1
|
Li QQ, Quan X, Wang ZX, Qiao N, Ni XF, Jing XL, Zhou SS, Tian XL, Zheng GC, Zhan KN, Xu YJ, Yang J, Zhou Y, Liang XT, Zhao ZH, Wei TH, Liu Q, Bai MY, Sun SL, Yu YC, Cao P, Li NG, Zhang XM, Liu J, Shi ZH. Design, Synthesis, and Biological Evaluation of 3,4-Dihydroisoquinolin-1( 2H)-one Derivatives as Protein Arginine Methyltransferase 5 Inhibitors for the Treatment of Non-Hodgkin's Lymphoma. J Med Chem 2025; 68:108-134. [PMID: 39722476 DOI: 10.1021/acs.jmedchem.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Through catalyzing the transfer of methyl groups onto the guanidinium of arginine, protein arginine methyltransferase 5 (PRMT5) was essential to the cell growth of cancer cells. By utilizing a scaffold hopping strategy, a novel series of 3,4-dihydroisoquinolin-1(2H)-one derivatives were designed and synthesized. Through a systematic SAR study, D3 demonstrated excellent PRMT5 inhibitory activity, potent antiproliferative activity against Z-138, favorable pharmacokinetic profiles, and low hERG toxicity. Molecular docking, molecular dynamic (MD) simulation, and surface plasmon resonance (SPR) study indicated that D3 was tightly interacted with PRMT5. Meanwhile, D3 exhibited high selectivity against PRMT5, which could inhibit the growth of various cancer cells, induce apoptosis, and arrest the cell cycle in the G0/G1 phase. Additionally, D3 possessed excellent antitumor efficacy in Z-138 xenograft models, low toxicity in vivo, and acceptable drug metabolism and pharmacokinetics (DMPK) profiles in vitro. Therefore, D3 can be developed as a promising candidate for the treatment of non-Hodgkin's lymphoma (NHL).
Collapse
Affiliation(s)
- Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Xu Quan
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nuo Qiao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing-Feng Ni
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Long Jing
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuang-Shuang Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin-Lei Tian
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Guo-Chuang Zheng
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Kang-Ning Zhan
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Yu-Jing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Ting Liang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zong-Hao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ming-Yu Bai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Meng Zhang
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Jian Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
2
|
Dietsche L, Stirm K, Lysenko V, Schneidawind C, Tzankov A, Müller A, Theocharides APA. Loss of SMAD1 in acute myeloid leukemia with KMT2A::AFF1 and KMT2A::MLLT3 fusion genes. Front Oncol 2025; 14:1481713. [PMID: 39834944 PMCID: PMC11743462 DOI: 10.3389/fonc.2024.1481713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction KMT2A-rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the KMT2A (also known as MLL1) gene. Research on the disease pathomechanism in KMT2A-rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the HOX-family and their co-factor MEIS1. Results Here we report the KMT2A::AFF1 and KMT2A::MLLT3 fusion gene-dependent downregulation of SMAD1, a TGF-β signaling axis transcription factor. SMAD1 expression is lost in the majority of AML patient samples and cell lines containing the two fusion genes KMT2A::AFF1 and KMT2A::MLLT3 compared to non-rearranged controls. Loss of SMAD1 expression is inducible by introducing the respective two KMT2A fusion genes into hematopoietic stem and progenitor cells. The loss of SMAD1 correlated with a markedly reduced amount of H3K4me3 levels at the SMAD1 promoter in tested cells with KMT2A::AFF1 and KMT2A::MLLT3. The expression of SMAD1 in cells with KMT2A::AFF1 fusion genes impacted the growth of cells in vitro and influenced engraftment of the KMT2A::AFF1 cell line MV4-11 in vivo. In MV4-11 cells SMAD1 expression caused a downregulation of HOXA9 and MEIS1, which was reinforced by TGF-β stimulation. Moreover, in MV4-11 cells SMAD1 presence sensitized cells for TGF-β mediated G1-arrest. Conclusion Overall, our data contributes to the understanding of the role of TGF-β signaling in acute myeloid leukemia with KMT2A::AFF1 by showing that SMAD1 loss can influence the growth dynamics and contribute to the pathogenic expression of disease driving factors.
