1
|
Cai H, Yang CH, Gao P. Rethinking carnitine palmitoyltransferase II and liver stem cells in metabolic dysfunction-associated fatty liver disease-related hepatocellular carcinoma. World J Gastroenterol 2025; 31:104528. [DOI: 10.3748/wjg.v31.i15.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
This article discusses a recent study by Wang et al that sheds light on the metabolic and immunological mechanisms driving the progression of metabolic dysfunction-associated fatty liver disease (MAFLD) to hepatocellular carcinoma (HCC). The study highlights the role of mitochondrial carnitine palmitoyltransferase II (CPT II) inactivity, which activates liver cancer stem cells marked by cluster of differentiation 44 (CD44) and CD24 expression, promoting HCC development. Using dynamic mouse models and clinical samples, Wang et al identified CPT II downregulation, mitochondrial membrane potential alterations, and reduced intrahepatic CD4+ T cell as key drivers of disease progression. The findings link these changes to steroid biosynthesis and p53 signaling, contributing to T-cell dysfunction and immunosuppression. This article emphasizes the relevance of these results in understanding MAFLD pathogenesis and discusses potential therapeutic strategies targeting CPT II activity, mitochondrial function, and immune surveillance to prevent or mitigate HCC development in advanced MAFLD.
Collapse
Affiliation(s)
- Hong Cai
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Chun-Hui Yang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Peng Gao
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
2
|
Ding X, Shi J, Lei Z, Wang G, Fu C, Su X, Zhu G. FOXM1 promotes malignant biological behavior and metabolic reprogramming by targeting SPINK1 in hepatocellular carcinoma and affecting the p53 pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167673. [PMID: 39828047 DOI: 10.1016/j.bbadis.2025.167673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/24/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
This study investigates the role of SPINK1 in liver cancer and its regulatory relationship with FOXM1. Using differential gene analysis in the GEO database, SPINK1 was identified as overexpressed in liver cancer tissues and associated with poor prognosis, confirmed via PCR. Functional assays demonstrated that SPINK1 knockdown reduced proliferation, migration, and invasion in liver cancer cells, while promoting apoptosis. In vivo experiments revealed that SPINK1 knockdown inhibited tumor growth, decreased Ki-67 and N-cadherin levels, increased E-cadherin levels, and suppressed lung metastasis. Analysis of upstream factors indicated that FOXM1 binds to the SPINK1 promoter, as validated by dual-luciferase and ChIP assays, thereby promoting SPINK1 transcription. TCGA database analysis and clinical tissue validation showed that FOXM1 expression correlates with poor prognosis in liver cancer. Functional studies demonstrated that FOXM1 knockdown suppressed liver cancer progression, while SPINK1 overexpression reversed these effects. KEGG enrichment analysis identified the p53 pathway as a key downstream target of SPINK1, and Western blotting confirmed its role in modulating p53 pathway activity. These findings reveal a critical FOXM1-SPINK1 axis in liver cancer progression. FOXM1 directly promotes SPINK1 transcription, enhancing tumor cell proliferation and metastasis while regulating the p53 pathway. Targeting this axis could provide a potential therapeutic approach for liver cancer.
Collapse
Affiliation(s)
- Xu Ding
- School of Medicine, Southeast University, Naanjing 210009, Jiangsu, PR China
| | - Jinjun Shi
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu, PR China
| | - Zhengqing Lei
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu, PR China
| | - Guoqing Wang
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, PR China
| | - Chenchun Fu
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, PR China
| | - Xiangyu Su
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Guangyu Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu, PR China.
| |
Collapse
|
3
|
Lei XY, Wang X, Cao X, Li YH. Silymarin mediates the gut-liver axis pathway to alleviate Carassius auratus hepatic lipid metabolism disorders caused by carbonate exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101457. [PMID: 40024209 DOI: 10.1016/j.cbd.2025.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
An 8-week feeding trial was conducted to investigate the mechanism of silymarin alleviating the abnormal lipid metabolism of Hefang Crucian Carp (HCC) (13.43 ± 0.059 g) liver caused by carbonate exposure. The fish were randomly divided into three groups: Control group (group B, 0 g/L carbonate, 0 mg/kg silymarin), carbonate stress group (group CA, 3 g/L carbonate, 0 mg/kg silymarin) and silymarin group (group SI, 3 g/L carbonate, 60 mg/kg silymarin). The results showed that the growth performance of group CA was significantly increased compared with group B. Compared with CA group, brush villi in SI group recovered significantly, and the width of submucosa decreased. Compared with group B, the intestinal barrier was damaged and permeability increased in group CA, while the damage was alleviated in group SI. Intestinal microbiota analysis showed that the bacterial community function genes related to lipopolysaccharide biosynthesis protein and lipopolysaccharide biosynthesis in CA group were higher than those in B and SI groups, and it was found that the change of LPS content in fish was echoed by the results of intestinal microflora. Compared with group B, the liver of group CA was damaged and the lipid metabolism process was abnormal, resulting in lipid metabolism disorder. SI group alleviated the liver damage caused by carbonate exposure, promoted the process of liver lipid synthesis, and balanced the body's lipid metabolism. More than 50 % of the metabolites are closely related to lipids and lipid molecules. The most metabolites in metabolism are oxidative phosphorylation and pyruvate metabolism. In summary, this study demonstrated that silymarin alleviating carbonate exposure altered intestinal microbiota homeostasis in HCC, leading to intestinal inflammation and increased mucosal barrier permeability, inhibiting LPS synthesis and absorption, preventing it from entering the liver through the intestinal liver, and increasing oxidative stress in the liver and abnormal lipid metabolism in the liver, thereby leading to liver injury. To provide theoretical basis for the development and utilization of silymarin functional feed additives and the mitigation strategy of carbonate exposure to liver damage in fish.
Collapse
Affiliation(s)
- Xin-Yu Lei
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xue Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yue-Hong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Mendoza EN, Ciriolo MR, Ciccarone F. Hypoxia-Induced Reactive Oxygen Species: Their Role in Cancer Resistance and Emerging Therapies to Overcome It. Antioxidants (Basel) 2025; 14:94. [PMID: 39857427 PMCID: PMC11762716 DOI: 10.3390/antiox14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Normal tissues typically maintain partial oxygen pressure within a range of 3-10% oxygen, ensuring homeostasis through a well-regulated oxygen supply and responsive vascular network. However, in solid tumors, rapid growth often outpaces angiogenesis, creating a hypoxic microenvironment that fosters tumor progression, altered metabolism and resistance to therapy. Hypoxic tumor regions experience uneven oxygen distribution with severe hypoxia in the core due to poor vascularization and high metabolic oxygen consumption. Cancer cells adapt to these conditions through metabolic shifts, predominantly relying on glycolysis, and by upregulating antioxidant defenses to mitigate reactive oxygen species (ROS)-induced oxidative damage. Hypoxia-induced ROS, resulting from mitochondrial dysfunction and enzyme activation, exacerbates genomic instability, tumor aggressiveness, and therapy resistance. Overcoming hypoxia-induced ROS cancer resistance requires a multifaceted approach that targets various aspects of tumor biology. Emerging therapeutic strategies target hypoxia-induced resistance, focusing on hypoxia-inducible factors, ROS levels, and tumor microenvironment subpopulations. Combining innovative therapies with existing treatments holds promise for improving cancer outcomes and overcoming resistance mechanisms.
Collapse
|
5
|
Xie R, Luo Y, Bao B, Wu X, Guo J, Wang J, Qu X, Che X, Zheng C. The Role of Fatty Acid Metabolism, the Related Potential Biomarkers, and Targeted Therapeutic Strategies in Gastrointestinal Cancers. Drug Dev Res 2024; 85:e70014. [PMID: 39527665 DOI: 10.1002/ddr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancer has emerged as a significant global health concern due to its high incidence and mortality, limited effectiveness of early detection, suboptimal treatment outcomes, and poor prognosis. Metabolic reprogramming is a prominent feature of cancer, and fatty acid metabolism assumes a pivotal role in bridging glucose metabolism and lipid metabolism. Fatty acids play important roles in cellular structural composition, energy supply, signal transduction, and other lipid-related processes. Changes in the levels of fatty acid metabolite may indicate the malignant transformation of gastrointestinal cells, which have an impact on the prognosis of patients and can be used as a marker to monitor the efficacy of anticancer therapy. Therefore, targeting key enzymes involved in fatty acid metabolism, either as monotherapy or in combination with other agents, is a promising strategy for anticancer treatment. This article reviews the potential mechanisms of fatty acid metabolism disorders in the occurrence and development of gastrointestinal tumors, and summarizes the related potential biomarkers and anticancer strategies.
