1
|
Liu Y, Cui H, Sun C. The supramolecular polymer-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer. Clinics (Sao Paulo) 2025; 80:100641. [PMID: 40228435 DOI: 10.1016/j.clinsp.2025.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Gastric Cancer (GC) remains a leading global cause of cancer mortality, underscoring the urgent need for advanced prognostic tools. This study aimed to construct and evaluate a prognostic risk signature based on Supramolecular Polymer-Related Genes (SPRGs) in gastric cancer. METHODS The authors downloaded data from TCGA-STAD, GEO, and CCLE databases for patients with GC and validation cohorts. Through consensus clustering, Cox proportional hazards models, LASSO Cox regression, and nomogram development, the authors identified and constructed a GC Prognostic risk Index (SPI). Additionally, the authors conducted drug sensitivity analysis and immune landscape assessment. Functional evaluations were conducted through colony formation, transwell invasion, and wound healing assays. RESULTS The authors identified that 182 SPRGs were significantly upregulated and 226 were downregulated in gastric cancer. Consensus clustering revealed two molecular subtypes, with cluster 1 having significantly lower overall survival compared to cluster 2. SPI effectively distinguished high-risk and low-risk patients across all cohorts. Furthermore, SPI was associated with tumor stage, lymph node metastasis, and tumor size, and could predict drug sensitivity in GC patients. Immune landscape analysis showed higher infiltration of naïve B cells, M2 macrophages, and activated NK cells in high-SPI patients. A nomogram model for GC prognosis using SPI and patient age was developed. KLC1 knockdown significantly suppressed GC cell proliferation, while markedly attenuating metastatic potential and invasion capacity. CONCLUSION This study constructed a prognostic risk signature based on SPRGs in gastric cancer, which is closely related to clinical pathological features, drug sensitivity, and immune landscape, providing new insights for personalized treatment.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, Ningbo Haishu People's Hospital, Ningbo, PR China.
| | - Hongyao Cui
- Department of Gastroenterology, Ningbo Haishu People's Hospital, Ningbo, PR China
| | - Chuan Sun
- Department of Gastroenterology, Ningbo Haishu People's Hospital, Ningbo, PR China
| |
Collapse
|
2
|
Jin YP, Li GW, Xu QQ, Wang XL. ZEB1 promotes the immune escape of ovarian cancer through the MCSF-CCL18 axis. Cancer Cell Int 2025; 25:95. [PMID: 40089803 PMCID: PMC11909986 DOI: 10.1186/s12935-025-03724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
This study aimed to determine the molecular mechanisms underlying immune escape in ovarian cancer. Samples of ovarian cancer were used to explore the regulatory pathways involved in the malignant phenotype. Tumor cell models with different levels of factor expression were constructed via transfection, and their regulation was determined through investigation of protein expressions. Moreover, our study aimed to investigate the effects of M2 polarization and TAMs aggregation on the apoptosis of CD8 + T-cells, and determine their regulatory axis. Results revealed ZEB1 may promote CCL18 expression via upregulation of MCSF concentration. Notably, high CCL18 expression levels were associated with the aggregation of M2-TAMs and the apoptosis of CD8 + T-cells. In addition, results of the present study demonstrated that the proliferation and invasion of ovarian cancer cells with high expression levels of proteins associated with ZEB1 signal pathway were increased. At the same time the growth rate of tumors in mice was reduced following ZEB1 knockdown, and the volume/weight of tumors were markedly decreased both in vitro and in vivo. Moreover, our results revealed that the aggregation of M2-TAMs and the apoptosis of CD8 + T-cells were significantly decreased in tumor cells following ZEB1 knockdown. Thus, these results verified that ZEB1 may promote the M2 polarization of TAMs via the MCSF axis, leading to the increased secretion of CCL18. Moreover, the MCSF axis may mediate immune escape through the induction of CD8 + T-cell apoptosis, ultimately promoting the malignant phenotype in ovarian cancer cells.
Collapse
Affiliation(s)
- Yan-Ping Jin
- School of Nursing, Jiangsu Health Vocational College, Nanjing, 211899, Jiangsu, China
| | - Guo-Wei Li
- School of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, 210038, Jiangsu, China.
| | - Qian-Qian Xu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital North), Suzhou, 215008, China
| | - Xiao-Lan Wang
- Department of Obstetrics and Gynecology, Zhongda Hospital Jiangbei Branch, School of Medicine, Southeast University, Nanjing, 210048, Jiangsu, China
| |
Collapse
|
3
|
Ghosh S, Sharma A, Kumar RS, Nasare V. Sorcin: mechanisms of action in cancer hallmarks, drug resistance and opportunities in therapeutics. Med Oncol 2024; 42:29. [PMID: 39673665 DOI: 10.1007/s12032-024-02580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Soluble resistant related calcium binding protein (Sorcin) plays an important role in tumor progression, angiogenesis, metastasis, and multidrug resistance. Differential expression of Sorcin across different cancers significantly correlates with key clinicopathological characteristics and survival outcomes, underscoring its potential as a prognostic marker. Its involvement in drug-resistant cancers further advert Sorcin as a promising therapeutic target. This review summarizes the mechanistic role of Sorcin in cancer, its contribution to drug resistance, clinical relevance, and the current and emerging therapeutic approaches aimed at translating Sorcin-targeted therapies into clinical practice.