Collapse
Affiliation(s)
- Lisa Dietsche
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Kristin Stirm
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alexandre P. A. Theocharides
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Rodon J, Prenen H, Sacher A, Villalona-Calero M, Penel N, El Helali A, Rottey S, Yamamoto N, Ghiringhelli F, Goebeler ME, Doi T, Postel-Vinay S, Lin CC, Liu C, Chuang CH, Keyvanjah K, Eggert T, O'Neil BH. First-in-human study of AMG 193, an MTA-cooperative PRMT5 inhibitor, in patients with MTAP-deleted solid tumors: results from phase I dose exploration. Ann Oncol 2024; 35:1138-1147. [PMID: 39293516 DOI: 10.1016/j.annonc.2024.08.2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Homozygous deletion of methylthioadenosine phosphorylase (MTAP) occurs in ∼10%-15% of solid tumors. AMG 193, a CNS-penetrant methylthioadenosine-cooperative protein arginine methyltransferase 5 (PRMT5) inhibitor, selectively induces synthetic lethality in MTAP-deleted tumor cells. Here, we report results of the completed monotherapy dose exploration evaluating AMG 193 in patients with MTAP-deleted solid tumors. PATIENTS AND METHODS In this first-in-human, multicenter, open-label, phase I study, patients with advanced CDKN2A-deleted and/or MTAP-deleted solid tumors received AMG 193 orally [once (o.d.) or twice (b.i.d.) daily] continuously in 28-day cycles. Primary objectives were safety and tolerability assessed by dose-limiting toxicities and determination of the maximum tolerated dose; secondary objectives included pharmacokinetics and preliminary antitumor activity measured by RECIST v1.1. RESULTS As of 23 May 2024, 80 patients in dose exploration received AMG 193 at doses 40-1600 mg o.d. or 600 mg b.i.d. The most common treatment-related adverse events were nausea (48.8%), fatigue (31.3%), and vomiting (30.0%). Dose-limiting toxicities were reported in eight patients at doses ≥240 mg, including nausea, vomiting, fatigue, hypersensitivity reaction, and hypokalemia. The maximum tolerated dose was determined to be 1200 mg o.d. Mean exposure of AMG 193 increased in a dose-proportional manner from 40 mg to 1200 mg. Among the efficacy-assessable patients treated at the active and tolerable doses of 800 mg o.d., 1200 mg o.d., or 600 mg b.i.d. (n = 42), objective response rate was 21.4% (95% confidence interval 10.3% to 36.8%). Responses were observed across eight different tumor types, including squamous/non-squamous non-small-cell lung cancer, pancreatic adenocarcinoma, and biliary tract cancer. At doses ≥480 mg, complete intratumoral PRMT5 inhibition was confirmed in paired MTAP-deleted tumor biopsies, and molecular responses (circulating tumor DNA clearance) were observed. CONCLUSIONS AMG 193 demonstrated a favorable safety profile without clinically significant myelosuppression. Encouraging antitumor activity across a variety of MTAP-deleted solid tumors was observed based on objective response rate and circulating tumor DNA clearance.
Collapse
Affiliation(s)
- J Rodon
- MD Anderson Cancer Center, Houston, USA.
| | - H Prenen
- University Hospital Antwerp, Edegem, Belgium
| | - A Sacher
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - M Villalona-Calero
- Department of Medical Oncology and Therapeutics Research, University of California, Irvine, USA
| | - N Penel
- Centre Oscar Lambret, Lille, France
| | - A El Helali
- Centre of Cancer Medicine, University of Hong Kong, Hong Kong, China
| | - S Rottey
- Ghent University Hospital, Ghent, Belgium
| | - N Yamamoto
- National Cancer Center Hospital, Tokyo, Japan
| | - F Ghiringhelli
- INSERM U866, Cancer Center Georges Francois Leclerc, Dijon, France
| | - M E Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - T Doi
- National Cancer Center Hospital East, Chiba, Japan
| | - S Postel-Vinay
- Institut Gustave Roussy, Villejuif, France; University College London Cancer Institute, London, UK
| | - C-C Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | - C Liu
- Amgen Inc., Thousand Oaks
| | | | | | | | - B H O'Neil
- Community-Health Network, Indianapolis, USA
| |
Collapse
|
4
|
Fischer J, Erkner E, Radszuweit P, Hentrich T, Keppeler H, Korkmaz F, Schulze-Hentrich J, Fitzel R, Lengerke C, Schneidawind D, Schneidawind C. Only Infant MLL-Rearranged Leukemia Is Susceptible to an Inhibition of Polo-like Kinase 1 (PLK-1) by Volasertib. Int J Mol Sci 2024; 25:12760. [PMID: 39684470 DOI: 10.3390/ijms252312760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
MLL-rearranged (MLLr) leukemia is characterized by a poor prognosis. Depending on the cell of origin, it differs in the aggressiveness and therapy response. For instance, in adults, volasertib blocking Polo-like kinase 1 (PLK-1) exhibited limited success. Otherwise, PLK-1 characterizes an infant MLLr signature, indicating potential sensitivity. By using our CRISPR/Cas9 MLLr model in CD34+ cells from human cord blood (huCB) and bone marrow (huBM) mimicking the infant and adult patient diseases, we were able to shed light on this phenomenon. The PLK-1 mRNA level was significantly increased in our huCB compared to the huBM model, which was underpinned by analyzing infant and adult MLLr leukemia patients. Importantly, the expression levels correlated with a functional response. Volasertib induced a significant dose-dependent decrease in proliferation and cell cycle arrest, most pronounced in the infant model. Mechanistically, upon volasertib treatment, we uncovered negative feedback only in the huBM model by compensatory upregulation of PLK-1 and related genes like AURKA involved in mitosis. Importantly, the poor response could be overcome by a combinatorial strategy with alisertib, an Aurora kinase A inhibitor. Our study emphasizes the importance of considering the cell of origin in therapeutic decision-making and provides the rationale for evaluating volasertib and alisertib in MLLr leukemia.