Collapse
Affiliation(s)
- Ruixi Xie
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Luo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Bao
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinshu Wu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Guo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Wang
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Oncology, Shanghai Electric Power Hospital, Shanghai, China
| |
Collapse
|
6
|
Pan Y, Li Y, Fan H, Cui H, Chen Z, Wang Y, Jiang M, Wang G. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of hepatocellular carcinoma (HCC). Biomed Pharmacother 2024; 177:117089. [PMID: 38972148 DOI: 10.1016/j.biopha.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) holds a prominent position among global cancer types. Classically, HCC manifests in individuals with a genetic predisposition when they encounter risk elements, particularly in the context of liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs), which are transcription factors activated by fatty acids, belong to the nuclear hormone receptor superfamily and play a pivotal role in the regulation of energy homeostasis. At present, three distinct subtypes of PPARs have been recognized: PPARα, PPARγ, and PPARβ/δ. They regulate the transcription of genes responsible for cellular development, energy metabolism, inflammation, and differentiation. In recent years, with the rising incidence of HCC, there has been an increasing focus on the mechanisms and roles of PPARs in HCC. PPARα primarily mediates the occurrence and development of HCC by regulating glucose and lipid metabolism, inflammatory responses, and oxidative stress. PPARβ/δ is closely related to the self-renewal ability of liver cancer stem cells (LCSCs) and the formation of the tumor microenvironment. PPARγ not only influences tumor growth by regulating the glucose and lipid metabolism of HCC, but its agonists also have significant clinical significance for the treatment of HCC. Therefore, this review offers an exhaustive examination of the role of the three PPAR subtypes in HCC progression, focusing on their mediation of critical cellular processes such as glucose and lipid metabolism, inflammation, oxidative stress, and other pivotal signaling pathways. At the end of the review, we discuss the merits and drawbacks of existing PPAR-targeted therapeutic strategies and suggest a few alternative combinatorial therapeutic approaches that diverge from conventional methods.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hongyu Fan
- Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246 Baojian Road, Harbin 150086, China
| | - Huijuan Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiyue Chen
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunzhu Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Mengyu Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
7
|
Ciccarone F, Ciriolo MR. Reprogrammed mitochondria: a central hub of cancer cell metabolism. Biochem Soc Trans 2024; 52:1305-1315. [PMID: 38716960 DOI: 10.1042/bst20231090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria represent the metabolic hub of normal cells and play this role also in cancer but with different functional purposes. While cells in differentiated tissues have the prerogative of maintaining basal metabolism and support the biosynthesis of specialized products, cancer cells have to rewire the metabolic constraints imposed by the differentiation process. They need to balance the bioenergetic supply with the anabolic requirements that entail the intense proliferation rate, including nucleotide and membrane lipid biosynthesis. For this aim, mitochondrial metabolism is reprogrammed following the activation of specific oncogenic pathways or due to specific mutations of mitochondrial proteins. The main process leading to mitochondrial metabolic rewiring is the alteration of the tricarboxylic acid cycle favoring the appropriate orchestration of anaplerotic and cataplerotic reactions. According to the tumor type or the microenvironmental conditions, mitochondria may decouple glucose catabolism from mitochondrial oxidation in favor of glutaminolysis or disable oxidative phosphorylation for avoiding harmful production of free radicals. These and other metabolic settings can be also determined by the neo-production of oncometabolites that are not specific for the tissue of origin or the accumulation of metabolic intermediates able to boost pro-proliferative metabolism also impacting epigenetic/transcriptional programs. The full characterization of tumor-specific mitochondrial signatures may provide the identification of new biomarkers and therapeutic opportunities based on metabolic approaches.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
8
|
Maurotti S, Geirola N, Frosina M, Mirarchi A, Scionti F, Mare R, Montalcini T, Pujia A, Tirinato L. Exploring the impact of lipid droplets on the evolution and progress of hepatocarcinoma. Front Cell Dev Biol 2024; 12:1404006. [PMID: 38818407 PMCID: PMC11137176 DOI: 10.3389/fcell.2024.1404006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Over the past 10 years, the biological role of lipid droplets (LDs) has gained significant attention in the context of both physiological and pathological conditions. Considerable progress has been made in elucidating key aspects of these organelles, yet much remains to be accomplished to fully comprehend the myriad functions they serve in the progression of hepatic tumors. Our current perception is that LDs are complex and active structures managed by a distinct set of cellular processes. This understanding represents a significant paradigm shift from earlier perspectives. In this review, we aim to recapitulate the function of LDs within the liver, highlighting their pivotal role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) (Hsu and Loomba, 2024) and their contribution to the progression towards more advanced pathological stages up to hepatocellular carcinoma (HC) (Farese and Walther, 2009). We are aware of the molecular complexity and changes occurring in the neoplastic evolution of the liver. Our attempt, however, is to summarize the most important and recent roles of LDs across both healthy and all pathological liver states, up to hepatocarcinoma. For more detailed insights, we direct readers to some of the many excellent reviews already available in the literature (Gluchowski et al., 2017; Hu et al., 2020; Seebacher et al., 2020; Paul et al., 2022).
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Nadia Geirola
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Frosina
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Rosario Mare
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
9
|
Safi R, Menéndez P, Pol A. Lipid droplets provide metabolic flexibility for cancer progression. FEBS Lett 2024; 598:1301-1327. [PMID: 38325881 DOI: 10.1002/1873-3468.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.
Collapse
Affiliation(s)
- Rémi Safi
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
| |
Collapse
|
10
|
Awad D, Cao PHA, Pulliam TL, Spradlin M, Subramani E, Tellman TV, Ribeiro CF, Muzzioli R, Jewell BE, Pakula H, Ackroyd JJ, Murray MM, Han JJ, Leng M, Jain A, Piyarathna B, Liu J, Song X, Zhang J, Klekers AR, Drake JM, Ittmann MM, Coarfa C, Piwnica-Worms D, Farach-Carson MC, Loda M, Eberlin LS, Frigo DE. Adipose Triglyceride Lipase Is a Therapeutic Target in Advanced Prostate Cancer That Promotes Metabolic Plasticity. Cancer Res 2024; 84:703-724. [PMID: 38038968 PMCID: PMC10939928 DOI: 10.1158/0008-5472.can-23-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.
Collapse
Affiliation(s)
- Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L. Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meredith Spradlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tristen V. Tellman
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Caroline F. Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Riccardo Muzzioli
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brittany E. Jewell
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey J. Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mollianne M. Murray
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jenny J. Han
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mei Leng
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Badrajee Piyarathna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert R. Klekers
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin M. Drake
- Departments of Pharmacology and Urology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota-Twin Cities, MN, USA
| | - Michael M. Ittmann
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Livia S. Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel E. Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
11
|
Zhao Y, Tan H, Zhang X, Zhu J. Roles of peroxisome proliferator-activated receptors in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18042. [PMID: 37987033 PMCID: PMC10902579 DOI: 10.1111/jcmm.18042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is linked to risk factors such as viral hepatitis, alcohol intake and non-alcoholic fatty liver disease (NAFLD). Recent advances have greatly improved our understanding that NAFLD is playing a major risk factor for HCC. Peroxisome proliferator-activated receptors (PPARs) are a class of transcription factors divided into three subtypes: PPARα (PPARA), PPARδ/β (PPARD) and PPARγ (PPARG). As important nuclear receptors, PPARs are involved in many physiological processes, and PPARs can improve NAFLD by regulating lipid metabolism, accelerating fatty acid oxidation and inhibiting inflammation. In recent years, some studies have shown that PPARs can participate in the occurrence and development of HCC by regulating metabolic pathways. In addition, PPAR modulators have been reported to inhibit the proliferation and metastasis of HCC cells and can enhance the curative effect of conventional treatments. This article reviews the role of PPARs in the occurrence and development of HCC, as well as its value in the diagnosis, treatment and prognosis of HCC, in order to provide directions for future research.
