of Wee1 and causes G2/M arrest in mouse liver.
Collapse
Affiliation(s)
- Biwei Han
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yajing Chen
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chen Song
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yali Chen
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yong Chen
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Daniel Ferguson
- Division of Nutritional Science and Obesity Medicine, Washington University in St. Louis, United States
| | - Yunzhi Yang
- School of Life Sciences, Anhui Medical University, Hefei, China.
| | - Anyuan He
- School of Life Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Xia X, Pi W, Chen M, Wang W, Cai D, Wang X, Lan Y, Yang H. Emerging roles of PHLPP phosphatases in lung cancer. Front Oncol 2023; 13:1216131. [PMID: 37576883 PMCID: PMC10414793 DOI: 10.3389/fonc.2023.1216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pleckstrin homologous domain leucine-rich repeating protein phosphatases (PHLPPs) were originally identified as protein kinase B (Akt) kinase hydrophobic motif specific phosphatases to maintain the cellular homeostasis. With the continuous expansion of PHLPPs research, imbalanced-PHLPPs were mainly found as a tumor suppressor gene of a variety of solid tumors. In this review, we simply described the history and structures of PHLPPs and summarized the recent achievements in emerging roles of PHLPPs in lung cancer by 1) the signaling pathways affected by PHLPPs including Phosphoinositide 3-kinase (PI3K)/AKT, RAS/RAF/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and Protein kinase C (PKC) signaling cascades. 2) function of PHLPPs regulatory factor USP46 and miR-190/miR-215, 3) the potential roles of PHLPPs in disease prognosis, Epidermal growth factor receptors (EGFR)- tyrosine kinase inhibitor (TKI) resistance and DNA damage, 4) and the possible function of PHLPPs in radiotherapy, ferroptosis and inflammation response. Therefore, PHLPPs can be considered as either biomarker or prognostic marker for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Mandapati A, Ning Z, Baharani A, Lukong KE. BRK confers tamoxifen-resistance in breast cancer via regulation of tyrosine phosphorylation of CDK1. Cell Signal 2023:110723. [PMID: 37216999 DOI: 10.1016/j.cellsig.2023.110723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Tamoxifen (Tam) has been the first-line therapy for estrogen receptor-positive breast cancer since its FDA-approval in 1998. Tam-resistance, however, presents a challenge and the mechanisms that drive it have yet to be fully elucidated. The non-receptor tyrosine kinase BRK/PTK6 is a promising candidate as previous research has shown that BRK knockdown resensitizes Tam-resistant breast cancer cells to the drug. However, the specific mechanisms that drive its importance to resistance remain to be investigated. Here, we investigate the role and mechanism of action of BRK in Tam-resistant (TamR), ER+, and T47D breast cancer cells using phosphopeptide enrichment and high throughput phopshoproteomics analysis. We conducted BRK-specific shRNA knockdown in TamR T47D cells and compared phosphopeptides identified in these cells with their Tam-resistant counterpart and parental, Tam-sensitive cells (Par). A total of 6492 STY phosphosites were identified. Of these sites, 3739 high-confidence pST sites and 118 high-confidence pY sites were analyzed for significant changes in phosphorylation levels to identify pathways that were differentially regulated in TamR versus Par and to investigate changes in these pathways when BRK is knocked down in TamR. We observed and validated increased CDK1 phosphorylation at Y15 in TamR cells compared to BRK-depleted TamR cells. Our data suggest that BRK is a potential Y15-directed CDK1 regulatory kinase in Tam-resistant breast cancer.
Collapse
Affiliation(s)
- Aditya Mandapati
- Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, College of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON. K1H 8M5, Canada
| | - Akanksha Baharani
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kiven Erique Lukong
- Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
10
|
Rai R, Biju K, Sun W, Sodeinde T, Al-Hiyasat A, Morgan J, Ye X, Li X, Chen Y, Chang S. Homology directed telomere clustering, ultrabright telomere formation and nuclear envelope rupture in cells lacking TRF2 B and RAP1. Nat Commun 2023; 14:2144. [PMID: 37059728 PMCID: PMC10104862 DOI: 10.1038/s41467-023-37761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
Double-strand breaks (DSBs) due to genotoxic stress represent potential threats to genome stability. Dysfunctional telomeres are recognized as DSBs and are repaired by distinct DNA repair mechanisms. RAP1 and TRF2 are telomere binding proteins essential to protect telomeres from engaging in homology directed repair (HDR), but how this occurs remains unclear. In this study, we examined how the basic domain of TRF2 (TRF2B) and RAP1 cooperate to repress HDR at telomeres. Telomeres lacking TRF2B and RAP1 cluster into structures termed ultrabright telomeres (UTs). HDR factors localize to UTs, and UT formation is abolished by RNaseH1, DDX21 and ADAR1p110, suggesting that they contain DNA-RNA hybrids. Interaction between the BRCT domain of RAP1 and KU70/KU80 is also required to repress UT formation. Expressing TRF2∆B in Rap1-/- cells resulted in aberrant lamin A localization in the nuclear envelope and dramatically increased UT formation. Expressing lamin A phosphomimetic mutants induced nuclear envelope rupturing and aberrant HDR-mediated UT formation. Our results highlight the importance of shelterin and proteins in the nuclear envelope in repressing aberrant telomere-telomere recombination to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
| | - Kevin Biju
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Amer Al-Hiyasat
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Jaida Morgan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Fang WB, Medrano M, Cote P, Portsche M, Rao V, Hong Y, Behbod F, Knapp JR, Bloomer C, Noel-Macdonnell J, Cheng N. Transcriptome analysis reveals differences in cell cycle, growth and migration related genes that distinguish fibroblasts derived from pre-invasive and invasive breast cancer. Front Oncol 2023; 13:1130911. [PMID: 37091166 PMCID: PMC10118028 DOI: 10.3389/fonc.2023.1130911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Background/Introduction As the most common form of pre-invasive breast cancer, ductal carcinoma in situ (DCIS) affects over 50,000 women in the US annually. Despite standardized treatment involving lumpectomy and radiation therapy, up to 25% of patients with DCIS experience disease recurrence often with invasive ductal carcinoma (IDC), indicating that a subset of patients may be under-treated. As most DCIS cases will not progress to invasion, many patients may experience over-treatment. By understanding the underlying processes associated with DCIS to IDC progression, we can identify new biomarkers to determine which DCIS cases may become invasive and improve treatment for patients. Accumulation of fibroblasts in IDC is associated with disease progression and reduced survival. While fibroblasts have been detected in DCIS, little is understood about their role in DCIS progression. Goals We sought to determine 1) whether DCIS fibroblasts were similar or distinct from normal and IDC fibroblasts at the transcriptome level, and 2) the contributions of DCIS fibroblasts to breast cancer progression. Methods Fibroblasts underwent transcriptome profiling and pathway analysis. Significant DCIS fibroblast-associated genes were further analyzed in existing breast cancer mRNA databases and through tissue array immunostaining. Using the sub-renal capsule graft model, fibroblasts from normal breast, DCIS and IDC tissues were co-transplanted with DCIS.com breast cancer cells. Results Through transcriptome profiling, we found that DCIS fibroblasts were characterized by unique alterations in cell cycle and motility related genes such as PKMYT1, TGF-α, SFRP1 and SFRP2, which predicted increased cell growth and invasion by Ingenuity Pathway Analysis. Immunostaining analysis revealed corresponding increases in expression of stromal derived PKMYT1, TGF-α and corresponding decreases in expression of SFRP1 and SFRP2 in DCIS and IDC tissues. Grafting studies in mice revealed that DCIS fibroblasts enhanced breast cancer growth and invasion associated with arginase-1+ cell recruitment. Conclusion DCIS fibroblasts are phenotypically distinct from normal breast and IDC fibroblasts, and play an important role in breast cancer growth, invasion, and recruitment of myeloid cells. These studies provide novel insight into the role of DCIS fibroblasts in breast cancer progression and identify some key biomarkers associated with DCIS progression to IDC, with important clinical implications.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paige Cote
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mike Portsche