Collapse
Affiliation(s)
- Jacqueline Fischer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Estelle Erkner
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Pia Radszuweit
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Julia Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Rahel Fitzel
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Claudia Lengerke
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
5
|
Sui P, Wang Z, Zhang P, Pan F. Three-dimensional chromatin landscapes in MLLr AML. Exp Hematol Oncol 2024; 13:56. [PMID: 38778427 PMCID: PMC11110396 DOI: 10.1186/s40164-024-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Rearrangements of the mixed lineage leukemia (MLLr) gene are frequently associated with aggressive acute myeloid leukemia (AML). However, the treatment options are limited due to the genomic complexity and dynamics of 3D structure, which regulate oncogene transcription and leukemia development. Here, we carried out an integrative analysis of 3D genome structure, chromatin accessibility, and gene expression in gene-edited MLL-AF9 AML samples. Our data revealed profound MLLr-specific alterations of chromatin accessibility, A/B compartments, topologically associating domains (TAD), and chromatin loops in AML. The local 3D configuration of the AML genome was rewired specifically at loci associated with AML-specific gene expression. Together, we demonstrate that MLL-AF9 fusion disrupts the 3D chromatin landscape, potentially contributing to the dramatic transcriptome remodeling in MLLr AML.
Collapse
Affiliation(s)
- Pinpin Sui
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Zhihong Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Zhang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Feng Pan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Erkner E, Hentrich T, Schairer R, Fitzel R, Secker-Grob KA, Jeong J, Keppeler H, Korkmaz F, Schulze-Hentrich JM, Lengerke C, Schneidawind D, Schneidawind C. The RORɣ/SREBP2 pathway is a master regulator of cholesterol metabolism and serves as potential therapeutic target in t(4;11) leukemia. Oncogene 2024; 43:281-293. [PMID: 38030791 PMCID: PMC10798886 DOI: 10.1038/s41388-023-02903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Dysregulated cholesterol homeostasis promotes tumorigenesis and progression. Therefore, metabolic reprogramming constitutes a new hallmark of cancer. However, until today, only few therapeutic approaches exist to target this pathway due to the often-observed negative feedback induced by agents like statins leading to controversially increased cholesterol synthesis upon inhibition. Sterol regulatory element-binding proteins (SREBPs) are key transcription factors regulating the synthesis of cholesterol and fatty acids. Since SREBP2 is difficult to target, we performed pharmacological inhibition of retinoic acid receptor (RAR)-related orphan receptor gamma (RORγ), which acts upstream of SREBP2 and serves as master regulator of the cholesterol metabolism. This resulted in an inactivated cholesterol-related gene program with significant downregulation of cholesterol biosynthesis. Strikingly, these effects were more pronounced than the effects of fatostatin, a direct SREBP2 inhibitor. Upon RORγ inhibition, RNA sequencing showed strongly increased cholesterol efflux genes leading to leukemic cell death and cell cycle changes in a dose- and time-dependent manner. Combinatorial treatment of t(4;11) cells with the RORγ inhibitor showed additive effects with cytarabine and even strong anti-leukemia synergism with atorvastatin by circumventing the statin-induced feedback. Our results suggest a novel therapeutic strategy to inhibit tumor-specific cholesterol metabolism for the treatment of t(4;11) leukemia.
Collapse
Affiliation(s)
- Estelle Erkner
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, Saarbruecken, Germany
| | - Rebekka Schairer
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rahel Fitzel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathy-Ann Secker-Grob
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Johan Jeong
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Hildegard Keppeler
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany.
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Fischer J, Erkner E, Fitzel R, Radszuweit P, Keppeler H, Korkmaz F, Roti G, Lengerke C, Schneidawind D, Schneidawind C. Uncovering NOTCH1 as a Promising Target in the Treatment of MLL-Rearranged Leukemia. Int J Mol Sci 2023; 24:14466. [PMID: 37833915 PMCID: PMC10572120 DOI: 10.3390/ijms241914466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
MLL rearrangement (MLLr) is responsible for the development of acute leukemias with poor outcomes. Therefore, new therapeutic approaches are urgently needed. The NOTCH1 pathway plays a critical role in the pathogenesis of many cancers including acute leukemia. Using a CRISPR/Cas9 MLL-AF4/-AF9 translocation model, the newly developed NOTCH1 inhibitor CAD204520 with less toxic side effects allowed us to unravel the impact of NOTCH1 as a pathogenic driver and potential therapeutic target in MLLr leukemia. RNA sequencing (RNA-seq) and RT-qPCR of our MLLr model and MLLr cell lines showed the NOTCH1 pathway was overexpressed and activated. Strikingly, we confirmed this elevated expression level in leukemia patients. We also demonstrated that CAD204520 treatment of MLLr cells significantly reduces NOTCH1 and its target genes as well as NOTCH1 receptor expression. This was not observed with a comparable cytarabine treatment, indicating the specificity of the small molecule. Accordingly, treatment with CAD204520 resulted in dose-dependent reduced proliferation and viability, increased apoptosis, and the induction of cell cycle arrest via the downregulation of MLL and NOTCH1 target genes. In conclusion, our findings uncover the oncogenic relevance of the NOTCH1 pathway in MLLr leukemia. Its inhibition leads to specific anti-leukemic effects and paves the way for further evaluation in clinical settings.
