1
|
Law ME, Dulloo ZM, Eggleston SR, Takacs GP, Alexandrow GM, Wang M, Su H, Forsyth B, Chiang CW, Sharma A, Kanumuri SRR, Guryanova OA, Harrison JK, Tirosh B, Castellano RK, Law BK. DR5 disulfide bonding as a sensor and effector of protein folding stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583390. [PMID: 38496520 PMCID: PMC10942403 DOI: 10.1101/2024.03.04.583390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
New agents are needed that selectively kill cancer cells without harming normal tissues. The TRAIL ligand and its receptors, DR5 and DR4, exhibit cancer-selective toxicity, but TRAIL analogs or agonistic antibodies targeting these receptors have not received FDA approval for cancer therapy. Small molecules for activating DR5 or DR4 independently of protein ligands may bypass some of the pharmacological limitations of these protein drugs. Previously described Disulfide bond Disrupting Agents (DDAs) activate DR5 by altering its disulfide bonding through inhibition of the Protein Disulfide Isomerases (PDIs) ERp44, AGR2, and PDIA1. Work presented here extends these findings by showing that disruption of single DR5 disulfide bonds causes high-level DR5 expression, disulfide-mediated clustering, and activation of Caspase 8-Caspase 3 mediated pro-apoptotic signaling. Recognition of the extracellular domain of DR5 by various antibodies is strongly influenced by the pattern of DR5 disulfide bonding, which has important implications for the use of agonistic DR5 antibodies for cancer therapy. Disulfide-defective DR5 mutants do not activate the ER stress response or stimulate autophagy, indicating that these DDA-mediated responses are separable from DR5 activation and pro-apoptotic signaling. Importantly, other ER stressors, including Thapsigargin and Tunicamycin also alter DR5 disulfide bonding in various cancer cell lines and in some instances, DR5 mis-disulfide bonding is potentiated by overriding the Integrated Stress Response (ISR) with inhibitors of the PERK kinase or the ISR inhibitor ISRIB. These observations indicate that the pattern of DR5 disulfide bonding functions as a sensor of ER stress and serves as an effector of proteotoxic stress by driving extrinsic apoptosis independently of extracellular ligands.
Collapse
|
2
|
Ghilardi AF, Yaaghubi E, Ferreira RB, Law ME, Yang Y, Davis BJ, Schilson CM, Ghiviriga I, Roitberg AE, Law BK, Castellano RK. Anticancer Agents Derived from Cyclic Thiosulfonates: Structure-Reactivity and Structure-Activity Relationships. ChemMedChem 2022; 17:e202200165. [PMID: 35491396 PMCID: PMC9308679 DOI: 10.1002/cmdc.202200165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Indexed: 11/09/2022]
Abstract
Reported are structure-property-function relationships associated with a class of cyclic thiosulfonate molecules-disulfide-bond disrupting agents (DDAs)-with the ability to downregulate the Epidermal Growth Factor Receptor (HER) family in parallel and selectively induce apoptosis of EGFR+ or HER2+ breast cancer cells. Recent findings have revealed that the DDA mechanism of action involves covalent binding to the thiol(ate) from the active site cysteine residue of members of the protein disulfide isomerase (PDI) family. Reported is how structural modifications to the pharmacophore can alter the anticancer activity of cyclic thiosulfonates by tuning the dynamics of thiol-thiosulfonate exchange reactions, and the studies reveal a correlation between the biological potency and thiol-reactivity. Specificity of the cyclic thiosulfonate ring-opening reaction by a nucleophilic attack can be modulated by substituent addition to a parent scaffold. Lead compound optimization efforts are also reported, and have resulted in a considerable decrease of the IC50 /IC90 values toward HER-family overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Amanda F Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Mary E Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Yinuo Yang
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | | | - Ion Ghiviriga
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | | |
Collapse
|
3
|