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Vinamratha Rao
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer R. Knapp
- Center for Genes Environment and Health, National Jewish Health, Denver, CO, United States
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Clark Bloomer
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Janelle Noel-Macdonnell
- Biostatistics and Epidemiology Core, Health Services and Outcomes Research Children’s Mercy Hospital, Kansas City, MO, United States
- Department of Pediatrics, University of Missouri-Kansas City (UMKC) School of Medicine, Kansas City, MO, United States
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
12
|
Zhang Y, Shi D, Zhang X, Wu S, Liu W, Luo B. Downregulation of MUS81 expression inhibits cell migration and maintains EBV latent infection through miR-BART9-5p in EBV-associated gastric cancer. J Med Virol 2023; 95:e28725. [PMID: 37185865 DOI: 10.1002/jmv.28725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Epstein-Barr virus (EBV) infection is associated with the occurrence and development of gastric cancer (GC). Methyl methanesulfonate and ultraviolet-sensitive gene 81 (MUS81) is the catalytic component of a structure-specific endonuclease and plays an important role in chromosomal stability. However, the link between EBV infection and MUS81 remains unclear. In the present study, we found that MUS81 expression was much lower in EBV-associated GC cells than in EBV-negative GC. MUS81 acts as an oncogene in GC by inducing the cell migration and proliferation. Western blot and luciferase reporter assays revealed that miR-BART9-5p directly targeted MUS81 and downregulated its expression. Additionally, overexpression of MUS81 in EBV-positive GC cells inhibited the expression of EBV nuclear antigen 1 (EBNA1). EBNA1 is critical for the pathogenesis of EBV-associated tumors and the maintenance of a stable copy number of the viral genomes. Altogether, these results indicated that the lowering MUS81 expression might be a mechanism by EBV to maintain its latent infection.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Duo Shi
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
| | - Xing Zhang
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
| | - Shuo Wu
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
- Laboratory Medicine Center of Qingdao, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Wen Liu
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Li J, Lu J, Xu M, Yang S, Yu T, Zheng C, Huang X, Pan Y, Chen Y, Long J, Zhang C, Huang H, Dai Q, Li B, Wang W, Yao S, Pan C. ODF2L acts as a synthetic lethal partner with WEE1 inhibition in epithelial ovarian cancer models. J Clin Invest 2023; 133:161544. [PMID: 36378528 PMCID: PMC9843051 DOI: 10.1172/jci161544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
WEE1 has emerged as an attractive target in epithelial ovarian cancer (EOC), but how EOC cells may alter their sensitivity to WEE1 inhibition remains unclear. Here, through a cell cycle machinery-related gene RNAi screen, we found that targeting outer dense fiber of sperm tails 2-like (ODF2L) was a synthetic lethal partner with WEE1 kinase inhibition in EOC cells. Knockdown of ODF2L robustly sensitized cells to treatment with the WEE1 inhibitor AZD1775 in EOC cell lines in vitro as well as in xenografts in vivo. Mechanistically, the increased sensitivity to WEE1 inhibition upon ODF2L loss was accompanied by accumulated DNA damage. ODF2L licensed the recruitment of PKMYT1, a functionally redundant kinase of WEE1, to the CDK1-cyclin B complex and thus restricted the activity of CDK1 when WEE1 was inhibited. Clinically, upregulation of ODF2L correlated with CDK1 activity, DNA damage levels, and sensitivity to WEE1 inhibition in patient-derived EOC cells. Moreover, ODF2L levels predicted the response to WEE1 inhibition in an EOC patient-derived xenograft model. Combination treatment with tumor-targeted lipid nanoparticles that packaged ODF2L siRNA and AZD1775 led to the synergistic attenuation of tumor growth in the ID8 ovarian cancer syngeneic mouse model. These data suggest that WEE1 inhibition is a promising precision therapeutic strategy for EOC cells expressing low levels of ODF2L.
Collapse
Affiliation(s)
- Jie Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Jingyi Lu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Manman Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Shiyu Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Tiantian Yu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Cuimiao Zheng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Huang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Yangyang Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junming Long
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Qingyuan Dai
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Temporal phosphoproteomics reveals WEE1-dependent control of 53BP1 pathway. iScience 2022; 26:105806. [PMID: 36632060 PMCID: PMC9827073 DOI: 10.1016/j.isci.2022.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Wee1-like protein kinase (WEE1) restrains activities of cyclin-dependent kinases (CDKs) in S and G2 phase. Inhibition of WEE1 evokes drastic increase in CDK activity, which perturbs replication dynamics and compromises cell cycle checkpoints. Notably, WEE1 inhibitors such as adavosertib are tested in cancer treatment trials; however, WEE1-regulated phosphoproteomes and their dynamics have not been systematically investigated. In this study, we identified acute time-resolved alterations in the cellular phosphoproteome following WEE1 inhibition with adavosertib. These treatments acutely elevated CDK activities with distinct phosphorylation dynamics revealing more than 600 potential uncharacterized CDK sites. Moreover, we identified a major role for WEE1 in controlling CDK-dependent phosphorylation of multiple clustered sites in the key DNA repair factors MDC1, 53BP1, and RIF1. Functional analysis revealed that WEE1 fine-tunes CDK activities to permit recruitment of 53BP1 to chromatin. Thus, our findings uncover WEE1-controlled targets and pathways with translational potential for the clinical application of WEE1 inhibitors.
Collapse
|
15
|
Hamidi M, Eriz A, Mitxelena J, Fernandez-Ares L, Aurrekoetxea I, Aspichueta P, Iglesias-Ara A, Zubiaga AM. Targeting E2F Sensitizes Prostate Cancer Cells to Drug-Induced Replication Stress by Promoting Unscheduled CDK1 Activity. Cancers (Basel) 2022; 14:cancers14194952. [PMID: 36230876 PMCID: PMC9564059 DOI: 10.3390/cancers14194952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary E2F1 and E2F2 are highly expressed in many cancer types, but their contribution to malignancy is not well understood. Here we aimed to define the impact of E2F1/E2F2 deregulation in prostate cancer. We show that inhibition of E2F sensitizes prostate cancer cells to drug-induced replication stress and cell death. We found that E2F target genes involved in nucleotide biosynthesis contribute to maintaining genome stability in prostate cancer cells, but their enzymatic activity is insufficient to prevent replication stress after E2F1/E2F2 depletion. Instead, E2F1/E2F2 hinder premature CDK1 activation during S phase, which is key to ensure genome stability and viability of prostate cancer cells. From a therapeutic perspective, inhibiting E2F activity provokes catastrophic levels of replication stress and blunts xenograft growth in combination with drugs targeting nucleotide biosynthesis or DNA repair. Our results highlight the suitability of targeting E2F for the treatment of prostate cancer. Abstract E2F1/E2F2 expression correlates with malignancy in prostate cancer (PCa), but its functional significance remains unresolved. To define the mechanisms governed by E2F in PCa, we analyzed the contribution of E2F target genes to the control of genome integrity, and the impact of modulating E2F activity on PCa progression. We show that silencing or inhibiting E2F1/E2F2 induces DNA damage during S phase and potentiates 5-FU-induced replication stress and cellular toxicity. Inhibition of E2F downregulates the expression of E2F targets involved in nucleotide biosynthesis (TK1, DCK, TYMS), whose expression is upregulated by 5-FU. However, their enzymatic products failed to rescue DNA damage of E2F1/E2F2 knockdown cells, suggesting additional mechanisms for E2F function. Interestingly, targeting E2F1/E2F2 in PCa cells reduced WEE1 expression and resulted in premature CDK1 activation during S phase. Inhibition of CDK1/CDK2 prevented DNA damage induced by E2F loss, suggesting that E2F1/E2F2 safeguard genome integrity by restraining CDK1/CDK2 activity. Importantly, combined inhibition of E2F and ATR boosted replication stress and dramatically reduced tumorigenic capacity of PCa cells in xenografts. Collectively, inhibition of E2F in combination with drugs targeting nucleotide biosynthesis or DNA repair is a promising strategy to provoke catastrophic levels of replication stress that could be applied to PCa treatment.