Collapse
Affiliation(s)
- Jacqueline Fischer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Estelle Erkner
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Rahel Fitzel
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Pia Radszuweit
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Fulya Korkmaz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Claudia Lengerke
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany; (J.F.); (D.S.)
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
8
|
Reisenauer KN, Aroujo J, Tao Y, Ranganathan S, Romo D, Taube JH. Therapeutic vulnerabilities of cancer stem cells and effects of natural products. Nat Prod Rep 2023; 40:1432-1456. [PMID: 37103550 PMCID: PMC10524555 DOI: 10.1039/d3np00002h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Covering: 1995 to 2022Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites. Elimination of CSCs is a key goal in enhancing cancer treatment and may be aided by application of natural products in conjunction with conventional treatments. In this review, we highlight molecular features of CSCs and discuss synthesis, structure-activity relationships, derivatization, and effects of six natural products with anti-CSC activity.
Collapse
Affiliation(s)
| | - Jaquelin Aroujo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Yongfeng Tao
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | | | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Joseph H Taube
- Department of Biology, Baylor University, Waco, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Streb P, Kowarz E, Benz T, Reis J, Marschalek R. How chromosomal translocations arise to cause cancer: Gene proximity, trans-splicing, and DNA end joining. iScience 2023; 26:106900. [PMID: 37378346 PMCID: PMC10291325 DOI: 10.1016/j.isci.2023.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Chromosomal translocations (CTs) are a genetic hallmark of cancer. They could be identified as recurrent genetic aberrations in hemato-malignancies and solid tumors. More than 40% of all "cancer genes" were identified in recurrent CTs. Most of these CTs result in the production of oncofusion proteins of which many have been studied over the past decades. They influence signaling pathways and/or alter gene expression. However, a precise mechanism for how these CTs arise and occur in a nearly identical fashion in individuals remains to be elucidated. Here, we performed experiments that explain the onset of CTs: (1) proximity of genes able to produce prematurely terminated transcripts, which lead to the production of (2) trans-spliced fusion RNAs, and finally, the induction of (3) DNA double-strand breaks which are subsequently repaired via EJ repair pathways. Under these conditions, balanced chromosomal translocations could be specifically induced. The implications of these findings will be discussed.
Collapse
Affiliation(s)
- Patrick Streb
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Eric Kowarz
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Tamara Benz
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Jennifer Reis
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Rolf Marschalek
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Ford K, Munson BP, Fong SH, Panwala R, Chu WK, Rainaldi J, Plongthongkum N, Arunachalam V, Kostrowicki J, Meluzzi D, Kreisberg JF, Jensen-Pergakes K, VanArsdale T, Paul T, Tamayo P, Zhang K, Bienkowska J, Mali P, Ideker T. Multimodal perturbation analyses of cyclin-dependent kinases reveal a network of synthetic lethalities associated with cell-cycle regulation and transcriptional regulation. Sci Rep 2023; 13:7678. [PMID: 37169829 PMCID: PMC10175263 DOI: 10.1038/s41598-023-33329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation resulting in premature termination. These inter-dependencies translate to drug-drug synergies, with therapeutic implications in cancer and other diseases.