Collapse
Affiliation(s)
- Yaqin Zhao
- Department of Abdominal Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin HospitalHubei University of MedicineShiyanHubeiChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General SurgeryThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Jing Zhu
- Nanjing Drum Tower HospitalNanjingChina
| |
Collapse
|
12
|
Liang J, Xu C, Xu J, Yang C, Kong W, Xiao Z, Chen X, Liu Q, Weng Z, Wang J, Jiang G, Jiang Z, Gu A. PPARα Senses Bisphenol S to Trigger EP300-Mediated Autophagy Blockage and Hepatic Steatosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21581-21592. [PMID: 38085933 DOI: 10.1021/acs.est.3c05010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The internal exposure dose of bisphenol S (BPS) is increasing since its use as a substitute for BPA. The relationship between BPS and nonalcoholic liver disease (NAFLD) and the underlying mechanism remain unclarified. In this study, we evaluated the correlation of BPS with NAFLD in populations from the Jiangsu Survey and the 2013-2016 National Health Nutrition Examination Survey and unraveled the molecular pathway by which BPS blocked hepatic autophagy, contributing to lipid accumulation. The study found that serum and urine BPS were associated with NAFLD risks in both the Chinese and US populations. For each additional unit of the BPS level, the NAFLD risk increased by 3.163-fold (serum) and 3.979-fold (urine) in the Chinese population. In addition, after BPS exposure at a dose equivalent to human exposure for 20 weeks, mice developed liver lipid accumulation. BPS could trigger PPARα-mediated transcriptional activation of EP300 expression. BPS promoted the translocation of EP300 from the nucleus to the cytoplasm to regulate the acetylation of Raptor and the activation of mTORC1, which in turn induced autophagy blockage and interfered with lipid degradation in hepatocytes. Conversely, knockdown of EP300 reduced Raptor acetylation and ameliorated autophagy blockage. This study demonstrated that EP300 was a key enzyme for the development of BPS-related NAFLD and provided novel evidence that BPS causes NAFLD.
Collapse
Affiliation(s)
- Jingjia Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Changjie Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Weirui Kong
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhihao Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Zhaoyan Jiang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
13
|
Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1377-1388. [PMID: 36309104 DOI: 10.1016/j.ajpath.2022.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for 85% to 90% of all liver cancer cases. It is a hepatocyte-derived primary tumor, causing 550,000 deaths per year, ranking it as one of the most common cancers worldwide. The liver is a highly metabolic organ with multiple functions, including digestion, detoxification, breakdown of fats, and production of bile and cholesterol, in addition to storage of vitamins, glycogen, and minerals, and synthesizing plasma proteins and clotting factors. Due to these fundamental and diverse functions, the malignant transformation of hepatic cells can have a severe impact on the liver's metabolism. Furthermore, tumorigenesis is often accompanied by activation of the endoplasmic reticulum (ER) stress pathways, which are known to be highly intertwined with several metabolic pathways. Because HCC is characterized by changes in the metabolome and by an aberrant activation of the ER stress pathways, the aim of this review was to summarize the current knowledge that links ER stress and metabolism in HCC, thereby focusing on potential therapeutic targets.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Ubink
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Zhang T, Li H, Sun S, Zhou W, Zhang T, Yu Y, Wang Q, Wang M. Microfibrillar-associated protein 5 suppresses adipogenesis by inhibiting essential coactivator of PPARγ. Sci Rep 2023; 13:5589. [PMID: 37020143 PMCID: PMC10076305 DOI: 10.1038/s41598-023-32868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Femoral head necrosis is responsible for severe pain and its incidence is increasing. Abnormal adipogenic differentiation and fat cell hypertrophy of bone marrow mesenchymal stem cells increase intramedullary cavity pressure, leading to osteonecrosis. By analyzing gene expression before and after adipogenic differentiation, we found that Microfibril-Associated Protein 5 (MFAP5) is significantly down-regulated in adipogenesis whilst the mechanism of MFAP5 in regulating the differentiation of bone marrow mesenchymal stem cells is unknown. The purpose of this study was to clarify the role of MAFP5 in adipogenesis and therefore provide a theoretical basis for future therapeutic options of osteonecrosis. By knockdown or overexpression of MFAP5 in C3H10 and 3T3-L1 cells, we found that MFAP5 was significantly down-regulated as a key regulator of adipogenic differentiation, and identified the underlying downstream molecular mechanism. MFAP5 directly bound to and inhibited the expression of Staphylococcal Nuclease And Tudor Domain Containing 1, an essential coactivator of PPARγ, exerting an important regulatory role in adipogenesis.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Haoran Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Wuling Zhou
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Tieqi Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Yueming Yu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Fan Y, Lu J, Fan J, Guan S. 1,3-dichloro-2-propanol caused lipid droplets accumulation by suppressing neutral lipases via BMAL1 in hepatocytes. Food Chem Toxicol 2023; 174:113670. [PMID: 36805544 DOI: 10.1016/j.fct.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Circadian rhythm regulates body physiology and metabolism to adapt to the external environment. 1,3-dichloro-2-propanol (1,3-DCP) is a food pollutant formed during food processing. Our study explored whether toxicity of 1,3-DCP was related to circadian rhythm. We discovered that 1,3-DCP caused lipid droplets (LDs) accumulation via suppression of neutral lipases ATGL and HSL in mice liver and HepG2 cells. Meanwhile, 1,3-DCP caused rhythmic disruption of key circadian rhythm molecules BMAL1/CLOCK at protein and mRNA levels in HepG2 cells. Studies have shown that BMAL1 regulates PPARα by binding to the promoter E-box. 1,3-DCP inhibited PPARα expression. A PPARα activator WY-14643 up-regulated ATGL and HSL expression. BMAL1 overexpression up-regulated PPARα, ATGL and HSL expression. WY-14643 or BMAL1 overexpression attenuated 1,3-DCP-caused LDs accumulation in HepG2 cells. The results revealed that 1,3-DCP caused LDs accumulation by neutral lipases suppression via inhibiting key circadian rhythm protein BMAL1, indicating that circadian rhythm can be related to the regulation of LDs accumulation caused by 1,3-DCP.
Collapse
Affiliation(s)
- Yong Fan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jinghui Fan
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
16
|
Zhao X, Amevor FK, Cui Z, Wan Y, Xue X, Peng C, Li Y. Steatosis in metabolic diseases: A focus on lipolysis and lipophagy. Biomed Pharmacother 2023; 160:114311. [PMID: 36764133 DOI: 10.1016/j.biopha.2023.114311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Fatty acids (FAs), as part of lipids, are involved in cell membrane composition, cellular energy storage, and cell signaling. FAs can also be toxic when their concentrations inside and/or outside the cell exceed physiological levels, which is called "lipotoxicity", and steatosis is a form of lipotoxity. To facilitate the storage of large quantities of FAs in cells, they undergo a process called lipolysis or lipophagy. This review focuses on the effects of lipolytic enzymes including cytoplasmic "neutral" lipolysis, lysosomal "acid" lipolysis, and lipophagy. Moreover, the impact of related lipolytic enzymes on lipid metabolism homeostasis and energy conservation, as well as their role in lipid-related metabolic diseases. In addition, we describe how they affect lipid metabolism homeostasis and energy conservation in lipid-related metabolic diseases with a focus on hepatic steatosis and cancer and the pathogenesis and therapeutic targets of AMPK/SIRTs/FOXOs, PI3K/Akt, PPARs/PGC-1α, MAPK/ERK1/2, TLR4/NF-κB, AMPK/mTOR/TFEB, Wnt/β-catenin through immune inflammation, oxidative stress and autophagy-related pathways. As well as the current application of lipolytic enzyme inhibitors (especially Monoacylglycerol lipase (MGL) inhibitors) to provide new strategies for future exploration of metabolic programming in metabolic diseases.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
17
|
Frias A, Di Leo L, Antoranz A, Nazerai L, Carretta M, Bodemeyer V, Pagliuca C, Dahl C, Claps G, Mandelli GE, Andhari MD, Pacheco MP, Sauter T, Robert C, Guldberg P, Madsen DH, Cecconi F, Bosisio FM, De Zio D. Ambra1 modulates the tumor immune microenvironment and response to PD-1 blockade in melanoma. J Immunother Cancer 2023; 11:jitc-2022-006389. [PMID: 36868570 PMCID: PMC9990656 DOI: 10.1136/jitc-2022-006389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Loss of Ambra1 (autophagy and beclin 1 regulator 1), a multifunctional scaffold protein, promotes the formation of nevi and contributes to several phases of melanoma development. The suppressive functions of Ambra1 in melanoma are mediated by negative regulation of cell proliferation and invasion; however, evidence suggests that loss of Ambra1 may also affect the melanoma microenvironment. Here, we investigate the possible impact of Ambra1 on antitumor immunity and response to immunotherapy. METHODS This study was performed using an Ambra1-depleted BrafV600E /Pten-/ - genetically engineered mouse (GEM) model of melanoma, as well as GEM-derived allografts of BrafV600E /Pten-/ - and BrafV600E /Pten-/ -/Cdkn2a-/ - tumors with Ambra1 knockdown. The effects of Ambra1 loss on the tumor immune microenvironment (TIME) were analyzed using NanoString technology, multiplex immunohistochemistry, and flow cytometry. Transcriptome and CIBERSORT digital cytometry analyses of murine melanoma samples and human melanoma patients (The Cancer Genome Atlas) were applied to determine the immune cell populations in null or low-expressing AMBRA1 melanoma. The contribution of Ambra1 on T-cell migration was evaluated using a cytokine array and flow cytometry. Tumor growth kinetics and overall survival analysis in BrafV600E /Pten-/ -/Cdkn2a-/ - mice with Ambra1 knockdown were evaluated prior to and after administration of a programmed cell death protein-1 (PD-1) inhibitor. RESULTS Loss of Ambra1 was associated with altered expression of a wide range of cytokines and chemokines as well as decreased infiltration of tumors by regulatory T cells, a subpopulation of T cells with potent immune-suppressive properties. These changes in TIME composition were associated with the autophagic function of Ambra1. In the BrafV600E /Pten-/ -/Cdkn2a-/ - model inherently resistant to immune checkpoint blockade, knockdown of Ambra1 led to accelerated tumor growth and reduced overall survival, but at the same time conferred sensitivity to anti-PD-1 treatment. CONCLUSIONS This study shows that loss of Ambra1 affects the TIME and the antitumor immune response in melanoma, highlighting new functions of Ambra1 in the regulation of melanoma biology.