Law ME, Yaaghubi E, Ghilardi AF, Davis BJ, Ferreira RB, Koh J, Chen S, DePeter SF, Schilson CM, Chiang CW, Heldermon CD, Nørgaard P, Castellano RK, Law BK. Inhibitors of ERp44, PDIA1, and AGR2 induce disulfide-mediated oligomerization of Death Receptors 4 and 5 and cancer cell death. Cancer Lett 2022; 534:215604. [PMID: 35247515 DOI: 10.1016/j.canlet.2022.215604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023]
Abstract
Breast cancer mortality remains unacceptably high, indicating a need for safer and more effective therapeutic agents. Disulfide bond Disrupting Agents (DDAs) were previously identified as a novel class of anticancer compounds that selectively kill cancers that overexpress the Epidermal Growth Factor Receptor (EGFR) or its family member HER2. DDAs kill EGFR+ and HER2+ cancer cells via the parallel downregulation of EGFR, HER2, and HER3 and activation/oligomerization of Death Receptors 4 and 5 (DR4/5). However, the mechanisms by which DDAs mediate these effects are unknown. Affinity purification analyses employing biotinylated-DDAs reveal that the Protein Disulfide Isomerase (PDI) family members AGR2, PDIA1, and ERp44 are DDA target proteins. Further analyses demonstrate that shRNA-mediated knockdown of AGR2 and ERp44, or expression of ERp44 mutants, enhance basal DR5 oligomerization. DDA treatment of breast cancer cells disrupts PDIA1 and ERp44 mixed disulfide bonds with their client proteins. Together, the results herein reveal DDAs as the first small molecule, active site inhibitors of AGR2 and ERp44, and demonstrate roles for AGR2 and ERp44 in regulating the activity, stability, and localization of DR4 and DR5, and activation of Caspase 8.
Collapse
Affiliation(s)
- Mary E Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Amanda F Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA; Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sadie F DePeter
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine and Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Coy D Heldermon
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peter Nørgaard
- Department of Pathology, Copenhagen University Hospital Herlev, DK, 2730, Herlev, Denmark
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Brian K Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Law ME, Davis BJ, Ghilardi AF, Yaaghubi E, Dulloo ZM, Wang M, Guryanova OA, Heldermon CD, Jahn SC, Castellano RK, Law BK. Repurposing Tranexamic Acid as an Anticancer Agent. Front Pharmacol 2022; 12:792600. [PMID: 35095503 PMCID: PMC8793890 DOI: 10.3389/fphar.2021.792600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Tranexamic Acid (TA) is a clinically used antifibrinolytic agent that acts as a Lys mimetic to block binding of Plasminogen with Plasminogen activators, preventing conversion of Plasminogen to its proteolytically activated form, Plasmin. Previous studies suggested that TA may exhibit anticancer activity by blockade of extracellular Plasmin formation. Plasmin-mediated cleavage of the CDCP1 protein may increase its oncogenic functions through several downstream pathways. Results presented herein demonstrate that TA blocks Plasmin-mediated excision of the extracellular domain of the oncoprotein CDCP1. In vitro studies indicate that TA reduces the viability of a broad array of human and murine cancer cell lines, and breast tumor growth studies demonstrate that TA reduces cancer growth in vivo. Based on the ability of TA to mimic Lys and Arg, we hypothesized that TA may perturb multiple processes that involve Lys/Arg-rich protein sequences, and that TA may alter intracellular signaling pathways in addition to blocking extracellular Plasmin production. Indeed, TA-mediated suppression of tumor cell viability is associated with multiple biochemical actions, including inhibition of protein synthesis, reduced activating phosphorylation of STAT3 and S6K1, decreased expression of the MYC oncoprotein, and suppression of Lys acetylation. Further, TA inhibited uptake of Lys and Arg by cancer cells. These findings suggest that TA or TA analogs may serve as lead compounds and inspire the production of new classes of anticancer agents that function by mimicking Lys and Arg.