Collapse
Affiliation(s)
- Mohaddase Hamidi
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Ainhoa Eriz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Jone Mitxelena
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain
| | - Larraitz Fernandez-Ares
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Igor Aurrekoetxea
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48080 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48080 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Ainhoa Iglesias-Ara
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| | - Ana M. Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| |
Collapse
|
16
|
Payliss BJ, Tse YWE, Reichheld SE, Lemak A, Yun HY, Houliston S, Patel A, Arrowsmith CH, Sharpe S, Wyatt HD. Phosphorylation of the DNA repair scaffold SLX4 drives folding of the SAP domain and activation of the MUS81-EME1 endonuclease. Cell Rep 2022; 41:111537. [DOI: 10.1016/j.celrep.2022.111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022] Open
|
17
|
Ashrafian S, Zarrineh M, Jensen P, Nawrocki A, Rezadoost H, Ansari AM, Farahmand L, Ghassempour A, Larsen MR. Quantitative Phosphoproteomics and Acetylomics of Safranal Anticancer Effects in Triple-Negative Breast Cancer Cells. J Proteome Res 2022; 21:2566-2585. [PMID: 36173113 DOI: 10.1021/acs.jproteome.2c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Safranal, as an aroma in saffron, is one of the cytotoxic compounds in saffron that causes cell death in triple-negative breast cancer cells. Our recent research reported the anti-cancer effects of safranal, which further demonstrated its impact on protein translation, mitochondrial dysfunction, and DNA fragmentation. To better understand the underlying mechanisms, we identified acetylated and phosphorylated peptides in safranal-treated cancer cells. We conducted a comprehensive phosphoproteomics and acetylomics analysis of safranal-treated MDA-MB-231 cells by using a combination of TMT labeling and enrichment methods including titanium dioxide and immunoprecipitation. We provide a wide range of phosphoproteome regulation in different signaling pathways that are disrupted by safranal treatment. Safranal influences the phosphorylation level on proteins involved in DNA replication and repair, translation, and EGFR activation/accumulation, which can lead the cells into apoptosis. Safranal causes DNA damage which is followed by the activation of cell cycle checkpoints for DNA repair. Over time, checkpoints and DNA repair are inhibited and cells are under a mitotic catastrophe. Moreover, safranal prevents repair by the hypo-acetylation of H4 and facilitates the transcription of proapoptotic genes by hyper-acetylation of H3, which push the cells to the brink of death.
Collapse
Affiliation(s)
- Shahrbanou Ashrafian
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Mahshid Zarrineh
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran.,Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, Solna SE17165, Sweden
| | - Pia Jensen
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Arkadiusz Nawrocki
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hassan Rezadoost
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Leila Farahmand
- Integrative Oncology Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Martin R Larsen
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
18
|
Cao X, Shami Shah A, Sanford EJ, Smolka MB, Baskin JM. Proximity Labeling Reveals Spatial Regulation of the Anaphase-Promoting Complex/Cyclosome by a Microtubule Adaptor. ACS Chem Biol 2022; 17:2605-2618. [PMID: 35952650 PMCID: PMC9933862 DOI: 10.1021/acschembio.2c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) coordinates advancement through mitosis via temporally controlled polyubiquitination events. Despite the long-appreciated spatial organization of key events in mitosis mediated largely by cytoskeletal networks, the spatial regulation of APC/C, the major mitotic E3 ligase, is poorly understood. We describe a microtubule-resident protein, PLEKHA5, as an interactor of APC/C and spatial regulator of its activity in mitosis. Microtubule-localized proximity biotinylation tools revealed that PLEKHA5 depletion decreased APC/C association with the microtubule cytoskeleton, which prevented efficient loading of APC/C with its coactivator CDC20 and led to reduced APC/C E3 ligase activity. PLEKHA5 knockdown delayed mitotic progression, causing accumulation of APC/C substrates dependent upon the PLEKHA5-APC/C interaction in microtubules. We propose that PLEKHA5 functions as an adaptor of APC/C that promotes its subcellular localization to microtubules and facilitates its activation by CDC20, thus ensuring the timely turnover of key mitotic APC/C substrates and proper progression through mitosis.
Collapse
Affiliation(s)
- Xiaofu Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| | - Adnan Shami Shah
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| | - Ethan J Sanford
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, United States
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, United States
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
19
|
Kalitin NN, Ektova LV, Kostritsa NS, Sivirinova AS, Kostarev AV, Smirnova GB, Borisova YA, Golubeva IS, Ermolaeva EV, Vergun MA, Babaeva MA, Lushnikova AA, Karamysheva AF. A novel glycosylated indolocarbazole derivative LCS1269 effectively inhibits growth of human cancer cells in vitro and in vivo through driving of both apoptosis and senescence by inducing of DNA damage and modulating of AKT/mTOR/S6K and ERK pathways. Chem Biol Interact 2022; 364:110056. [PMID: 35872044 DOI: 10.1016/j.cbi.2022.110056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 12/09/2022]
Abstract
In recent decades, indolocarbazole glycosides containing sugar moieties have attracted attention due to their diverse anti-tumor activities. In the present study, a series of new indolo [2,3-a]pyrrolo [3,4-c]carbazole derivatives were synthesized for the first time. First of all, we have shown that compound 6e (LCS1269) had the most pronounced effect on inhibiting tumor growth in the transferable solid and non-solid murine tumors as compared with other synthesized indolocarbazole derivatives. The results of the in vivo nude mice xenoraft study also confirmed that LCS1269 treatment strongly suppressed the growth of human colon cancer SW620 xenografts. It is important to note that the antiproliferative activity of LCS1269 against three human cancer cell lines (MCF-7, HCT-116 and A549) was considerably higher than that against the non-tumor cell lines (immortalized breast cells and normal embryonic fibroblasts). Furthermore, the treatment of MCF-7, HCT-116 and A549 cells with LCS1269 caused the statistically significant inhibition of anchorage-dependent and anchorage-independent colony formation. We further revealed that LCS1269 treatment of investigated human cancer cells resulted in the DNA damage and G2/M cell cycle arrest followed by the decrease of mitochondrial membrane potential with subsequent initiation of intrinsic apoptosis and the triggering of senescence via p53-dependent mechanisms. In addition, our western blotting findings and molecular docking data suppose that LCS1269 could at least partially attenuate cancer cells growth by modulation of AKT/mTOR/S6K and ERK signaling pathways. Therefore, we concluded that LCS1269 might be the promising compound for implementation and probable use in the clinical practice.
Collapse
Affiliation(s)
- Nikolay N Kalitin
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia.
| | - Lidia V Ektova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Natalia S Kostritsa
- M.V. Lomonosov Moscow State University, 1 Leninskiye Gory, 119234, Moscow, Russia
| | | | | | - Galina B Smirnova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Yulia A Borisova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Irina S Golubeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Elisaveta V Ermolaeva
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991, Moscow, Russia
| | - Maria A Vergun
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991, Moscow, Russia
| | - Maria A Babaeva
- M.V. Lomonosov Moscow State University, 1 Leninskiye Gory, 119234, Moscow, Russia
| | - Anna A Lushnikova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Aida F Karamysheva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| |
Collapse
|
20
|
Martin JC, Sims JR, Gupta A, Bakin AV, Ohm JE. WEE1 inhibition augments CDC7 (DDK) inhibitor-induced cell death in Ewing sarcoma by forcing premature mitotic entry and mitotic catastrophe. CANCER RESEARCH COMMUNICATIONS 2022; 2:471-482. [PMID: 36338546 PMCID: PMC9635308 DOI: 10.1158/2767-9764.crc-22-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Ewing sarcoma is an aggressive childhood cancer for which treatment options remain limited and toxic. There is an urgent need for the identification of novel therapeutic strategies. Our group has recently shown that Ewing cells rely on the S-phase kinase CDC7 (DDK) to maintain replication rates and cell viability and that DDK inhibition causes an increase in the phosphorylation of CDK1 and a significant delay in mitotic entry. Here, we expand on our previous findings and show that DDK inhibitor-induced mitotic entry delay is dependent upon WEE1 kinase. Specifically, WEE1 phosphorylates CDK1 and prevents mitotic entry upon DDK inhibition due to the presence of under-replicated DNA, potentially limiting the cytotoxic effects of DDK inhibition. To overcome this, we combined the inhibition of DDK with the inhibition of WEE1 and found that this results in elevated levels of premature mitotic entry, mitotic catastrophe, and apoptosis. Importantly, we have found that DDK and WEE1 inhibitors display a synergistic relationship with regards to reducing cell viability of Ewing sarcoma cells. Interestingly, the cytotoxic nature of this combination can be suppressed by the inhibition of CDK1 or microtubule polymerization, indicating that mitotic progression is required to elicit the cytotoxic effects. This is the first study to display the potential of utilizing the combined inhibition of DDK and WEE1 for the treatment of cancer. We believe this will offer a potential therapeutic strategy for the treatment of Ewing sarcoma as well as other tumor types that display sensitivity to DDK inhibitors.