Collapse
Affiliation(s)
- Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, India
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Arpana Sharma
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, India
| | - R Suresh Kumar
- Molecular Biology Division, National Institute of Cancer Prevention and Research, ICMR, Noida, Delhi, India
| | - Vilas Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
4
|
Li X, Guan W, Liu H, Yuan J, Wang F, Guan B, Chen J, Lu Q, Zhang L, Xu G. Targeting PNPO to suppress tumor growth via inhibiting autophagic flux and to reverse paclitaxel resistance in ovarian cancer. Apoptosis 2024; 29:1546-1563. [PMID: 38615082 PMCID: PMC11416418 DOI: 10.1007/s10495-024-01956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/15/2024]
Abstract
Our previous study showed that pyridoxine 5'-phosphate oxidase (PNPO) is a tissue biomarker of ovarian cancer (OC) and has a prognostic implication but detailed mechanisms remain unclear. The current study focused on PNPO-regulated lysosome/autophagy-mediated cellular processes and the potential role of PNPO in chemoresistance. We found that PNPO was overexpressed in OC cells and was a prognostic factor in OC patients. PNPO significantly promoted cell proliferation via the regulation of cyclin B1 and phosphorylated CDK1 and shortened the G2M phase in a cell cycle. Overexpressed PNPO enhanced the biogenesis and perinuclear distribution of lysosomes, promoting the degradation of autophagosomes and boosting the autophagic flux. Further, an autolysosome marker LAMP2 was upregulated in OC cells. Silencing LAMP2 suppressed cell growth and induced cell apoptosis. LAMP2-siRNA blocked PNPO action in OC cells, indicating that the function of PNPO on cellular processes was mediated by LAMP2. These data suggest the existence of the PNPO-LAMP2 axis. Moreover, silencing PNPO suppressed xenographic tumor formation. Chloroquine counteracted the promotion effect of PNPO on autophagic flux and inhibited OC cell survival, facilitating the inhibitory effect of PNPO-shRNA on tumor growth in vivo. Finally, PNPO was overexpressed in paclitaxel-resistant OC cells. PNPO-siRNA enhanced paclitaxel sensitivity in vitro and in vivo. In conclusion, PNPO has a regulatory effect on lysosomal biogenesis that in turn promotes autophagic flux, leading to OC cell proliferation, and tumor formation, and is a paclitaxel-resistant factor. These data imply a potential application by targeting PNPO to suppress tumor growth and reverse PTX resistance in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyu Chen
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Lu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lingyun Zhang
- Department of Medical Oncology, Shanghai Geriatric Medical Center, Shanghai, China.