Collapse
Affiliation(s)
- Alex Frias
- Melanoma Research Team, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Luca Di Leo
- Melanoma Research Team, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Asier Antoranz
- Lab of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Loulieta Nazerai
- Melanoma Research Team, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marco Carretta
- National Center for Cancer Immunotherapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Valérie Bodemeyer
- Melanoma Research Team, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Chiara Pagliuca
- Melanoma Research Team, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christina Dahl
- Molecular Diagnostics Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppina Claps
- INSERM U981 and Department of Oncologic Medicine, Gustave Roussy Institute and Paris Saclay University, Villejuif, France
| | | | | | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Caroline Robert
- INSERM U981 and Department of Oncologic Medicine, Gustave Roussy Institute and Paris Saclay University, Villejuif, France
| | - Per Guldberg
- Molecular Diagnostics Group, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immunotherapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Francesco Cecconi
- Cell Stress and Survival, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Daniela De Zio
- Melanoma Research Team, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark .,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Castelli S, Ciccarone F, De Falco P, Ciriolo MR. Adaptive antioxidant response to mitochondrial fatty acid oxidation determines the proliferative outcome of cancer cells. Cancer Lett 2023; 554:216010. [PMID: 36402229 DOI: 10.1016/j.canlet.2022.216010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Alterations in lipid catabolism have been broadly described in cancer cells and show tumor-type specific effects on proliferation and cell survival. The factor(s) responsible for this heterogeneity is currently unknown and represents the main limitation in the development of therapeutic interventions that impair lipid metabolism. In this study, we focused on hexanoic acid, a medium-chain fatty acid, that can quickly boost oxidative metabolism by passively crossing mitochondrial membranes. We demonstrated that the antioxidant adaptation of cancer cells to increased fatty acid oxidation is predictive of the proliferative outcome. By interfering with SOD1 expression and glutathione homeostasis, we verified that mitochondrial fatty acid oxidation has antitumor effects in cancer cells that efficiently buffer ROS. In contrast, increased ROS levels promote proliferation in cells with an imbalanced antioxidant response. In addition, an increase in mitochondrial mass and mitophagy activation were observed, respectively. Overall, these data demonstrate that the capacity to manage ROS from mitochondrial oxidative metabolism determines whether lipid catabolism is advantageous or detrimental for cancer cells.
Collapse
Affiliation(s)
- Serena Castelli
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, Rome, 00166, Italy
| | - Pamela De Falco
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, Rome, 00166, Italy.
| |
Collapse
|
19
|
De Falco P, Lazzarino G, Felice F, Desideri E, Castelli S, Salvatori I, Ciccarone F, Ciriolo MR. Hindering NAT8L expression in hepatocellular carcinoma increases cytosolic aspartate delivery that fosters pentose phosphate pathway and purine biosynthesis promoting cell proliferation. Redox Biol 2022; 59:102585. [PMID: 36580805 PMCID: PMC9813579 DOI: 10.1016/j.redox.2022.102585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
N-acetylaspartate (NAA) is synthesized by the mitochondrial enzyme NAT8L, which uses acetyl-CoA and aspartate as substrates. These metabolites are fundamental for bioenergetics and anabolic requirements of highly proliferating cells, thus, NAT8L modulation may impinge on the metabolic reprogramming of cancer cells. Specifically, aspartate represents a limiting amino acid for nucleotide synthesis in cancer. Here, the expression of the NAT8L enzyme was modulated to verify how it impacts the metabolic adaptations and proliferative capacity of hepatocellular carcinoma. We demonstrated that NAT8L downregulation is associated with increased proliferation of hepatocellular carcinoma cells and immortalized hepatocytes. The overexpression of NAT8L instead decreased cell growth. The pro-tumoral effect of NAT8L silencing depended on glutamine oxidation and the rewiring of glucose metabolism. Mechanistically, NAT8L downregulation triggers aspartate outflow from mitochondria via the exporter SLC25A13 to promote glucose flux into the pentose phosphate pathway, boosting purine biosynthesis. These results were corroborated by the analyses of human and mouse hepatocellular carcinoma samples revealing a decrease in NAT8L expression compared to adjacent non-tumoral tissues. Overall, this work demonstrates that NAT8L expression in liver cells limits the cytosolic availability of aspartate necessary for enhancing the pentose phosphate pathway and purine biosynthesis, counteracting cell proliferation.
Collapse
Affiliation(s)
- Pamela De Falco
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy
| | - Federica Felice
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Enrico Desideri
- IRCCS San Raffaele Roma, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Serena Castelli
- IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Illari Salvatori
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano 64, Rome, 00143, Italy,Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 00133, Rome, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166, Rome, Italy.
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 00133, Rome, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166, Rome, Italy.
| |
Collapse
|
20
|
Chen S, Huang X. Cytosolic lipolysis in non-adipose tissues: energy provision and beyond. FEBS J 2022; 289:7385-7398. [PMID: 34407292 DOI: 10.1111/febs.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/18/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Cytosolic lipolysis is a well-defined biochemical process that plays important roles in the mobilization of stored neutral lipids. Lipid turnover, regulated by cytosolic lipolysis, has been extensively studied in adipose tissue, liver, and muscle. The storage and utilization of neutral lipids is a basic function of most, if not all, tissues and cells. In this review, we focus on the functions of cytosolic lipolysis mainly in non-adipose tissues and in several physiological processes, including cancer, longevity, and pathogen infection. The mechanisms underlying the impact of cytosolic lipolysis on these events will be discussed. Detailed understanding of cytosolic lipolysis in both adipose and non-adipose tissues will have implications for future clinical translation.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Xia H, Huang Z, Xu Y, Yam JWP, Cui Y. Reprogramming of central carbon metabolism in hepatocellular carcinoma. Biomed Pharmacother 2022; 153:113485. [DOI: 10.1016/j.biopha.2022.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
|
22
|
Xia JK, Qin XQ, Zhang L, Liu SJ, Shi XL, Ren HZ. Roles and regulation of histone acetylation in hepatocellular carcinoma. Front Genet 2022; 13:982222. [PMID: 36092874 PMCID: PMC9452893 DOI: 10.3389/fgene.2022.982222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is the most frequent malignant tumor of the liver, but its prognosis is poor. Histone acetylation is an important epigenetic regulatory mode that modulates chromatin structure and transcriptional status to control gene expression in eukaryotic cells. Generally, histone acetylation and deacetylation processes are controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Dysregulation of histone modification is reported to drive aberrant transcriptional programmes that facilitate liver cancer onset and progression. Emerging studies have demonstrated that several HDAC inhibitors exert tumor-suppressive properties via activation of various cell death molecular pathways in HCC. However, the complexity involved in the epigenetic transcription modifications and non-epigenetic cellular signaling processes limit their potential clinical applications. This review brings an in-depth view of the oncogenic mechanisms reported to be related to aberrant HCC-associated histone acetylation, which might provide new insights into the effective therapeutic strategies to prevent and treat HCC.