Collapse
Affiliation(s)
- Jeffrey C. Martin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jennie R. Sims
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ajay Gupta
- Division of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Andrei V. Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joyce Ellen Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
21
|
Youn YH, Hou S, Wu CC, Kawauchi D, Orr BA, Robinson GW, Finkelstein D, Taketo MM, Gilbertson RJ, Roussel MF, Han YG. Primary cilia control translation and the cell cycle in medulloblastoma. Genes Dev 2022; 36:737-751. [PMID: 35798383 PMCID: PMC9296008 DOI: 10.1101/gad.349596.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022]
Abstract
The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding β-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.
Collapse
Affiliation(s)
- Yong Ha Youn
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Shirui Hou
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Chang-Chih Wu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Giles W Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Makoto M Taketo
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Richard J Gilbertson
- Department of Oncology, Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, England
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
22
|
Aublette MC, Harrison TA, Thorpe EJ, Gadd MS. Selective Wee1 degradation by PROTAC degraders recruiting VHL and CRBN E3 ubiquitin ligases. Bioorg Med Chem Lett 2022; 64:128636. [PMID: 35231578 DOI: 10.1016/j.bmcl.2022.128636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/28/2022]
Abstract
The Ser/Thr protein kinase Wee1 plays a regulatory role at the G2/M checkpoint by phosphorylating CDK1 when DNA is damaged to allow time for DNA to repair, disruption of which is a key approach to sensitise cancer cells to DNA-damaging therapies. The main selective inhibitor for Wee1 undergoing development in clinical trials, AZD1775, however, has been shown to have off target effects towards other protein kinases with similar potency. Here we describe the synthesis and assessment of a series of Wee1-degrading PROTACs using AZD1775 linked to either the VHL ligand VH032 or to the CRBN ligand pomalidomide using different types and lengths of linkers. The conversion of AZD1775 into a PROTAC induces selective Wee1 degradation for compounds of both series depending on the nature of the linker.
Collapse
Affiliation(s)
- Marine C Aublette
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Tom A Harrison
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Elizabeth J Thorpe
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Morgan S Gadd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom.
| |
Collapse
|
23
|
Gallo D, Young JTF, Fourtounis J, Martino G, Álvarez-Quilón A, Bernier C, Duffy NM, Papp R, Roulston A, Stocco R, Szychowski J, Veloso A, Alam H, Baruah PS, Fortin AB, Bowlan J, Chaudhary N, Desjardins J, Dietrich E, Fournier S, Fugère-Desjardins C, Goullet de Rugy T, Leclaire ME, Liu B, Bhaskaran V, Mamane Y, Melo H, Nicolas O, Singhania A, Szilard RK, Tkáč J, Yin SY, Morris SJ, Zinda M, Marshall CG, Durocher D. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 2022; 604:749-756. [PMID: 35444283 PMCID: PMC9046089 DOI: 10.1038/s41586-022-04638-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.
Collapse
Affiliation(s)
- David Gallo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | - Alejandro Álvarez-Quilón
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | | | - Robert Papp
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | - Rino Stocco
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | | | - Hunain Alam
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | | | | | - Natasha Chaudhary
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | - Theo Goullet de Rugy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | - Bingcan Liu
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | - Yael Mamane
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ján Tkáč
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shou Yun Yin
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | | | | | | | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Bukhari AB, Chan GK, Gamper AM. Targeting the DNA Damage Response for Cancer Therapy by Inhibiting the Kinase Wee1. Front Oncol 2022; 12:828684. [PMID: 35251998 PMCID: PMC8891215 DOI: 10.3389/fonc.2022.828684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer cells typically heavily rely on the G2/M checkpoint to survive endogenous and exogenous DNA damage, such as genotoxic stress due to genome instability or radiation and chemotherapy. The key regulator of the G2/M checkpoint, the cyclin-dependent kinase 1 (CDK1), is tightly controlled, including by its phosphorylation state. This posttranslational modification, which is determined by the opposing activities of the phosphatase cdc25 and the kinase Wee1, allows for a more rapid response to cellular stress than via the synthesis or degradation of modulatory interacting proteins, such as p21 or cyclin B. Reducing Wee1 activity results in ectopic activation of CDK1 activity and drives premature entry into mitosis with unrepaired or under-replicated DNA and causing mitotic catastrophe. Here, we review efforts to use small molecule inhibitors of Wee1 for therapeutic purposes, including strategies to combine Wee1 inhibition with genotoxic agents, such as radiation therapy or drugs inducing replication stress, or inhibitors of pathways that show synthetic lethality with Wee1. Furthermore, it become increasingly clear that Wee1 inhibition can also modulate therapeutic immune responses. We will discuss the mechanisms underlying combination treatments identifying both cell intrinsic and systemic anti-tumor activities.
Collapse
|
25
|
Ma X, Øvrebø JI, Thompson EM. Evolution of CDK1 Paralog Specializations in a Lineage With Fast Developing Planktonic Embryos. Front Cell Dev Biol 2022; 9:770939. [PMID: 35155443 PMCID: PMC8832800 DOI: 10.3389/fcell.2021.770939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
The active site of the essential CDK1 kinase is generated by core structural elements, among which the PSTAIRE motif in the critical αC-helix, is universally conserved in the single CDK1 ortholog of all metazoans. We report serial CDK1 duplications in the chordate, Oikopleura. Paralog diversifications in the PSTAIRE, activation loop substrate binding platform, ATP entrance site, hinge region, and main Cyclin binding interface, have undergone positive selection to subdivide ancestral CDK1 functions along the S-M phase cell cycle axis. Apparent coevolution of an exclusive CDK1d:Cyclin Ba/b pairing is required for oogenic meiosis and early embryogenesis, a period during which, unusually, CDK1d, rather than Cyclin Ba/b levels, oscillate, to drive very rapid cell cycles. Strikingly, the modified PSTAIRE of odCDK1d shows convergence over great evolutionary distance with plant CDKB, and in both cases, these variants exhibit increased specialization to M-phase.
Collapse
Affiliation(s)
- Xiaofei Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, China
- Sars International Centre, University of Bergen, Bergen, Norway
| | - Jan Inge Øvrebø
- Sars International Centre, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Alubaidi G, Hasan S. Stem cells: Biology, types, polarity, and asymmetric cell division: A review. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_34_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
28
|
Payliss BJ, Patel A, Sheppard AC, Wyatt HDM. Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability. Front Genet 2021; 12:784167. [PMID: 34804132 PMCID: PMC8599992 DOI: 10.3389/fgene.2021.784167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break. Unrepaired breaks are a major driving force for genome instability. Cells contain sophisticated DNA repair networks to counteract the harmful effects of genotoxic agents, thus safeguarding genome integrity. Homologous recombination is a high-fidelity, template-dependent DNA repair pathway essential for the accurate repair of DNA nicks, gaps and double-strand breaks. Accurate homologous recombination depends on the ability of cells to remove branched DNA structures that form during repair, which is achieved through the opposing actions of helicases and structure-selective endonucleases. This review focuses on a structure-selective endonuclease called SLX1-SLX4 and the macromolecular endonuclease complexes that assemble on the SLX4 scaffold. First, we discuss recent developments that illuminate the structure and biochemical properties of this somewhat atypical structure-selective endonuclease. We then summarize the multifaceted roles that are fulfilled by human SLX1-SLX4 and its associated endonucleases in homologous recombination and genome stability. Finally, we discuss recent work on SLX4-binding proteins that may represent integral components of these macromolecular nuclease complexes, emphasizing the structure and function of a protein called SLX4IP.