Collapse
Affiliation(s)
- Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brenton P Munson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Samson H Fong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wai Keung Chu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nongluk Plongthongkum
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Todd VanArsdale
- Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| | - Thomas Paul
- Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| | - Pablo Tamayo
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Trey Ideker
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Fitzel R, Secker-Grob KA, Keppeler H, Korkmaz F, Schairer R, Erkner E, Schneidawind D, Lengerke C, Hentrich T, Schulze-Hentrich JM, Schneidawind C. Targeting MYC in combination with epigenetic regulators induces synergistic anti-leukemic effects in MLLr leukemia and simultaneously improves immunity. Neoplasia 2023; 41:100902. [PMID: 37148657 DOI: 10.1016/j.neo.2023.100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
MLL rearranged (MLLr) leukemias are associated with a poor prognosis and a limited response to conventional therapies. Moreover, chemotherapies result in severe side effects with significant impairment of the immune system. Therefore, the identification of novel treatment strategies is mandatory. Recently, we developed a human MLLr leukemia model by inducing chromosomal rearrangements in CD34+ cells using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. This MLLr model authentically mimics patient leukemic cells and can be used as a platform for novel treatment strategies. RNA sequencing of our model revealed MYC as one of the most important key drivers to promote oncogenesis. However, in clinical trials the BRD4 inhibitor JQ-1 leading to indirect blocking of the MYC pathway shows only modest activity. We and others previously reported that epigenetic drugs targeting MAT2A or PRMT5 promote cell death in MLLr cells. Therefore, we use these drugs in combination with JQ-1 leading to augmented anti-leukemic effects. Moreover, we found activation of T, NK and iNKT cells, release of immunomodulatory cytokines and downregulation of the PD-1/PD-L1 axis upon inhibitor treatment leading to improved cytotoxicity. In summary, the inhibition of MYC and MAT2A or PRMT5 drives robust synergistic anti-leukemic activity in MLLr leukemia. Moreover, the immune system is concomitantly activated upon combinatorial inhibitor treatment, hereby further augmenting the therapeutic efficiency.
Collapse
Affiliation(s)
- Rahel Fitzel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathy-Ann Secker-Grob
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Hildegard Keppeler
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rebekka Schairer
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Estelle Erkner
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, Saarbrücken, Germany
| | | | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Tamai M, Fujisawa S, Nguyen TTT, Komatsu C, Kagami K, Kamimoto K, Omachi K, Kasai S, Harama D, Watanabe A, Akahane K, Goi K, Naka K, Kaname T, Teshima T, Inukai T. Creation of Philadelphia chromosome by CRISPR/Cas9-mediated double cleavages on BCR and ABL1 genes as a model for initial event in leukemogenesis. Cancer Gene Ther 2023; 30:38-50. [PMID: 35999358 PMCID: PMC9842507 DOI: 10.1038/s41417-022-00522-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023]
Abstract
The Philadelphia (Ph) chromosome was the first translocation identified in leukemia. It is supposed to be generated by aberrant ligation between two DNA double-strand breaks (DSBs) at the BCR gene located on chromosome 9q34 and the ABL1 gene located on chromosome 22q11. Thus, mimicking the initiation process of translocation, we induced CRISPR/Cas9-mediated DSBs simultaneously at the breakpoints of the BCR and ABL1 genes in a granulocyte-macrophage colony-stimulating factor (GM-CSF) dependent human leukemia cell line. After transfection of two single guide RNAs (sgRNAs) targeting intron 13 of the BCR gene and intron 1 of the ABL1 gene, a factor-independent subline was obtained. In the subline, p210 BCR::ABL1 and its reciprocal ABL1::BCR fusions were generated as a result of balanced translocation corresponding to the Ph chromosome. Another set of sgRNAs targeting intron 1 of the BCR gene and intron 1 of the ABL1 gene induced a factor-independent subline expressing p190 BCR::ABL1. Both p210 and p190 BCR::ABL1 induced factor-independent growth by constitutively activating intracellular signaling pathways for transcriptional regulation of cell cycle progression and cell survival that are usually regulated by GM-CSF. These observations suggested that simultaneous DSBs at the BCR and ABL1 gene breakpoints are initiation events for oncogenesis in Ph+ leukemia. (200/200 words).
Collapse
Affiliation(s)
- Minori Tamai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Thao T T Nguyen
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Chiaki Komatsu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Kohei Omachi
- Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shin Kasai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daisuke Harama
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
13
|
Sauter C, Simonet J, Guidez F, Dumétier B, Pernon B, Callanan M, Bastie JN, Aucagne R, Delva L. Protein Arginine Methyltransferases as Therapeutic Targets in Hematological Malignancies. Cancers (Basel) 2022; 14:5443. [PMID: 36358861 PMCID: PMC9657843 DOI: 10.3390/cancers14215443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/02/2023] Open
Abstract
Arginine methylation is a common post-translational modification affecting protein activity and the transcription of target genes when methylation occurs on histone tails. There are nine protein arginine methyltransferases (PRMTs) in mammals, divided into subgroups depending on the methylation they form on a molecule of arginine. During the formation and maturation of the different types of blood cells, PRMTs play a central role by controlling cell differentiation at the transcriptional level. PRMT enzymatic activity is necessary for many cellular processes in hematological malignancies, such as the activation of cell cycle and proliferation, inhibition of apoptosis, DNA repair processes, RNA splicing, and transcription by methylating histone tails' arginine. Chemical tools have been developed to inhibit the activity of PRMTs and have been tested in several models of hematological malignancies, including primary samples from patients, xenografts into immunodeficient mice, mouse models, and human cell lines. They show a significant effect by reducing cell viability and increasing the overall survival of mice. PRMT5 inhibitors have a strong therapeutic potential, as phase I clinical trials in hematological malignancies that use these molecules show promising results, thus, underlining PRMT inhibitors as useful therapeutic tools for cancer treatment in the future.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - John Simonet