Collapse
Affiliation(s)
- Jin-kun Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Xue-qian Qin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shu-jun Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
24
|
Zhang R, Meng J, Yang S, Liu W, Shi L, Zeng J, Chang J, Liang B, Liu N, Xing D. Recent Advances on the Role of ATGL in Cancer. Front Oncol 2022; 12:944025. [PMID: 35912266 PMCID: PMC9326118 DOI: 10.3389/fonc.2022.944025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
The hypoxic state of the tumor microenvironment leads to reprogramming lipid metabolism in tumor cells. Adipose triglyceride lipase, also known as patatin-like phospholipase= domain-containing protein 2 and Adipose triglyceride lipase (ATGL), as an essential lipid metabolism-regulating enzyme in cells, is regulated accordingly under hypoxia induction. However, studies revealed that ATGL exhibits both tumor-promoting and tumor-suppressing effects, which depend on the cancer cell type and the site of tumorigenesis. For example, elevated ATGL expression in breast cancer is accompanied by enhanced fatty acid oxidation (FAO), enhancing cancer cells’ metastatic ability. In prostate cancer, on the other hand, tumor activity tends to be negatively correlated with ATGL expression. This review outlined the regulation of ATGL-mediated lipid metabolism pathways in tumor cells, emphasizing the Hypoxia-inducible factors 1 (HIF-1)/Hypoxia-inducible lipid droplet-associated (HIG-2)/ATGL axis, peroxisome proliferator-activated receptor (PPAR)/G0/G1 switch gene 2 (G0S2)/ATGL axis, and fat-specific protein 27 (FSP-27)/Early growth response protein 1 (EGR-1)/ATGL axis. In the light of recent research on different cancer types, the role of ATGL on tumorigenesis, tumor proliferation, and tumor metastasis was systemically reviewed.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|
25
|
Grabner GF, Guttenberger N, Mayer N, Migglautsch-Sulzer AK, Lembacher-Fadum C, Fawzy N, Bulfon D, Hofer P, Züllig T, Hartig L, Kulminskaya N, Chalhoub G, Schratter M, Radner FPW, Preiss-Landl K, Masser S, Lass A, Zechner R, Gruber K, Oberer M, Breinbauer R, Zimmermann R. Small-Molecule Inhibitors Targeting Lipolysis in Human Adipocytes. J Am Chem Soc 2022; 144:6237-6250. [PMID: 35362954 PMCID: PMC9011347 DOI: 10.1021/jacs.1c10836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Chronically elevated
circulating fatty acid levels promote lipid
accumulation in nonadipose tissues and cause lipotoxicity. Adipose
triglyceride lipase (ATGL) critically determines the release of fatty
acids from white adipose tissue, and accumulating evidence suggests
that inactivation of ATGL has beneficial effects on lipotoxicity-driven
disorders including insulin resistance, steatohepatitis, and heart
disease, classifying ATGL as a promising drug target. Here, we report
on the development and biological characterization of the first small-molecule
inhibitor of human ATGL. This inhibitor, designated NG-497, selectively
inactivates human and nonhuman primate ATGL but not structurally and
functionally related lipid hydrolases. We demonstrate that NG-497
abolishes lipolysis in human adipocytes in a dose-dependent and reversible
manner. The combined analysis of mouse- and human-selective inhibitors,
chimeric ATGL proteins, and homology models revealed detailed insights
into enzyme–inhibitor interactions. NG-497 binds ATGL within
a hydrophobic cavity near the active site. Therein, three amino acid
residues determine inhibitor efficacy and species selectivity and
thus provide the molecular scaffold for selective inhibition.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Nikolaus Guttenberger
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Nicole Mayer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | | | | | - Nermeen Fawzy
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Lennart Hartig
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Natalia Kulminskaya
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Gabriel Chalhoub
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Margarita Schratter
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Karina Preiss-Landl
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Sarah Masser
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| |
Collapse
|
26
|
Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules 2021; 12:biom12010057. [PMID: 35053204 PMCID: PMC8773762 DOI: 10.3390/biom12010057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
The liver is extremely active in oxidizing triglycerides (TG) for energy production. An imbalance between TG synthesis and hydrolysis leads to metabolic disorders in the liver, including excessive lipid accumulation, oxidative stress, and ultimately liver damage. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme that catalyzes the first step of TG breakdown to glycerol and fatty acids. Although its role in controlling lipid homeostasis has been relatively well-studied in the adipose tissue, heart, and skeletal muscle, it remains largely unknown how and to what extent ATGL is regulated in the liver, responds to stimuli and regulators, and mediates disease progression. Therefore, in this review, we describe the current understanding of the structure–function relationship of ATGL, the molecular mechanisms of ATGL regulation at translational and post-translational levels, and—most importantly—its role in lipid and glucose homeostasis in health and disease with a focus on the liver. Advances in understanding the molecular mechanisms underlying hepatic lipid accumulation are crucial to the development of targeted therapies for treating hepatic metabolic disorders.
Collapse
|
27
|
Castelli S, De Falco P, Ciccarone F, Desideri E, Ciriolo MR. Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers (Basel) 2021; 13:cancers13215484. [PMID: 34771647 PMCID: PMC8583096 DOI: 10.3390/cancers13215484] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Although cancer cell metabolism was mainly considered to rely on glycolysis, with the concomitant impairment of mitochondrial metabolism, it has recently been demonstrated that several tumor types are sustained by oxidative phosphorylation (OXPHOS). In this context, endogenous fatty acids (FAs) deriving from lipolysis or lipophagy are oxidised into the mitochondrion, and are used as a source of energy through OXPHOS. Because the electron transport chain is the main source of ROS, cancer cells relying on fatty acid oxidation (FAO) need to be equipped with antioxidant systems that maintain the ROS levels under the death threshold. In those conditions, ROS can act as second messengers, favouring proliferation and survival. Herein, we highlight the different responses that tumor cells adopt when lipid catabolism is augmented, taking into account the different ROS fates. Many papers have demonstrated that the pro- or anti-tumoral roles of endogenous FA usage are hugely dependent on the tumor type, and on the capacity of cancer cells to maintain redox homeostasis. In light of this, clinical studies have taken advantage of the boosting of lipid catabolism to increase the efficacy of tumor therapy, whereas, in other contexts, antioxidant compounds are useful to reduce the pro-survival effects of ROS deriving from FAO.
Collapse
Affiliation(s)
- Serena Castelli
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Pamela De Falco
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Enrico Desideri
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
- IRCCS San Raffaele Pisana, Via Della Pisana 235, 00163 Rome, Italy
- Correspondence:
| |
Collapse
|
28
|
Honeder S, Tomin T, Nebel L, Gindlhuber J, Fritz-Wallace K, Schinagl M, Heininger C, Schittmayer M, Ghaffari-Tabrizi-Wizsy N, Birner-Gruenberger R. Adipose Triglyceride Lipase Loss Promotes a Metabolic Switch in A549 Non-Small Cell Lung Cancer Cell Spheroids. Mol Cell Proteomics 2021; 20:100095. [PMID: 33992777 PMCID: PMC8214150 DOI: 10.1016/j.mcpro.2021.100095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo complex metabolic adaptations to survive and thrive in challenging environments. This is particularly prominent for solid tumors, where cells in the core of the tumor are under severe hypoxia and nutrient deprivation. However, such conditions are often not recapitulated in the typical 2D in vitro cancer models, where oxygen as well as nutrient exposure is quite uniform. The aim of this study was to investigate the role of a key neutral lipid hydrolase, namely adipose triglyceride lipase (ATGL), in cancer cells that are exposed to more tumor-like conditions. To that end, we cultured lung cancer cells lacking ATGL as multicellular spheroids in 3D and subjected them to comprehensive proteomics analysis and metabolic phenotyping. Proteomics data are available via ProteomeXchange with identifier PXD021105. As a result, we report that loss of ATGL enhanced growth of spheroids and facilitated their adaptation to hypoxia, by increasing the influx of glucose and endorsing a pro-Warburg effect. This was followed by changes in lipid metabolism and an increase in protein production. Interestingly, the observed phenotype was also recapitulated in an even more "in vivo like" setup, when cancer spheroids were grown on chick chorioallantoic membrane, but not when cells were cultured as a 2D monolayer. In addition, we demonstrate that according to the publicly available cancer databases, an inverse relation between ATGL expression and higher glucose dependence can be observed. In conclusion, we provide indications that ATGL is involved in regulation of glucose metabolism of cancer cells when grown in 3D (mimicking solid tumors) and as such could be an important factor of the treatment outcome for some cancer types. Finally, we also ratify the need for alternative cell culture models, as the majority of phenotypes observed in 3D and spheroids grown on chick chorioallantoic membrane were not observed in 2D cell culture.