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
6
|
Xia Y, Zhang B, Chen N, Hu X, Jin X, Lu C, Liang F. LncRNA ERICD interacts with TROAP to regulate TGF-β signaling in hepatocellular carcinoma. Heliyon 2024; 10:e34810. [PMID: 39148975 PMCID: PMC11325059 DOI: 10.1016/j.heliyon.2024.e34810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and common malignant tumors worldwide, accounting for 85-90 % of primary liver cancer cases. Accumulating evidence shows that long non-coding RNAs (LncRNAs) play regulatory roles in HCC occurrence and progression. However, little is known about the biological role of the LncRNA "E2F1-regulated inhibitor of cell death" (ERICD) in HCC. Our study revealed that ERICD is highly expressed in HCC and correlates with TNM staging; high ERICD levels were associated with poor patient prognoses. We revealed the targeting relationship between ERICD and miR-142-5p for the first time by bioinformatics prediction and further verified the targeting relationship between ERICD and miR-142-5p using a luciferase reporting experiment. In summary, our results showed that ERICD promotes the occurrence and metastasis of HCC by downregulating miR-142-5p expression. Our study provides a target for new potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yujie Xia
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Zhang
- Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), China
| | - Nanrun Chen
- Yongkang Municipal Center for Disease Control and Prevention, Zhejiang 321300, China
| | - Xiaowei Hu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinzhe Jin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenbin Lu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Liang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Lin F, Ma L, Yu S, Lin J, Xu Z, Xia H, Song Y, Huang W, Wu Y, Chen Y, Liu X, Xia J, Huang X. GLUT3 transcriptional activation by ZEB1 fuels the Warburg effect and promotes ovarian cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119715. [PMID: 38583782 DOI: 10.1016/j.bbamcr.2024.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Ovarian cancer (OvCa) is characterized by early metastasis and high mortality rates, underscoring the need for deeper understanding of these aspects. This study explores the role of glucose transporter 3 (GLUT3) driven by zinc finger E-box-binding homeobox 1 (ZEB1) in OvCa progression and metastasis. Specifically, this study explored whether ZEB1 promotes glycolysis and assessed the potential involvement of GLUT3 in this process in OvCa cells. Our findings revealed that ZEB1 and GLUT3 were excessively expressed and closely correlated in OvCa. Mechanistically, ZEB1 activates the transcription of GLUT3 by binding to its promoter region. Increased expression of GLUT3 driven by ZEB1 dramatically enhances glycolysis, and thus fuels Warburg Effect to promote OvCa progression and metastasis. Consistently, elevated ZEB1 and GLUT3 expression in clinical OvCa is correlated with poor prognosis, reinforcing the profound contribution of ZEB1-GLUT3 axis to OvCa. These results suggest that activation of GLUT3 expression by ZEB1 is crucial for the proliferation and metastasis of OvCa via fueling glycolysis, shedding new light on OvCa treatment.
Collapse
Affiliation(s)
- Furong Lin
- Department of Obstetrics and Gynecology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; The State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lin Ma
- Department of Obstetrics and Gynecology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shengnan Yu
- Department of Obstetrics and Gynecology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Obstetrics and Gynecology, Zhongshan Hospital, Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jing Lin
- Department of Obstetrics and Gynecology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhenzhen Xu
- The State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hailong Xia
- The State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Youyi Song
- The State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wang Huang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Yiling Wu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Xiyao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junjie Xia
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Xiumin Huang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Feng G, Chen C, Luo Y. PRMT1 accelerates cell proliferation, migration, and tumor growth by upregulating ZEB1/H4R3me2as in thyroid carcinoma. Oncol Rep 2023; 50:210. [PMID: 37859611 PMCID: PMC10603553 DOI: 10.3892/or.2023.8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Thyroid carcinoma (TC) represents the most prevalent malignancy of the endocrine system. Protein arginine methyltransferase 1 (PRMT1) is a critical member of the protein arginine methyltransferase family in mammals and is involved in multiple biological processes. This study aimed to investigate the function of PRMT1 in TC. In the present study, human TC cell lines (8505C, CAL62, and BCPAP) and a normal human thyroid cell line Nthy‑ori 3‑1 were employed. Small interfering RNA targeting PRMT1 was used to knock down PRMT1 expression in 8505C cells, and PRMT1 overexpression plasmids were transfected into BCPAP cells. Cell viability was assessed using a CCK‑8 and colony formation assays. Apoptosis was measured using flow cytometry and TUNEL assays. Cell migration was assessed using wound healing and Transwell assays. Reverse transcription‑quantitative PCR was used to determine the mRNA expression levels of PRMT1. Western blotting was used to detect the protein expression levels of PRMT1, E‑cadherin, vimentin, H4R3me2as, and zinc‑finger E homeobox‑binding 1 (ZEB1). Notably, PRMT1 expression was elevated in TC (P<0.01). PRMT1 knockdown inhibited TC cell proliferation and migration and concurrently enhanced migration. Furthermore, PRMT1 knockdown suppressed tumor growth and metastasis in a mouse model of TC. PRMT1 downregulation increased E‑cadherin expression and decreased the expression of vimentin, H4R3me2as, and ZEB1 in the TC cells and the mouse model of TC. Conversely, PRMT1 overexpression had the opposite effect on TC malignant characteristics (P<0.05). These findings suggest that PRMT1 knockdown inhibited TC malignancy by downregulating H4R3me2as/ZEB1, thereby highlighting novel therapeutic targets and diagnostic markers for the management of TC.