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabien Guidez
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Dumétier
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Pernon
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mary Callanan
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Jean-Noël Bastie
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Department of Clinical Hematology, University Hospital François Mitterrand, 21000 Dijon, France
| | - Romain Aucagne
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Laurent Delva
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
14
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
15
|
Feustel K, Falchook GS. Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors in Oncology Clinical Trials: A review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:58-67. [PMID: 36034581 PMCID: PMC9390703 DOI: 10.36401/jipo-22-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT
Protein arginine methyltransferase 5 (PRMT5) inhibitors are a new class of antineoplastic agents showing promising preliminary clinical efficacy. Targeting an enzyme involved in a wide array of cellular and transcriptional pro-oncogenic processes, this class offers multifaceted tumor-suppressive effects. Partial response has been seen in adenoid cystic carcinoma from both GSK3326595 and JNJ-64619178, with four cases of stable disease seen with PRT543. Highly significant is a durable complete response in isocitrate dehydrogenase 1-mutated glioblastoma multiforme with PRT811. Both alone and in combination with existing chemotherapies and immunotherapies, this class shows promising preliminary data, particularly in cancers with splicing mutations and DNA damage repair deficiencies. Further studies are warranted, and there are clinical trials to come whose data will be telling of the efficacy of PRMT5 inhibitors in both hematologic and solid malignancies. The aim of this study is to compile available results of PRMT5 inhibitors in oncology clinical trials.
Collapse
Affiliation(s)
- Kavanya Feustel
- 1 Sky Ridge Medical Center, HCA Continental Division, Lone Tree, CO, USA
| | | |
Collapse
|
16
|
Abstract
Background: PRMT5 is an epigenetics-related enzyme, which plays a critical role in cancer development. Hence PRMT5 inhibition has been validated as a promising therapeutic strategy. Methods & Results: We synthesized a series of methylpiperazinyl derivatives as novel PRMT5 inhibitors that were achieved by scaffold-hopping from EPZ015666 by virtual screening followed by rational drug design. Among all compounds 43g, bearing a thiourea linker, showed antitumor activity across multiple cancer cell lines and reduced the level of symmetric arginine dimethylation of SmD3 dose-dependently. Moreover, 43g selectively inhibited PRMT5 among protein arginine methyltransferase isoforms. Further proteomics analysis revealed that 43g remarkably reduced the global arginine dimethylation level in a cellular context. Conclusion: This work provides new chemical templates for future structural optimization of PRMT5-related cancer treatments.
Collapse
|
17
|
Rong D, Zhou K, Fang W, Yang H, Zhang Y, Shi Q, Huang Y, Li J, Dong H, Li L, Ding J, Huang X, Wang Y. Structure-Aided Design, Synthesis, and Biological Evaluation of Potent and Selective Non-Nucleoside Inhibitors Targeting Protein Arginine Methyltransferase 5. J Med Chem 2022; 65:7854-7875. [PMID: 35612488 DOI: 10.1021/acs.jmedchem.2c00398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PRMT5 is a major type II protein arginine methyltransferase and plays important roles in diverse cellular processes. Overexpression of PRMT5 is implicated in various types of cancer. Many efforts have been made to develop potent and selective PRMT5 inhibitors, the most potent of which is usually derived from nucleoside structures. Here, we designed a novel series of non-nucleoside PRMT5 inhibitors through the structure-aided drug design approach. SAR exploration and metabolic stability optimization led to the discovery of compound 41 as a potent PRMT5 inhibitor with good selectivity. Additionally, compound 41 exerted antiproliferative effects against A375 cells by inducing apoptosis and potently inhibited the methyltransferase activity of PRMT5 in cells. Moreover, it showed attractive pharmacokinetic properties and markedly suppressed the tumor growth in an A375 tumor xenograft model. These results clearly indicate that 41 is a highly potent and selective non-nucleoside PRMT5 inhibitor.
Collapse
Affiliation(s)
- Deqin Rong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kaixin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Wei Fang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yi Zhang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiongyu Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yuting Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Jiayi Li
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Hui Dong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lanlan Li
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Jian Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Xun Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China.,Lingang Laboratory, Shanghai 200031, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
He L, Lomberk G. Collateral Victim or Rescue Worker?-The Role of Histone Methyltransferases in DNA Damage Repair and Their Targeting for Therapeutic Opportunities in Cancer. Front Cell Dev Biol 2021; 9:735107. [PMID: 34869318 PMCID: PMC8636273 DOI: 10.3389/fcell.2021.735107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 01/25/2023] Open
Abstract
Disrupted DNA damage signaling greatly threatens cell integrity and plays significant roles in cancer. With recent advances in understanding the human genome and gene regulation in the context of DNA damage, chromatin biology, specifically biology of histone post-translational modifications (PTMs), has emerged as a popular field of study with great promise for cancer therapeutics. Here, we discuss how key histone methylation pathways contribute to DNA damage repair and impact tumorigenesis within this context, as well as the potential for their targeting as part of therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lishu He
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Gwen Lomberk,
| |
Collapse
|
19
|
Tejedor JR, Bueno C, Vinyoles M, Petazzi P, Agraz-Doblas A, Cobo I, Torres-Ruiz R, Bayón GF, Pérez RF, López-Tamargo S, Gutierrez-Agüera F, Santamarina-Ojeda P, Ramírez-Orellana M, Bardini M, Cazzaniga G, Ballerini P, Schneider P, Stam RW, Varela I, Fraga MF, Fernández AF, Menéndez P. Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia. J Clin Invest 2021; 131:138833. [PMID: 33983906 DOI: 10.1172/jci138833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/11/2021] [Indexed: 01/04/2023] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.