Collapse
Affiliation(s)
- Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Tamara Tomin
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Laura Nebel
- Otto Loewi Research Center - Immunology and Pathophysiology, Medical University of Graz, Graz, Austria; QPS Austria GmbH, Grambach, Austria
| | - Jürgen Gindlhuber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Katarina Fritz-Wallace
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Maximilian Schinagl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christoph Heininger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Matthias Schittmayer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | | | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
29
|
ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:94. [PMID: 33706793 PMCID: PMC7948341 DOI: 10.1186/s13046-021-01887-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 12/23/2022]
Abstract
Background In the last decades, the concept of metabolic rewiring as a cancer hallmark has been expanded beyond the “Warburg effect” and the importance of other metabolic routes, including lipid metabolism, has emerged. In cancer, lipids are not only a source of energy but are also required for the formation of membranes building blocks, signaling and post-translational modification of proteins. Since lipid metabolism contributes to the malignancy of cancer cells, it is an attractive target for therapeutic strategies. Methods Over-expression of the adipose triglyceride lipase (ATGL) was used to boost lipid catabolism in cervical cancer cells. The cervical cancer cell line HeLa was employed as the primary experimental model for all subsequent studies. The lipolytic activity of ATGL was mimicked by caproate, a short-chain fatty acid that is efficiently oxidized in mitochondria. Results Here, we provide evidence of the association between boosted lipid catabolism and the increased proliferation and migration capability of cervical cancer cells. These pro-tumoral effects were ascribed to the reactive oxygen species (ROS)-mediated induction of hypoxia-inducible factor-1α (HIF1α) triggered by the increased mitochondrial fatty acids (FAs) oxidation. HIF1α activation increases glycolytic flux and lactate production, promoting cell proliferation. At the same time, HIF1α increases protein and mRNA levels of its known target BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), which in turn activates mitophagy as a pro-survival process, as demonstrated by the induction of apoptosis upon inhibition of mitophagy. These effects were mimicked by the short-chain fatty acid caproate, confirming that forcing lipid catabolism results in HIF1α induction. Conclusions Boosting lipid catabolism by ATGL over-expression has a pro-tumor role in cervical cancer cells, dependent on ROS production and HIF1α induction. Together with the bioinformatics evidence of the correlation of ATGL activity with the aggressiveness of cervical cancer cells, our data suggest that ATGL could be a promising prognostic marker for cervical cancer and highlight the need of further investigations on the role of this lipase in cancer cells. This evidence could be exploited to develop new personalized therapy, based on the functionality of the antioxidant equipment of cancer cells, considering that ROS content could affect ATGL role. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01887-w.
Collapse
|
30
|
Yin H, Li W, Mo L, Deng S, Lin W, Ma C, Luo Z, Luo C, Hong H. Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway. J Cell Mol Med 2021; 25:3963-3975. [PMID: 33621408 PMCID: PMC8051714 DOI: 10.1111/jcmm.16349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Abnormal lipid metabolism is the sign of tumour cells. Previous researches have revealed that the lipolytic pathway may contribute to the progression of colorectal cancer (CRC). However, adipose triglyceride lipase (ATGL) role in CRC cells remains unclear. Here, we find that elevated ATGL positively correlates with CRC clinical stages and negatively associates with overall survival. Overexpression of ATGL significantly promotes CRC cell proliferation, while knockdown of ATGL inhibits the proliferation and promotes the apoptosis of CRC cells in vitro. Moreover, in vivo experiments, ATGL promotes the growth of CRC cells. Mechanistically, ATGL enhances the carcinogenic function of CRC cells via promoting sphingolipid metabolism and CoA biosynthesis pathway‐related gene levels by degrading triglycerides, which provides adequate nutrition for the progression of CRC. Our researches clarify for the first time that ATGL is a novel oncogene in CRC and may provide an important prognostic factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Haofan Yin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wentao Li
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Laiming Mo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaotuan Deng
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Weijia Lin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Caiqi Ma
- Reproductive Medical Center, Guangzhou Women and Children's Medical Center of Sun Yat-sen University, Guangzhou, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chuanghua Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021; 13:474. [PMID: 33530546 PMCID: PMC7865757 DOI: 10.3390/cancers13030474] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called "lipid metabolic reprogramming", can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.M.); (K.K.)
| | | |
Collapse
|
32
|
Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and Furious: Lipid Metabolism in Antitumoral Therapy Response and Resistance. Trends Cancer 2020; 7:198-213. [PMID: 33281098 DOI: 10.1016/j.trecan.2020.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Lipid metabolic reprogramming is an established trait of cancer metabolism that guides response and resistance to antitumoral therapies. Enhanced lipogenesis, increased lipid content (either free or stored into lipid droplets), and lipid-dependent catabolism sustain therapy desensitization and the emergence of a resistant phenotype of tumor cells exposed to chemotherapy or targeted therapies. Aberrant lipid metabolism, therefore, has emerged as a potential metabolic vulnerability of therapy-resistant cancers that could be exploited for therapeutic interventions or for identifying tumors more likely to respond to further lines of therapies. This review gathers recent findings on the role of aberrant lipid metabolism in influencing antitumoral therapy response and in sustaining the emergence of resistance.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
33
|
Wang W, Bai L, Li W, Cui J. The Lipid Metabolic Landscape of Cancers and New Therapeutic Perspectives. Front Oncol 2020; 10:605154. [PMID: 33364199 PMCID: PMC7753360 DOI: 10.3389/fonc.2020.605154] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Lipid metabolism reprograming, as a hallmark of malignancy, has received renewed interest in recent years in such areas as energy sources, cell membrane components, and signaling molecules involved in the rapid tumor growth and the adaptation to the tumor microenvironment. Lipid metabolism deregulation in cancer involves multiple aspects, including an increased lipid uptake, endogenous de novo fatty acid synthesis, fatty acid oxidation, and cholesterol accumulation, thereby promoting tumor growth and progression. Recent advances in the understanding of specific metabolic alterations in cancer reveal novel pathogenesis mechanisms and a growing number of drugs targeting lipid metabolism have been applied in anti-tumor therapy. Thus, this review discusses the lipid metabolic landscape of cancers and the interplay with oncogenic signaling, and summarizes potential therapeutic targets to improve the therapeutic efficiency in cancer patients, in order to provide more reference and thinking for the treatment of lipid metabolism of cancer patients.
Collapse
|
34
|
Zheng S, Matskova L, Zhou X, Xiao X, Huang G, Zhang Z, Ernberg I. Downregulation of adipose triglyceride lipase by EB viral-encoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma. Mol Oncol 2020; 14:3234-3252. [PMID: 33064888 PMCID: PMC7718958 DOI: 10.1002/1878-0261.12824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Epstein–Barr virus (EBV)‐associated nasopharyngeal carcinoma (NPC) is one of the most common human cancers in South‐East Asia exhibiting typical features of lipid accumulation. EBV‐encoded latent membrane protein 2A (LMP2A) is expressed in most NPCs enhancing migration and invasion. We recently showed an increased accumulation of lipid droplets in NPC, compared with normal nasopharyngeal epithelium. It is important to uncover the mechanism behind this lipid metabolic shift to better understand the pathogenesis of NPC and provide potential therapeutic targets. We show that LMP2A increased lipid accumulation in NPC cells. LMP2A could block lipid degradation by downregulating the lipolytic gene adipose triglycerol lipase (ATGL). This is in contrast to lipid accumulation due to enhanced lipid biosynthesis seen in many cancers. Suppression of ATGL resulted in enhanced migration in vitro, and ATGL was found downregulated in NPC biopsies. The reduced expression level of ATGL correlated with poor overall survival in NPC patients. Our findings reveal a new role of LMP2A in lipid metabolism, correlating with NPC patient survival depending on ATGL downregulation.