Collapse
Affiliation(s)
- Brandon J Payliss
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ayushi Patel
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anneka C Sheppard
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haley D M Wyatt
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
He D, Gao J, Zheng L, Liu S, Ye L, Lai H, Pan B, Pan W, Lou C, Chen Z, Fan S. TGF‑β inhibitor RepSox suppresses osteosarcoma via the JNK/Smad3 signaling pathway. Int J Oncol 2021; 59:84. [PMID: 34533199 PMCID: PMC8460063 DOI: 10.3892/ijo.2021.5264] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor and the long-term survival rates remain unsatisfactory. Transforming growth factor-β (TGF-β) has been revealed to play a crucial role in OS progression, and RepSox is an effective TGF-β inhibitor. In the present study, the effect of RepSox on the proliferation of the OS cell lines (HOS and 143B) was detected. The results revealed that RepSox effectively inhibited the proliferation of OS cells by inducing S-phase arrest and apoptosis. Moreover, the inhibitory effect of RepSox on cell migration and invasion was confirmed by wound-healing and Transwell assays. Furthermore, western blotting revealed that the protein levels of molecules associated with the epithelial-mesenchymal transition (EMT) phenotype, including E-cadherin, N-cadherin, Vimentin, matrix metalloproteinase (MMP)-2 and MMP-9, were reduced by RepSox treatment. Concurrently, it was also revealed that the JNK and Smad3 signaling pathway was inhibited. Our in vivo findings using a xenograft model also revealed that RepSox markedly inhibited the growth of tumors. In general, our data demonstrated that RepSox suppressed OS proliferation, EMT and promoted apoptosis by inhibiting the JNK/Smad3 signaling pathway. Thus, RepSox may be a potential anti-OS drug.
Collapse
Affiliation(s)
- Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Shijie Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Lin Ye
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Hehuan Lai
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Bin Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Wenzheng Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
30
|
Wu C, Peng S, Pilié PG, Geng C, Park S, Manyam GC, Lu Y, Yang G, Tang Z, Kondraganti S, Wang D, Hudgens CW, Ledesma DA, Marques-Piubelli ML, Torres-Cabala CA, Curry JL, Troncoso P, Corn PG, Broom BM, Thompson TC. PARP and CDK4/6 Inhibitor Combination Therapy Induces Apoptosis and Suppresses Neuroendocrine Differentiation in Prostate Cancer. Mol Cancer Ther 2021; 20:1680-1691. [PMID: 34158347 PMCID: PMC8456452 DOI: 10.1158/1535-7163.mct-20-0848] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 01/07/2023]
Abstract
We analyzed the efficacy and mechanistic interactions of PARP inhibition (PARPi; olaparib) and CDK4/6 inhibition (CDK4/6i; palbociclib or abemaciclib) combination therapy in castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC) models. We demonstrated that combined olaparib and palbociblib or abemaciclib treatment resulted in synergistic suppression of the p-Rb1-E2F1 signaling axis at the transcriptional and posttranslational levels, leading to disruption of cell-cycle progression and inhibition of E2F1 gene targets, including genes involved in DDR signaling/damage repair, antiapoptotic BCL-2 family members (BCL-2 and MCL-1), CDK1, and neuroendocrine differentiation (NED) markers in vitro and in vivo In addition, olaparib + palbociclib or olaparib + abemaciclib combination treatment resulted in significantly greater growth inhibition and apoptosis than either single agent alone. We further showed that PARPi and CDK4/6i combination treatment-induced CDK1 inhibition suppressed p-S70-BCL-2 and increased caspase cleavage, while CDK1 overexpression effectively prevented the downregulation of p-S70-BCL-2 and largely rescued the combination treatment-induced cytotoxicity. Our study defines a novel combination treatment strategy for CRPC and NEPC and demonstrates that combination PARPi and CDK4/6i synergistically promotes suppression of the p-Rb1-E2F1 axis and E2F1 target genes, including CDK1 and NED proteins, leading to growth inhibition and increased apoptosis in vitro and in vivo Taken together, our results provide a molecular rationale for PARPi and CDK4/6i combination therapy and reveal mechanism-based clinical trial opportunities for men with NEPC.
Collapse
Affiliation(s)
- Cheng Wu
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Peng
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Patrick G. Pilié
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chuandong Geng
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C. Manyam
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yungang Lu
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guang Yang
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhe Tang
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shakuntala Kondraganti
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoqi Wang
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney W. Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mario L. Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos A. Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan L. Curry
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M. Broom
- Bioinformatics and Computational Biology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C. Thompson
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Corresponding Author: Timothy C. Thompson, Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. Phone: 713-792-9955; Fax: 713-792-9956; E-mail:
| |
Collapse
|
31
|
Tang Z, Pilié PG, Geng C, Manyam GC, Yang G, Park S, Wang D, Peng S, Wu C, Peng G, Yap TA, Corn PG, Broom BM, Thompson TC. ATR Inhibition Induces CDK1-SPOP Signaling and Enhances Anti-PD-L1 Cytotoxicity in Prostate Cancer. Clin Cancer Res 2021; 27:4898-4909. [PMID: 34168048 PMCID: PMC8456453 DOI: 10.1158/1078-0432.ccr-21-1010] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite significant benefit for other cancer subtypes, immune checkpoint blockade (ICB) therapy has not yet been shown to significantly improve outcomes for men with castration-resistant prostate cancer (CRPC). Prior data have shown that DNA damage response (DDR) deficiency, via genetic alteration and/or pharmacologic induction using DDR inhibitors (DDRi), may improve ICB response in solid tumors in part due to induction of mitotic catastrophe and innate immune activation. Discerning the underlying mechanisms of this DDRi-ICB interaction in a prostate cancer-specific manner is vital to guide novel clinical trials and provide durable clinical responses for men with CRPC. EXPERIMENTAL DESIGN We treated prostate cancer cell lines with potent, specific inhibitors of ATR kinase, as well as with PARP inhibitor, olaparib. We performed analyses of cGAS-STING and DDR signaling in treated cells, and treated a syngeneic androgen-indifferent, prostate cancer model with combined ATR inhibition and anti-programmed death ligand 1 (anti-PD-L1), and performed single-cell RNA sequencing analysis in treated tumors. RESULTS ATR inhibitor (ATRi; BAY1895433) directly repressed ATR-CHK1 signaling, activated CDK1-SPOP axis, leading to destabilization of PD-L1 protein. These effects of ATRi are distinct from those of olaparib, and resulted in a cGAS-STING-initiated, IFN-β-mediated, autocrine, apoptotic response in CRPC. The combination of ATRi with anti-PD-L1 therapy resulted in robust innate immune activation and a synergistic, T-cell-dependent therapeutic response in our syngeneic mouse model. CONCLUSIONS This work provides a molecular mechanistic rationale for combining ATR-targeted agents with immune checkpoint blockade for patients with CRPC. Multiple early-phase clinical trials of this combination are underway.