Collapse
Affiliation(s)
- Mary E. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Bradley J. Davis
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Amanda F. Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Zaafir M. Dulloo
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Mengxiong Wang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Coy D. Heldermon
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Stephan C. Jahn
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Ronald K. Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Chou CL, Chen TJ, Tian YF, Chan TC, Yeh CF, Li WS, Tsai HH, Li CF, Lai HY. Upregulated MUC2 Is an Unfavorable Prognostic Indicator for Rectal Cancer Patients Undergoing Preoperative CCRT. J Clin Med 2021; 10:3030. [PMID: 34300195 PMCID: PMC8304358 DOI: 10.3390/jcm10143030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
For locally advanced rectal cancer patients, introducing neoadjuvant concurrent chemoradiotherapy (CCRT) before radical resection allows tumor downstaging and increases the rate of anus retention. Since accurate staging before surgery and sensitivity prediction to CCRT remain challenging, a more precise genetic biomarker is urgently needed to enhance the management of such situations. The epithelial mucous barrier can protect the gut lumen, but aberrant mucin synthesis may defend against drug penetration. In this study, we focused on genes related to maintenance of gastrointestinal epithelium (GO: 0030277) and identified mucin 2 (MUC2) as the most significantly upregulated gene correlated with CCRT resistance through a public rectal cancer transcriptome dataset (GSE35452). We retrieved 172 records of rectal cancer patients undergoing CCRT accompanied by radical resection from our biobank. We also assessed the expression level of MUC2 using immunohistochemistry. The results showed that upregulated MUC2 immunoexpression was considerably correlated with the pre-CCRT and post-CCRT positive nodal status (p = 0.001 and p < 0.001), advanced pre-CCRT and post-CCRT tumor status (p = 0.022 and p < 0.001), vascular invasion (p = 0.015), and no or little response to CCRT (p = 0.006). Upregulated MUC2 immunoexpression was adversely prognostic for all three endpoints, disease-specific survival (DSS), local recurrence-free survival (LRFS), and metastasis-free survival (MeFS) (all p < 0.0001), at the univariate level. Moreover, upregulated MUC2 immunoexpression was an independent prognostic factor for worse DSS (p < 0.001), LRFS (p = 0.008), and MeFS (p = 0.003) at the multivariate level. Collectively, these results imply that upregulated MUC2 expression is characterized by a more advanced clinical course and treatment resistance in rectal cancer patients undergoing CCRT, revealing the potential prognostic utility of MUC2 expression.
Collapse
Affiliation(s)
- Chia-Lin Chou
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (C.-L.C.); (Y.-F.T.)
| | - Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (C.-L.C.); (Y.-F.T.)
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Cheng-Fa Yeh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Hsin-Hwa Tsai
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Chien-Feng Li
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hong-Yue Lai
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
| |
Collapse
|
6
|
Disulfide bond-disrupting agents activate the tumor necrosis family-related apoptosis-inducing ligand/death receptor 5 pathway. Cell Death Discov 2019; 5:153. [PMID: 31839995 PMCID: PMC6904486 DOI: 10.1038/s41420-019-0228-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Disulfide bond-disrupting agents (DDAs) are a new chemical class of agents recently shown to have activity against breast tumors in animal models. Blockade of tumor growth is associated with downregulation of EGFR, HER2, and HER3 and reduced Akt phosphorylation, as well as the induction of endoplasmic reticulum stress. However, it is not known how DDAs trigger cancer cell death without affecting nontransformed cells. As demonstrated here, DDAs are the first compounds identified that upregulate the TRAIL receptor DR5 through transcriptional and post-transcriptional mechanisms to activate the extrinsic cell death pathway. At the protein level, DDAs alter DR5 disulfide bonding to increase steady-state DR5 levels and oligomerization, leading to downstream caspase 8 and 3 activation. DDAs and TRAIL synergize to kill cancer cells and are cytotoxic to HER2+ cancer cells with acquired resistance to the EGFR/HER2 tyrosine kinase inhibitor Lapatinib. Investigation of the mechanisms responsible for DDA selectivity for cancer cells reveals that DDA-induced upregulation of DR5 is enhanced in the context of EGFR overexpression. DDA-induced cytotoxicity is strongly amplified by MYC overexpression. This is consistent with the known potentiation of TRAIL-mediated cell death by MYC. Together, the results demonstrate selective DDA lethality against oncogene-transformed cells, DDA-mediated DR5 upregulation, and protein stabilization, and that DDAs have activity against drug-resistant cancer cells. Our results indicate that DDAs are unique in causing DR5 accumulation and oligomerization and inducing downstream caspase activation and cancer cell death through mechanisms involving altered DR5 disulfide bonding. DDAs thus represent a new therapeutic approach to cancer therapy.
Collapse
|