Collapse
Affiliation(s)
- Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,The School of Life Sciences, Baltic Federal University, Kaliningrad, Russia
| | - Xiaoying Zhou
- Scientific Research Center, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Zhao Q, Zhang Z, Li J, Xu F, Zhang B, Liu M, Liu Y, Chen H, Yang J, Zhang J. Lysine Acetylome Study of Human Hepatocellular Carcinoma Tissues for Biomarkers and Therapeutic Targets Discovery. Front Genet 2020; 11:572663. [PMID: 33093847 PMCID: PMC7527632 DOI: 10.3389/fgene.2020.572663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a vital post-translational modification (PTM) of proteins, which plays an important role in cancer development. In healthy human liver tissues, multiple non-histone proteins were identified with acetylation modification, however, the role of acetylated proteins in hepatocellular carcinoma (HCC) development remains largely unknown. Here we performed a quantitative acetylome study of tumor and normal liver tissues from HCC patients. Overall, 598 lysine acetylation sites in 325 proteins were quantified, and almost 59% of their acetylation levels were significantly changed. The differentially acetylated proteins mainly consisted of non-histone proteins located in mitochondria and cytoplasm, which accounted for 42% and 24%, respectively. Bioinformatics analysis showed that differentially acetylated proteins were enriched in metabolism, oxidative stress, and signal transduction processes. In tumor tissues, 278 lysine sites in 189 proteins showed decreased acetylation levels, which occupied 98% of differentially acetylated proteins. Moreover, we collected twenty pairs of tumor and normal liver tissues from HCC male patients, and found that expression levels of SIRT1 (p = 0.002), SIRT2 (p = 0.01), and SIRT4 (p = 0.045) were significantly up-regulated in tumor tissues. Over-expression of possibly accounted for the widespread deacetylation of non-histone proteins identified in HCC tumor tissues, which could serve as promising predictors of HCC. Taken together, our work illustrates abundant differentially acetylated proteins in HCC tumor tissues, and offered insights into the role of lysine acetylation in HCC development. It provided potential biomarker and drug target candidates for clinical HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qianwei Zhao
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, China
| | - Zhendong Zhang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxia Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Xu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bingxia Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengduan Liu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yixian Liu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiping Chen
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junxia Yang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jintao Zhang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Xie H, Heier C, Kien B, Vesely PW, Tang Z, Sexl V, Schoiswohl G, Strießnig-Bina I, Hoefler G, Zechner R, Schweiger M. Adipose triglyceride lipase activity regulates cancer cell proliferation via AMP-kinase and mTOR signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158737. [PMID: 32404277 PMCID: PMC7397471 DOI: 10.1016/j.bbalip.2020.158737] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
Aberrant fatty acid (FA) metabolism is a hallmark of proliferating cells, including untransformed fibroblasts or cancer cells. Lipolysis of intracellular triglyceride (TG) stores by adipose triglyceride lipase (ATGL) provides an important source of FAs serving as energy substrates, signaling molecules, and precursors for membrane lipids. To investigate if ATGL-mediated lipolysis impacts cell proliferation, we modified ATGL activity in murine embryonic fibroblasts (MEFs) and in five different cancer cell lines to determine the consequences on cell growth and metabolism. Genetic or pharmacological inhibition of ATGL in MEFs causes impaired FA oxidation, decreased ROS production, and a substrate switch from FA to glucose leading to decreased AMPK-mTOR signaling and higher cell proliferation rates. ATGL expression in these cancer cells is low when compared to MEFs. Additional ATGL knockdown in cancer cells did not significantly affect cellular lipid metabolism or cell proliferation whereas the ectopic overexpression of ATGL increased lipolysis and reduced proliferation. In contrast to ATGL silencing, pharmacological inhibition of ATGL by Atglistatin© impeded the proliferation of diverse cancer cell lines, which points at an ATGL-independent effect. Our data indicate a crucial role of ATGL-mediated lipolysis in the regulation of cell proliferation. The observed low ATGL activity in cancer cells may represent an evolutionary selection process and mechanism to sustain high cell proliferation rates. As the increasing ATGL activity decelerates proliferation of five different cancer cell lines this may represent a novel therapeutic strategy to counteract uncontrolled cell growth.
Collapse
Affiliation(s)
- Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Benedikt Kien
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Paul W Vesely
- Institute of Pathology, Medical University of Graz, Graz 8010, Austria
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna 1210, Austria
| | | | | | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz 8010, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.
| |
Collapse
|
37
|
Ciccarone F, De Falco P, Ciriolo MR. Aconitase 2 sensitizes MCF-7 cells to cisplatin eliciting p53-mediated apoptosis in a ROS-dependent manner. Biochem Pharmacol 2020; 180:114202. [PMID: 32818504 DOI: 10.1016/j.bcp.2020.114202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Aconitase 2 (ACO2) belongs to the tricarboxylic acid (TCA) cycle, which represents a key metabolic hub for cellular metabolism that is frequently altered in cancer for satisfying bioenergetic and biosynthetic requirements of proliferating cells. The promotion of ACO2 activity in breast cancer cell lines was shown to slow down proliferation imposing a switch from aerobic glycolysis to oxidative metabolism. The alteration of metabolic pathways in cancer also impinges on the sensitivity to chemotherapeutic interventions. In this work, we evidence that the presence of ACO2 sensitizes cells to the treatment with the genotoxic agents cisplatin (CDDP) and doxorubicin activating the apoptotic cell death mechanism. This response was driven by the accumulation of reactive oxygen species (ROS) following both ACO2 overexpression and CDDP exposure that permit the stabilization/activation of p53 in nuclear and mitochondrial compartments. Collectively, our results highlight that in ACO2 overexpressing cells the promotion of mitochondrial metabolism accounts for increased ROS production that was buffered by p53 mitochondrial recruitment and autophagy induction. However, these systems are not able to counteract the CDDP-mediated oxidative stress that becomes the Achilles heel for increasing susceptibility to apoptotic cell death.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Pamela De Falco
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy; IRCCS San Raffaele Pisana, Rome, Italy.
| |
Collapse
|
38
|
Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov 2020; 6:53. [PMID: 32595984 PMCID: PMC7305227 DOI: 10.1038/s41420-020-0287-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the second most frequent cause of cancer-related death globally. The main histological subtype is hepatocellular carcinoma (HCC), which is derived from hepatocytes. According to the epidemiologic studies, the most important risk factors of HCC are chronic viral infections (HBV, HCV, and HIV) and metabolic disease (metabolic syndrome). Interestingly, these carcinogenic factors that contributed to HCC are associated with MDM2-p53 axis dysfunction, which presented with inactivation of p53 and overactivation of MDM2 (a transcriptional target and negative regulator of p53). Mechanically, the homeostasis of MDM2-p53 feedback loop plays an important role in controlling the initiation and progression of HCC, which has been found to be dysregulated in HCC tissues. To maintain long-term survival in hepatocytes, hepatitis viruses have lots of ways to destroy the defense strategies of hepatocytes by inducing TP53 mutation and silencing, promoting MDM2 overexpression, accelerating p53 degradation, and stabilizing MDM2. As a result, genetic instability, chronic ER stress, oxidative stress, energy metabolism switch, and abnormalities in antitumor genes can be induced, all of which might promote hepatocytes' transformation into hepatoma cells. In addition, abnormal proliferative hepatocytes and precancerous cells cannot be killed, because of hepatitis viruses-mediated exhaustion of Kupffer cells and hepatic stellate cells (HSCs) and CD4+T cells by disrupting their MDM2-p53 axis. Moreover, inefficiency of hepatic immune response can be further aggravated when hepatitis viruses co-infected with HIV. Unlike with chronic viral infections, MDM2-p53 axis might play a dual role in glucolipid metabolism of hepatocytes, which presented with enhancing glucolipid catabolism, but promoting hepatocyte injury at the early and late stages of glucolipid metabolism disorder. Oxidative stress, fatty degeneration, and abnormal cell growth can be detected in hepatocytes that were suffering from glucolipid metabolism disorder, and all of which could contribute to HCC initiation. In this review, we focus on the current studies of the MDM2-p53 axis in HCC, and specifically discuss the impact of MDM2-p53 axis dysfunction by viral infection and metabolic disease in the transformation of normal hepatocytes into hepatoma cells. We also discuss the therapeutic avenues and potential targets that are being developed to normalize the MDM2-p53 axis in HCC.
Collapse
Affiliation(s)
- Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Zhijun Wang
- Department of Traditional Chinese Medicine, Putuo People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Wang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Wei Zhang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| |
Collapse
|
39
|
Di Leo L, Bodemeyer V, De Zio D. The Complex Role of Autophagy in Melanoma Evolution: New Perspectives From Mouse Models. Front Oncol 2020; 9:1506. [PMID: 31998652 PMCID: PMC6966767 DOI: 10.3389/fonc.2019.01506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Despite tremendous efforts in the last decade to improve treatments, melanoma still represents a major therapeutic challenge and overall survival of patients remains poor. Therefore, identifying new targets to counteract melanoma is needed. In this scenario, autophagy, the “self-eating” process of the cell, has recently arisen as new potential candidate in melanoma. Alongside its role as a recycling mechanism for dysfunctional and damaged cell components, autophagy also clearly sits at a crossroad with metabolism, thereby orchestrating cell proliferation, bioenergetics and metabolic rewiring, all hallmarks of cancer cells. In this regard, autophagy, both in tumor and host, has been flagged as an essential player in melanomagenesis and progression. To pave the way to a better understanding of such a complex interplay, the use of genetically engineered mouse models (GEMMs), as well as syngeneic mouse models, has been undoubtedly crucial. Herein, we will explore the latest discoveries in the field, with particular focus on the potential of these models in unraveling the contribution of autophagy in melanoma, along with the therapeutic advantages that may arise.