Collapse
Affiliation(s)
- Zhe Tang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chuandong Geng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guang Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoqi Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Peng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cheng Wu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A Yap
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
32
|
Panichnantakul P, Patel A, Tse EYW, Wyatt HDM. An open-source platform to quantify subnuclear foci and protein colocalization in response to replication stress. DNA Repair (Amst) 2021; 105:103156. [PMID: 34139663 DOI: 10.1016/j.dnarep.2021.103156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
Nuclear reorganization, including the localization of proteins into discrete subnuclear foci, is a hallmark of the cellular response to DNA damage and replication stress. These foci are thought to represent transient environments or repair factories, in which the lesion is sequestered with molecules and co-factors that catalyze repair. For example, nuclear foci contain signaling proteins that recruit transducer proteins. One important class of transducers is the structure-selective endonucleases, such as SLX1-SLX4, MUS81-EME1, and XPF-ERCC1, which remove branched DNA structures that form during repair. The relocalization of structure-selective endonucleases into subnuclear foci provides a visual read-out for the presence of direct DNA damage, replication barriers, or DNA entanglements and can be monitored using fluorescence microscopy. By simultaneously probing for two or more fluorescent signals, fluorescence microscopy can also provide insights into the proximal association of proteins within a local environment. Here, we report an open-source and semi-automated method to detect and quantify subnuclear foci, as well as foci colocalization and the accompanying pixel-based colocalization metrics. We use this pipeline to show that pre-mitotic nuclei contain a basal threshold of foci marked by SLX1-SLX4, MUS81, or XPF. Some of these foci colocalize with FANCD2 and have a high degree of correlation and co-occurrence. We also show that pre-mitotic cells experiencing replication stress contain elevated levels of foci containing SLX1-SLX4 or XPF, but not MUS81. These results point towards a role for SLX1-SLX4 and XPF-ERCC1 in the early cellular response to replication stress. Nevertheless, most of the foci that form in response to replication stress contain either FANCD2 or one of the three endonucleases. Altogether, our work highlights the compositional heterogeneity of subnuclear foci that form in response to replication stress. We also describe a user-friendly pipeline that can be used to characterize these dynamic structures.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Department of Biochemistry, University of Toronto, MaRS Centre, 661 University Ave., Toronto, ON, M5G 1M1, Canada
| | - Ayushi Patel
- Department of Biochemistry, University of Toronto, MaRS Centre, 661 University Ave., Toronto, ON, M5G 1M1, Canada
| | - Elizabeth Y W Tse
- Department of Biochemistry, University of Toronto, MaRS Centre, 661 University Ave., Toronto, ON, M5G 1M1, Canada
| | - Haley D M Wyatt
- Department of Biochemistry, University of Toronto, MaRS Centre, 661 University Ave., Toronto, ON, M5G 1M1, Canada; Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
33
|
Galarreta A, Valledor P, Ubieto‐Capella P, Lafarga V, Zarzuela E, Muñoz J, Malumbres M, Lecona E, Fernandez‐Capetillo O. USP7 limits CDK1 activity throughout the cell cycle. EMBO J 2021; 40:e99692. [PMID: 33856059 PMCID: PMC8167359 DOI: 10.15252/embj.201899692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53-independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.
Collapse
Affiliation(s)
- Antonio Galarreta
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Pablo Valledor
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Patricia Ubieto‐Capella
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Present address:
DNA Replication GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Vanesa Lafarga
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Eduardo Zarzuela
- Proteomics UnitSpanish National Cancer Research Centre (CNIO) and ProteoRed‐ISCIIIMadridSpain
| | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Centre (CNIO) and ProteoRed‐ISCIIIMadridSpain
| | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System labCentre for Molecular Biology Severo Ochoa (CBMSO)MadridSpain
| | - Oscar Fernandez‐Capetillo
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Science for Life LaboratoryDivision of Genome BiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| |
Collapse
|
34
|
Chow-Castro M, Dixon SD, Saldivar JC. Restraining CDK1-cyclin B activation: PP2A on the cUSP(7). EMBO J 2021; 40:e108486. [PMID: 33969907 DOI: 10.15252/embj.2021108486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023] Open
Abstract
USP7 inhibitors are gaining momentum as a therapeutic strategy to stabilize p53 through their ability to induce MDM2 degradation. However, these inhibitors come with an unexpected p53-independent toxicity, via an unknown mechanism. In this issue of The EMBO Journal, Galarreta et al report how inhibition of USP7 leads to re-distribution of PP2A from cytoplasm to nucleus and an increase of deleterious CDK1-dependent phosphorylation throughout the cell cycle, revealing a new regulatory mechanism for the progression of S-phase cells toward mitosis to maintain genomic integrity.
Collapse
Affiliation(s)
- Marilynn Chow-Castro
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shandee D Dixon
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joshua C Saldivar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
35
|
The PHLPP1 N-Terminal Extension Is a Mitotic Cdk1 Substrate and Controls an Interactome Switch. Mol Cell Biol 2021; 41:e0033320. [PMID: 33397691 PMCID: PMC8088274 DOI: 10.1128/mcb.00333-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is a tumor suppressor that directly dephosphorylates a wide array of substrates, most notably the prosurvival kinase Akt. However, little is known about the molecular mechanisms governing PHLPP1 itself. Here, we report that PHLPP1 is dynamically regulated in a cell cycle-dependent manner and deletion of PHLPP1 results in mitotic delays and increased rates of chromosomal segregation errors. We show that PHLPP1 is hyperphosphorylated during mitosis by Cdk1 in a functionally uncharacterized region known as the PHLPP1 N-terminal extension (NTE). A proximity-dependent biotin identification (BioID) interaction screen revealed that during mitosis, PHLPP1 dissociates from plasma membrane scaffolds, such as Scribble, by a mechanism that depends on its NTE and gains proximity to kinetochore and mitotic spindle proteins such as KNL1 and TPX2. Our data are consistent with a model in which phosphorylation of PHLPP1 during mitosis regulates binding to its mitotic partners and allows accurate progression through mitosis. The finding that PHLPP1 binds mitotic proteins in a cell cycle- and phosphorylation-dependent manner may have relevance to its tumor-suppressive function.
Collapse
|
36
|
Arsenic hexoxide has differential effects on cell proliferation and genome-wide gene expression in human primary mammary epithelial and MCF7 cells. Sci Rep 2021; 11:3761. [PMID: 33580144 PMCID: PMC7881197 DOI: 10.1038/s41598-021-82551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Arsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.
Collapse
|
37
|
Zhang B, Yang L, Wang X, Fu D. Identification of a survival-related signature for sarcoma patients through integrated transcriptomic and proteomic profiling analyses. Gene 2021; 764:145105. [PMID: 32882333 DOI: 10.1016/j.gene.2020.145105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Sarcoma (SARC) represents a group of highly histological and molecular heterogeneous rare malignant tumors with poor prognosis. There are few proposed classifiers for predicting patient's outcome. The Cancer Proteome Atlas (TPCA) and The Cancer Genome Atlas (TCGA) databases provide multi-omics datasets that enable a comprehensive investigation for this disease. The proteomic expression profile of SARC patients along with the clinical information was downloaded. 55 proteins were found to be associated with overall survival (OS) of patients using univariate Cox regression analysis. We developed a prognostic risk signature that comprises seven proteins (AMPKALPHA, CHK1, S6, ARID1A, RBM15, ACETYLATUBULINLYS40, and MSH6) with robust predictive performance using multivariate Cox stepwise regression analysis. Additionally, the signature could be an independent prognostic predictor after adjusting for clinicopathological parameters. Patients in high-risk group also have worse progression free intervals (PFI) than that of patients in low-risk group, but not for disease free intervals (DFI). The signature was validated using transcriptomic profile of SARC patients from TCGA. Potential mechanisms between high- and low-risk groups were identified using differentially expressed genes (DEGs) analysis. These DEGs were primarily enriched in RAS and MPAK signaling pathways. The signature protein molecules are candidate biomarkers for SARC, and the analysis of computational biology in tumor infiltrating lymphocytes and immune checkpoint molecules revealed distinctly immune landscapes of high- and low-risk patients. Together, we constructed a prognostic signature for predicting outcomes for SARC integrating proteomic and transcriptomic profiles, this might have value in guiding clinical practice.