Collapse
Affiliation(s)
- Juan Ramón Tejedor
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and.,RICORS-TERAV Network, ISCIII, Madrid, Spain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and
| | - Paolo Petazzi
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Isabel Cobo
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Raúl Torres-Ruiz
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,RICORS-TERAV Network, ISCIII, Madrid, Spain.,Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gustavo F Bayón
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Raúl F Pérez
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Sara López-Tamargo
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,RICORS-TERAV Network, ISCIII, Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Manuel Ramírez-Orellana
- RICORS-TERAV Network, ISCIII, Madrid, Spain.,Hematology Diagnostic Laboratory, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Michela Bardini
- Centro Ricerca Tettamanti, Department of Paediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Department of Paediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Paola Ballerini
- Pediatric Hematology, Armand Trousseau Hospital, Paris, France
| | - Pauline Schneider
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Ronald W Stam
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Mario F Fraga
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Agustín F Fernández
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and.,RICORS-TERAV Network, ISCIII, Madrid, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
20
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|
21
|
Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov 2021; 20:265-286. [PMID: 33469207 DOI: 10.1038/s41573-020-00108-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Protein lysine methylation is a crucial post-translational modification that regulates the functions of both histone and non-histone proteins. Deregulation of the enzymes or 'writers' of protein lysine methylation, lysine methyltransferases (KMTs), is implicated in the cause of many diseases, including cancer, mental health disorders and developmental disorders. Over the past decade, significant advances have been made in developing drugs to target KMTs that are involved in histone methylation and epigenetic regulation. The first of these inhibitors, tazemetostat, was recently approved for the treatment of epithelioid sarcoma and follicular lymphoma, and several more are in clinical and preclinical evaluation. Beyond chromatin, the many KMTs that regulate protein synthesis and other fundamental biological processes are emerging as promising new targets for drug development to treat diverse diseases.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Biology, Stanford University, Stanford, CA, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Abstract
Protein methyl transferases play critical roles in numerous regulatory pathways that underlie cancer development, progression and therapy-response. Here we discuss the function of PRMT5, a member of the nine-member PRMT family, in controlling oncogenic processes including tumor intrinsic, as well as extrinsic microenvironmental signaling pathways. We discuss PRMT5 effect on histone methylation and methylation of regulatory proteins including those involved in RNA splicing, cell cycle, cell death and metabolic signaling. In all, we highlight the importance of PRMT5 regulation and function in cancer, which provide the foundation for therapeutic modalities targeting PRMT5.
Collapse
Affiliation(s)
- Hyungsoo Kim
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
23
|
Secker KA, Bruns L, Keppeler H, Jeong J, Hentrich T, Schulze-Hentrich JM, Mankel B, Fend F, Schneidawind D, Schneidawind C. Only Hematopoietic Stem and Progenitor Cells from Cord Blood Are Susceptible to Malignant Transformation by MLL-AF4 Translocations. Cancers (Basel) 2020; 12:cancers12061487. [PMID: 32517300 PMCID: PMC7352867 DOI: 10.3390/cancers12061487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/18/2023] Open
Abstract
Mixed lineage leukemia (MLL) (KMT2A) rearrangements (KMT2Ar) play a crucial role in leukemogenesis. Dependent on age, major differences exist regarding disease frequency, main fusion partners and prognosis. In infants, up to 80% of acute lymphoid leukemia (ALL) bear a MLL translocation and half of them are t(4;11), resulting in a poor prognosis. In contrast, in adults only 10% of acute myeloid leukemia (AML) bear t(9;11) with an intermediate prognosis. The reasons for these differences are poorly understood. Recently, we established an efficient CRISPR/Cas9-based KMT2Ar model in hematopoietic stem and progenitor cells (HSPCs) derived from human cord blood (huCB) and faithfully mimicked the underlying biology of the disease. Here, we applied this model to HSPCs from adult bone marrow (huBM) to investigate the impact of the cell of origin and fusion partner on disease development. Both genome-edited infant and adult KMT2Ar cells showed monoclonal outgrowth with an immature morphology, myelomonocytic phenotype and elevated KMT2Ar target gene expression comparable to patient cells. Strikingly, all KMT2Ar cells presented with indefinite growth potential except for MLL-AF4 huBM cells ceasing proliferation after 80 days. We uncovered FFAR2, an epigenetic tumor suppressor, as potentially responsible for the inability of MLL-AF4 to immortalize adult cells under myeloid conditions.