Collapse
Affiliation(s)
- Luca Di Leo
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valérie Bodemeyer
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
40
|
Yu L, Li Y, Grisé A, Wang H. CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:197-222. [PMID: 32705602 PMCID: PMC8063591 DOI: 10.1007/978-981-15-6082-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Comparative gene identification-58 (CGI-58), also known as α/β-hydrolase domain-containing 5 (ABHD5), is a member of a large family of proteins containing an α/β-hydrolase-fold. CGI-58 is well-known as the co-activator of adipose triglyceride lipase (ATGL), which is a key enzyme initiating cytosolic lipid droplet lipolysis. Mutations in either the human CGI-58 or ATGL gene cause an autosomal recessive neutral lipid storage disease, characterized by the excessive accumulation of triglyceride (TAG)-rich lipid droplets in the cytoplasm of almost all cell types. CGI-58, however, has ATGL-independent functions. Distinct phenotypes associated with CGI-58 deficiency commonly include ichthyosis (scaly dry skin), nonalcoholic steatohepatitis, and hepatic fibrosis. Through regulated interactions with multiple protein families, CGI-58 controls many metabolic and signaling pathways, such as lipid and glucose metabolism, energy balance, insulin signaling, inflammatory responses, and thermogenesis. Recent studies have shown that CGI-58 regulates the pathogenesis of common metabolic diseases in a tissue-specific manner. Future studies are needed to molecularly define ATGL-independent functions of CGI-58, including the newly identified serine protease activity of CGI-58. Elucidation of these versatile functions of CGI-58 may uncover fundamental cellular processes governing lipid and energy homeostasis, which may help develop novel approaches that counter against obesity and its associated metabolic sequelae.
Collapse
Affiliation(s)
- Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yi Li
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alison Grisé
- College of Computer, Math, and Natural Sciences, College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| | - Huan Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Ciccarone F, Di Leo L, Lazzarino G, Maulucci G, Di Giacinto F, Tavazzi B, Ciriolo MR. Aconitase 2 inhibits the proliferation of MCF-7 cells promoting mitochondrial oxidative metabolism and ROS/FoxO1-mediated autophagic response. Br J Cancer 2019; 122:182-193. [PMID: 31819175 PMCID: PMC7051954 DOI: 10.1038/s41416-019-0641-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Deregulation of the tricarboxylic acid cycle (TCA) due to mutations in specific enzymes or defective aerobic metabolism is associated with tumour growth. Aconitase 2 (ACO2) participates in the TCA cycle by converting citrate to isocitrate, but no evident demonstrations of its involvement in cancer metabolism have been provided so far. Methods Biochemical assays coupled with molecular biology, in silico, and cellular tools were applied to circumstantiate the impact of ACO2 in the breast cancer cell line MCF-7 metabolism. Fluorescence lifetime imaging microscopy (FLIM) of NADH was used to corroborate the changes in bioenergetics. Results We showed that ACO2 levels are decreased in breast cancer cell lines and human tumour biopsies. We generated ACO2- overexpressing MCF-7 cells and employed comparative analyses to identify metabolic adaptations. We found that increased ACO2 expression impairs cell proliferation and commits cells to redirect pyruvate to mitochondria, which weakens Warburg-like bioenergetic features. We also demonstrated that the enhancement of oxidative metabolism was supported by mitochondrial biogenesis and FoxO1-mediated autophagy/mitophagy that sustains the increased ROS burst. Conclusions This work identifies ACO2 as a relevant gene in cancer metabolic rewiring of MCF-7 cells, promoting a different utilisation of pyruvate and revealing the potential metabolic vulnerability of ACO2-associated malignancies.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Luca Di Leo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy.,Danish Cancer Society Research Center, Unit of Cell Stress and Survival, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, via di Sant'Alessandro 8, 00131, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.,Institute of Physics, Catholic University of Rome, Largo F. Vito 1, 00168, Rome, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.,Institute of Physics, Catholic University of Rome, Largo F. Vito 1, 00168, Rome, Italy
| | - Barbara Tavazzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.,Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy. .,IRCCS San Raffaele Pisana, Via della Pisana 235, Rome, 00163, Italy.
| |
Collapse
|
42
|
Lu W, Cao F, Wang S, Sheng X, Ma J. LncRNAs: The Regulator of Glucose and Lipid Metabolism in Tumor Cells. Front Oncol 2019; 9:1099. [PMID: 31850189 PMCID: PMC6901916 DOI: 10.3389/fonc.2019.01099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Metabolism is a complex network of regulatory system. Cells often alter their metabolism in response to the changes in their environment. These adaptive changes are particularly pronounced in tumor cells, known as metabolic reprogramming. Metabolic reprogramming is considered to be one of the top 10 characteristics of tumor cells. Glucose and lipid metabolism are important components of metabolic reprogramming. A large number of experimental studies have shown that long non-coding RNAs (lncRNAs) play an important role in glucose and lipid metabolism. The current review briefly introduces the regulatory effect of lncRNAs on glucose and lipid metabolism of tumor cells, and the significance of lncRNA-mediated metabolism in tumor therapy, hoping to provide new strategies for clinical targeting tumor therapy.
Collapse
Affiliation(s)
- Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fenghua Cao
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
LC-MS-based lipid profile in colorectal cancer patients: TAGs are the main disturbed lipid markers of colorectal cancer progression. Anal Bioanal Chem 2019; 411:5079-5088. [DOI: 10.1007/s00216-019-01872-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
|
44
|
Oxidative Stress-Driven Autophagy acROSs Onset and Therapeutic Outcome in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6050123. [PMID: 31205585 PMCID: PMC6530208 DOI: 10.1155/2019/6050123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species- (ROS-) mediated autophagy physiologically contributes to management of cell homeostasis in response to mild oxidative stress. Cancer cells typically engage autophagy downstream of ROS signaling derived from hypoxia and starvation, which are harsh environmental conditions that need to be faced for cancer development and progression. Hepatocellular carcinoma (HCC) is a solid tumor for which several environmental risk factors, particularly viral infections and alcohol abuse, have been shown to promote carcinogenesis via augmentation of oxidative stress. In addition, ROS burst in HCC cells frequently takes place after administration of therapeutic compounds that promote apoptotic cell death or even autophagic cell death. The interplay between ROS and autophagy (i) in the disposal of dysfunctional mitochondria via mitophagy, as a tumor suppressor mechanism, or (ii) in the cell survival adaptive response elicited by chemotherapeutic interventions, as a tumor-promoting event, will be depicted in this review in relation to HCC development and progression.
Collapse
|
45
|
Tomaipitinca L, Mandatori S, Mancinelli R, Giulitti F, Petrungaro S, Moresi V, Facchiano A, Ziparo E, Gaudio E, Giampietri C. The Role of Autophagy in Liver Epithelial Cells and Its Impact on Systemic Homeostasis. Nutrients 2019; 11:nu11040827. [PMID: 30979078 PMCID: PMC6521167 DOI: 10.3390/nu11040827] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy plays a role in several physiological and pathological processes as it controls the turnover rate of cellular components and influences cellular homeostasis. The liver plays a central role in controlling organisms’ metabolism, regulating glucose storage, plasma proteins and bile synthesis and the removal of toxic substances. Liver functions are particularly sensitive to autophagy modulation. In this review we summarize studies investigating how autophagy influences the hepatic metabolism, focusing on fat accumulation and lipids turnover. We also describe how autophagy affects bile production and the scavenger function within the complex homeostasis of the liver. We underline the role of hepatic autophagy in counteracting the metabolic syndrome and the associated cardiovascular risk. Finally, we highlight recent reports demonstrating how the autophagy occurring within the liver may affect skeletal muscle homeostasis as well as different extrahepatic solid tumors, such as melanoma.
Collapse
Affiliation(s)
- Luana Tomaipitinca
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Sara Mandatori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Federico Giulitti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Simonetta Petrungaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Viviana Moresi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy.
| | - Elio Ziparo
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Claudia Giampietri
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|