Collapse
Affiliation(s)
- Biyu Zhang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Lei Yang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Xin Wang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Denggang Fu
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China; School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
38
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) associated with high-risk human papilloma virus (HPV) infection is a growing clinical problem. The WEE1 kinase inhibitor AZD1775 (WEE1i) overrides cell cycle checkpoints and is being studied in HNSCC regimens. We show that the HPV16 E6/E7 oncoproteins sensitize HNSCC cells to single-agent WEE1i treatment through activation of a FOXM1-CDK1 circuit that drives mitotic gene expression and DNA damage. An isogenic cell system indicated that E6 largely accounts for these phenotypes in ways that extend beyond p53 inactivation. A targeted genomic analysis implicated FOXM1 signaling downstream of E6/E7 expression and analyses of primary tumors and The Cancer Genome Atlas (TCGA) data revealed an activated FOXM1-directed promitotic transcriptional signature in HPV+ versus HPV- HNSCCs. Finally, we demonstrate the causality of FOXM1 in driving WEE1i sensitivity. These data suggest that elevated basal FOXM1 activity predisposes HPV+ HNSCC to WEE1i-induced toxicity and provide mechanistic insights into WEE1i and HPV+ HNSCC therapies.
Collapse
|
39
|
Ghelli Luserna di Rorà A, Cerchione C, Martinelli G, Simonetti G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J Hematol Oncol 2020; 13:126. [PMID: 32958072 PMCID: PMC7507691 DOI: 10.1186/s13045-020-00959-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
The inhibition of the DNA damage response (DDR) pathway in the treatment of cancer has recently gained interest, and different DDR inhibitors have been developed. Among them, the most promising ones target the WEE1 kinase family, which has a crucial role in cell cycle regulation and DNA damage identification and repair in both nonmalignant and cancer cells. This review recapitulates and discusses the most recent findings on the biological function of WEE1/PKMYT1 during the cell cycle and in the DNA damage repair, with a focus on their dual role as tumor suppressors in nonmalignant cells and pseudo-oncogenes in cancer cells. We here report the available data on the molecular and functional alterations of WEE1/PKMYT1 kinases in both hematological and solid tumors. Moreover, we summarize the preclinical information on 36 chemo/radiotherapy agents, and in particular their effect on cell cycle checkpoints and on the cellular WEE1/PKMYT1-dependent response. Finally, this review outlines the most important pre-clinical and clinical data available on the efficacy of WEE1/PKMYT1 inhibitors in monotherapy and in combination with chemo/radiotherapy agents or with other selective inhibitors currently used or under evaluation for the treatment of cancer patients.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Claudio Cerchione
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory (Onco-hematology Unit), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| |
Collapse
|
40
|
Roy K, Lewis CW, Chan GK, Bhattacharjee D. Automated classification of mitotic catastrophe by use of the centromere fragmentation morphology. Biochem Cell Biol 2020; 99:261-271. [PMID: 32905704 DOI: 10.1139/bcb-2020-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitotic catastrophe is a common mode of tumor cell death. Cancer cells with a defective cell-cycle checkpoint often enter mitosis with damaged or under replicated chromosomes following genotoxic treatment. Premature condensation of the under-replicated (or damaged) chromosomes results in double-stranded DNA breaks at the centromere (centromere fragmentation). Centromere fragmentation is a morphological marker of mitotic catastrophe and is distinguished by the clustering of centromeres away from the chromosomes. We present an automated 2-step system for segmentation of cells exhibiting centromere fragmentation. The first step segments individual cells from clumps. We added two new terms, weighted local repelling term (WLRt) and weighted gradient term (WGt), in the energy functional of the traditional Chan-Vese based level set method. WLRt was used to generate a repelling force when contours of adjacent cells merged and then penalized the overlap. WGt enhances gradients between overlapping cells. The second step consists of a new algorithm, SBaN (shape-based analysis of each nucleus), which extracts features like circularity, major-axis length, minor-axis length, area, and eccentricity from each chromosome to identify cells with centromere fragmentation. The performance of SBaN algorithm for centromere fragmentation detection was statistically evaluated and the results were robust.
Collapse
Affiliation(s)
- Kaushiki Roy
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2J7, Canada.,Department of Computer Science and Engineering, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata, WB, India 700032
| | - Cody W Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Gordon K Chan
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Debotosh Bhattacharjee
- Department of Computer Science and Engineering, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata, WB, India 700032
| |
Collapse
|
41
|
Gemble S, Basto R. CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. Bioessays 2020; 42:e2000105. [PMID: 32885500 DOI: 10.1002/bies.202000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named "chronocrisis") of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.
Collapse
Affiliation(s)
- Simon Gemble
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| |
Collapse
|
42
|
Caldez MJ, Bjorklund M, Kaldis P. Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division. Hepatol Int 2020; 14:463-474. [PMID: 32578019 PMCID: PMC7366567 DOI: 10.1007/s12072-020-10066-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.
Collapse
Affiliation(s)
- Matias J Caldez
- WPI Immunology Frontiers Research Centre, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mikael Bjorklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute and 2nd Affiliated Hospital, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, 314400, Zhejiang, People's Republic of China
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
43
|
Pan X, Liu W, Chai Y, Hu L, Wang J, Zhang Y. Identification of Hub Genes in Atypical Teratoid/Rhabdoid Tumor by Bioinformatics Analyses. J Mol Neurosci 2020; 70:1906-1913. [PMID: 32440821 DOI: 10.1007/s12031-020-01587-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Atypical teratoid/rhabdoid tumor (ATRT) is a devastating intracranial tumor in children. Currently, its molecular mechanisms cannot be studied effectively because patient samples are limited, and many factors are involved in its pathogenesis. In this study, we analyzed three gene expression profile data sets obtained from the Gene Expression Omnibus (GEO) database to identify genes that participate in ATRT. The datasets were integrated and analyzed using the RobustRankAggreg method to screen for differentially expressed genes (DEGs). We identified 197 DEGs, including 94 downregulated and 103 upregulated genes which were then used for gene set enrichment analysis. The results showed that the downregulated genes were mainly enriched in synaptic vesicle cycle, nicotine addiction, and GABAergic synapse, whereas the upregulated genes were enriched in the cell cycle, p53 signaling pathway, and cellular senescence. Consistent with these results, gene set enrichment analysis showed that E2F targets, G2M checkpoints, and MYC targets were significantly enriched in datasets. Protein-protein interaction (PPI) network revealed that CDK1, CCNA2, BUB1B, CDC20, KIF11, KIF20A, KIF2C, NCAPG, NDC80, NUSAP1, PBK, RRM2, TPX2, TOP2A, and TTK were hub genes. NetworkAnalyst algorithm was used to predict the transcription factor (TF), and the results showed that MYC, SOX2, and KDM5B could regulate these hub genes. In conclusion, the present study brings a new perspective of ATRT pathogenesis and the strategy targeted to cell cycle related gene may be promising treatments for the disease.
Collapse
Affiliation(s)
- Xin Pan
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Wei Liu
- School of Clinical Medicine, Tsinghua University, Beijing, 10084, China
| | - Yi Chai
- School of Clinical Medicine, Tsinghua University, Beijing, 10084, China
| | - Libo Hu
- School of Clinical Medicine, Tsinghua University, Beijing, 10084, China
| | - Junhua Wang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Yuqi Zhang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China.
| |
Collapse
|
44
|
Palmer N, Kaldis P. Less-well known functions of cyclin/CDK complexes. Semin Cell Dev Biol 2020; 107:54-62. [PMID: 32386818 DOI: 10.1016/j.semcdb.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases (CDKs) are activated by cyclins, which play important roles in dictating the actions of CDK/cyclin complexes. Cyclin binding influences the substrate specificity of these complexes in addition to their susceptibility to inhibition or degradation. CDK/cyclin complexes are best known to promote cell cycle progression in the mitotic cell cycle but are also crucial for important cellular processes not strictly associated with cellular division. This chapter primarily explores the understudied topic of CDK/cyclin complex functionality during the DNA damage response. We detail how CDK/cyclin complexes perform dual roles both as targets of DNA damage checkpoint signaling as well as effectors of DNA repair. Additionally, we discuss the potential CDK-independent roles of cyclins in these processes and the impact of such roles in human diseases such as cancer. Our goal is to place the spotlight on these important functions of cyclins either acting as independent entities or within CDK/cyclin complexes which have attracted less attention in the past. We consider that this will be important for a more complete understanding of the intricate functions of cell cycle proteins in the DNA damage response.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A⁎STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore, 117597, Republic of Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A⁎STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore, 117597, Republic of Singapore; Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Box 50332, SE-202 13, Malmö, Sweden.