Collapse
Affiliation(s)
- Kathy-Ann Secker
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.-A.S.); (L.B.); (H.K.); (D.S.)
| | - Lukas Bruns
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.-A.S.); (L.B.); (H.K.); (D.S.)
| | - Hildegard Keppeler
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.-A.S.); (L.B.); (H.K.); (D.S.)
| | - Johan Jeong
- Synthego Corporation, Menlo Park, CA 94025, USA;
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany; (T.H.); (J.M.S.-H.)
| | - Julia M. Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany; (T.H.); (J.M.S.-H.)
| | - Barbara Mankel
- Institute of Pathology and Neuropathology, University of Tuebingen, 72076 Tuebingen, Germany; (B.M.); (F.F.)
| | - Falko Fend
- Institute of Pathology and Neuropathology, University of Tuebingen, 72076 Tuebingen, Germany; (B.M.); (F.F.)
| | - Dominik Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.-A.S.); (L.B.); (H.K.); (D.S.)
| | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.-A.S.); (L.B.); (H.K.); (D.S.)
- Correspondence: ; Tel.: +49-7071-29-84319
| |
Collapse
|
24
|
MAT2A as Key Regulator and Therapeutic Target in MLLr Leukemogenesis. Cancers (Basel) 2020; 12:cancers12051342. [PMID: 32456310 PMCID: PMC7281730 DOI: 10.3390/cancers12051342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Epigenetic dysregulation plays a pivotal role in mixed-lineage leukemia (MLL) pathogenesis, therefore serving as a suitable therapeutic target. S-adenosylmethionine (SAM) is the universal methyl donor in human cells and is synthesized by methionine adenosyltransferase 2A (MAT2A), which is deregulated in different cancer types. Here, we used our human CRISPR/Cas9-MLL-rearranged (CRISPR/Cas9-MLLr) leukemia model, faithfully mimicking MLLr patients’ pathology with indefinite growth potential in vitro, to evaluate the unknown role of MAT2A. Comparable to publicly available patient data, we detected MAT2A to be significantly overexpressed in our CRISPR/Cas9-MLLr model compared to healthy controls. By using non-MLLr and MLLr cell lines and our model, we detected an MLLr-specific enhanced response to PF-9366, a new MAT2A inhibitor, and small interfering (si) RNA-mediated knockdown of MAT2A, by alteration of the proliferation, viability, differentiation, apoptosis, cell cycling, and histone methylation. Moreover, the combinational treatment of PF-9366 with chemotherapy or targeted therapies against the SAM-dependent methyltransferases, disruptor of telomeric silencing 1 like (DOT1L) and protein arginine methyltransferase 5 (PRMT5), revealed even more pronounced effects. In summary, we uncovered MAT2A as a key regulator in MLL leukemogenesis and its inhibition led to significant anti-leukemic effects. Therefore, our study paves the avenue for clinical application of PF-9366 to improve the treatment of poor prognosis MLLr leukemia.
Collapse
|
25
|
Schwaller J. Learning from mouse models of MLL fusion gene-driven acute leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194550. [PMID: 32320749 DOI: 10.1016/j.bbagrm.2020.194550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/17/2020] [Accepted: 04/05/2020] [Indexed: 01/28/2023]
Abstract
5-10% of human acute leukemias carry chromosomal translocations involving the mixed lineage leukemia (MLL) gene that result in the expression of chimeric protein fusing MLL to >80 different partners of which AF4, ENL and AF9 are the most prevalent. In contrast to many other leukemia-associated mutations, several MLL-fusions are powerful oncogenes that transform hematopoietic stem cells but also more committed progenitor cells. Here, I review different approaches that were used to express MLL fusions in the murine hematopoietic system which often, but not always, resulted in highly penetrant and transplantable leukemias that closely phenocopied the human disease. Due to its simple and reliable nature, reconstitution of irradiated mice with bone marrow cells retrovirally expressing the MLL-AF9 fusion became the most frequently in vivo model to study the biology of acute myeloid leukemia (AML). I review some of the most influential studies that used this model to dissect critical protein interactions, the impact of epigenetic regulators, microRNAs and microenvironment-dependent signals for MLL fusion-driven leukemia. In addition, I highlight studies that used this model for shRNA- or genome editing-based screens for cellular vulnerabilities that allowed to identify novel therapeutic targets of which some entered clinical trials. Finally, I discuss some inherent characteristics of the widely used mouse model based on retroviral expression of the MLL-AF9 fusion that can limit general conclusions for the biology of AML. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| |
Collapse
|