| |
Collapse
|
45
|
Koppenhafer SL, Goss KL, Terry WW, Gordon DJ. Inhibition of the ATR-CHK1 Pathway in Ewing Sarcoma Cells Causes DNA Damage and Apoptosis via the CDK2-Mediated Degradation of RRM2. Mol Cancer Res 2020; 18:91-104. [PMID: 31649026 PMCID: PMC6942212 DOI: 10.1158/1541-7786.mcr-19-0585] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Inhibition of ribonucleotide reductase (RNR), the rate-limiting enzyme in the synthesis of deoxyribonucleotides, causes DNA replication stress and activates the ataxia telangiectasia and rad3-related protein (ATR)-checkpoint kinase 1 (CHK1) pathway. Notably, a number of different cancers, including Ewing sarcoma tumors, are sensitive to the combination of RNR and ATR-CHK1 inhibitors. However, multiple, overlapping mechanisms are reported to underlie the toxicity of ATR-CHK1 inhibitors, both as single agents and in combination with RNR inhibitors, toward cancer cells. Here, we identified a feedback loop in Ewing sarcoma cells in which inhibition of the ATR-CHK1 pathway depletes RRM2, the small subunit of RNR, and exacerbates the DNA replication stress and DNA damage caused by RNR inhibitors. Mechanistically, we identified that the inhibition of ATR-CHK1 activates CDK2, which targets RRM2 for degradation via the proteasome. Similarly, activation of CDK2 by inhibition or knockdown of the WEE1 kinase also depletes RRM2 and causes DNA damage and apoptosis. Moreover, we show that the concurrent inhibition of ATR and WEE1 has a synergistic effect in Ewing sarcoma cells. Overall, our results provide novel insight into the response to DNA replication stress, as well as a rationale for targeting the ATR, CHK1, and WEE1 pathways, in Ewing sarcoma tumors. IMPLICATIONS: Targeting the ATR, CHK1, and WEE1 kinases in Ewing sarcoma cells activates CDK2 and increases DNA replication stress by promoting the proteasome-mediated degradation of RRM2.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Kelli L Goss
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - William W Terry
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - David J Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
46
|
Lemmens B, Lindqvist A. DNA replication and mitotic entry: A brake model for cell cycle progression. J Cell Biol 2019; 218:3892-3902. [PMID: 31712253 PMCID: PMC6891093 DOI: 10.1083/jcb.201909032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Lemmens and Lindqvist discuss how DNA replication and mitosis are coordinated and propose a cell cycle model controlled by brakes. The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Singh P, Patel RK, Palmer N, Grenier JK, Paduch D, Kaldis P, Grimson A, Schimenti JC. CDK2 kinase activity is a regulator of male germ cell fate. Development 2019; 146:dev180273. [PMID: 31582414 PMCID: PMC6857589 DOI: 10.1242/dev.180273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
The ability of men to remain fertile throughout their lives depends upon establishment of a spermatogonial stem cell (SSC) pool from gonocyte progenitors, and thereafter balancing SSC renewal versus terminal differentiation. Here, we report that precise regulation of the cell cycle is crucial for this balance. Whereas cyclin-dependent kinase 2 (Cdk2) is not necessary for mouse viability or gametogenesis stages prior to meiotic prophase I, mice bearing a deregulated allele (Cdk2Y15S ) are severely deficient in spermatogonial differentiation. This allele disrupts an inhibitory phosphorylation site (Tyr15) for the kinase WEE1. Remarkably, Cdk2Y15S/Y15S mice possess abnormal clusters of mitotically active SSC-like cells, but these are eventually removed by apoptosis after failing to differentiate properly. Analyses of lineage markers, germ cell proliferation over time, and single cell RNA-seq data revealed delayed and defective differentiation of gonocytes into SSCs. Biochemical and genetic data demonstrated that Cdk2Y15S is a gain-of-function allele causing elevated kinase activity, which underlies these differentiation defects. Our results demonstrate that precise regulation of CDK2 kinase activity in male germ cell development is crucial for the gonocyte-to-spermatogonia transition and long-term spermatogenic homeostasis.
Collapse
Affiliation(s)
- Priti Singh
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Ravi K Patel
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673
- Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jennifer K Grenier
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Darius Paduch
- Cornell University, Weill Cornell Medicine, Department of Urology, New York, NY 10065, USA
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673
- Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Andrew Grimson
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| |
Collapse
|
48
|
BK Polyomavirus Activates the DNA Damage Response To Prolong S Phase. J Virol 2019; 93:JVI.00130-19. [PMID: 31043526 DOI: 10.1128/jvi.00130-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
BK polyomavirus (PyV) is a major source of kidney failure in transplant recipients. The standard treatment for patients with lytic BKPyV infection is to reduce immunosuppressive therapy, which increases the risk of graft rejection. PyVs are DNA viruses that rely upon host replication proteins for viral genome replication. A hallmark of PyV infection is activation of the DNA damage response (DDR) to prevent severe host and viral DNA damage that impairs viral production by an unknown mechanism. Therefore, we sought to better understand why BKPyV activates the DDR through the ATR and ATM pathways and how this prevents DNA damage and leads to increased viral production. When ATR was inhibited in BKPyV-infected primary kidney cells, severe DNA damage occurred due to premature Cdk1 activation, which resulted in mitosis of cells that were actively replicating host DNA in S phase. Conversely, ATM was required for efficient entry into S phase and to prevent normal mitotic entry after G2 phase. The synergistic activation of these DDR kinases promoted and maintained BKPyV-mediated S phase to enhance viral production. In contrast to BKPyV infection, DDR inhibition did not disrupt cell cycle control in uninfected cells. This suggests that DDR inhibitors may be used to specifically target BKPyV-infected cells.IMPORTANCE BK polyomavirus (BKPyV) is an emerging pathogen that reactivates in immunosuppressed organ transplant patients. We wanted to understand why BKPyV-induced activation of the DNA damage response (DDR) enhances viral titers and prevents host DNA damage. Here, we show that the virus activates the DNA damage response in order to keep the infected cells in S phase to replicate the viral DNA. The source of DNA damage was due to actively replicating cells with uncondensed chromosomes entering directly into mitosis when the DDR was inhibited in BKPyV-infected cells. This study clarifies the previously enigmatic role of the DDR during BKPyV infection by demonstrating that the virus activates the DDR to maintain the cells in S phase in order to promote viral replication and that disruption of this cell cycle arrest can lead to catastrophic DNA damage for the host.
Collapse
|
49
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
50
|
Seibert M, Krüger M, Watson NA, Sen O, Daum JR, Slotman JA, Braun T, Houtsmuller AB, Gorbsky GJ, Jacob R, Kracht M, Higgins JMG, Schmitz ML. CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. J Cell Biol 2019; 218:1164-1181. [PMID: 30765437 PMCID: PMC6446833 DOI: 10.1083/jcb.201806057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/17/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Faithful mitotic chromosome segregation is required for the maintenance of genomic stability. We discovered the phosphorylation of histone H2B at serine 6 (H2B S6ph) as a new chromatin modification site and found that this modification occurs during the early mitotic phases at inner centromeres and pericentromeric heterochromatin. This modification is directly mediated by cyclin B1-associated CDK1, and indirectly by Aurora B, and is antagonized by PP1-mediated dephosphorylation. H2B S6ph impairs chromatin binding of the histone chaperone SET (I2PP2A), which is important for mitotic fidelity. Injection of phosphorylation-specific H2B S6 antibodies in mitotic cells caused anaphase defects with impaired chromosome segregation and incomplete cytokinesis. As H2B S6ph is important for faithful chromosome separation, this modification may contribute to the prevention chromosomal instability and aneuploidy which frequently occur in cancer cells.
Collapse
Affiliation(s)
- Markus Seibert
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Nikolaus A Watson
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - Onur Sen
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - John R Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Johan A Slotman
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, Netherlands
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Adriaan B Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, Netherlands
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Jonathan M G Higgins
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|