Collapse
Affiliation(s)
- Guoli Feng
- Department of General Surgery, Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Changju Chen
- Department of Medical, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yi Luo
- Department of General Surgery, Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
9
|
Yuan J, Li X, Wang F, Liu H, Guan W, Xu G. Insulin-like growth factor 2 mRNA-binding protein 2 is a therapeutic target in ovarian cancer. Exp Biol Med (Maywood) 2023; 248:2198-2209. [PMID: 38084732 PMCID: PMC10903241 DOI: 10.1177/15353702231214268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/03/2023] [Indexed: 01/23/2024] Open
Abstract
Ovarian cancer (OC) is a fatal gynecologic disease. The most common treatment for OC patients is surgery combined with chemotherapy but most patients at advanced stages eventually develop relapse due to chemoresistance. This study examined the role and function of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) in OC. We observed that the expression of IGF2BP2 mRNA and protein was up-regulated in OC cells and tissues using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. An increase in IGF2BP2 expression at mRNA and protein levels was verified by the analyses of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), respectively. Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were applied to analyze the expression and clinical value of IGF2BP2. Gene set enrichment analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses explored biological functions and the involvement of IGF2BP2 in cell growth. Indeed, the knockdown of IGF2BP2 resulted in the inhibition of OC cell proliferation evaluated by the Cell Counting Kit-8 assay. Genomic amplification of IGF2BP2 partly accounted for its overexpression. High expression of IGF2BP2 was associated with signal transducer and activator of transcription 1 (STAT1) and drug sensitivity and was correlated with an unfavorable survival outcome in OC patients. Furthermore, the responsiveness of chemotherapy and immunotherapy were analyzed using the "pRRophetic" R package and The Cancer Immune Atlas (TCIA) database, respectively. The low expression of IGF2BP2 was associated with chemoresistance but with high tumor microenvironment scores and tumor-infiltrating immune cells, suggesting that immunotherapy may apply in chemoresistant patients. The alteration of IGF2BP2 expression may respond to chemotherapy and immunotherapy. Thus, IGF2BP2 shows potential as a therapeutic target and diagnostic biomarker for OC.
Collapse
Affiliation(s)
- Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| |
Collapse
|
10
|
Li S, Yi Z, Li M, Zhu Z. Baicalein improves the chemoresistance of ovarian cancer through regulation of CirSLC7A6. J Ovarian Res 2023; 16:212. [PMID: 37940982 PMCID: PMC10631197 DOI: 10.1186/s13048-023-01285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE The present study aimed to investigate whether baicalein improves the sensitivity of resistant ovarian cancer cells to cisplatin. METHODS Transcriptomic sequencing and bioinformatics analysis were used to screen differentially expressed CirSLC7A6 in A2780 and A2780/CDDP cells. RT-qPCR was performed to examine the expression levels of CirSLC7A6, miR-2682-5p, and SLC7A6. Cell proliferation and apoptosis were examined using a Cell Counting Kit-8 assay and flow cytometry, and cell migration and invasion were analyzed using wound healing and Transwell assays. Cell suspensions were inoculated into the subcutaneous tissues of the bilateral interscapular region of nude mice. Saline, cisplatin, baicalein and cisplatin plus baicalein were intraperitoneally injected to observe the effects on tumor growth. Toxicity analyses in the liver and kidney were performed using H&E staining. RT-qPCR and immunohistochemistry were used to detect the expression of CirSLC7A6, miR-2682-5p, and SLC7A6 in tumor tissues, and western blot analysis was carried out to measure protein expression levels. RESULTS CirSLC7A6 was markedly upregulated in A2780/CDDP cells compared with the A2780 cells. CirSLC7A6 knockdown notably increased the expression of miR-2682-5p and decreased SLC7A6 expression. The rates of inhibition and apoptosis in the group treated with a combination of cisplatin and baicalein were significantly higher than those of the cisplatin and baicalein groups of A2780/CDDP shCirSLC7A6 cells. In A2780/CDDP shCirSLC7A6 cells, migration and invasion were significantly higher in the cisplatin and baicalein groups, compared with the combined treatment group. In the A2780/CDDP shCirSLC7A6 cell xenograft, the tumor weight of the combined treatment group was significantly lower than that of the cisplatin and baicalein groups. In addition, the combination of cisplatin and baicalein did not induce higher levels of toxicity in the liver or kidney. Baicalein alone and in combination with cisplatin notably reduced the expression of CirSLC7A6 and SLC7A6, and increased the expression of miR-2682-5p in the A2780/CDDP shCirSLC7A6 cell xenograft. In A2780/CDDP shCirSLC7A6 cells, the expression levels of P-Akt, P-mTOR, P-Erk, Bcl-2 and MMP2 were lower in the combined treatment group than in the control group. CONCLUSIONS Treatment with baicalein improved the sensitivity of ovarian cancer cells to cisplatin and inhibited cell proliferation, metastasis and tumor growth.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China
| | - Zhihui Yi
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China
| | - Mingqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China.
| | - Zhiling Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China.
| |
Collapse
|
11
|
Yuan J, Guan W, Li X, Wang F, Liu H, Xu G. RBM15‑mediating MDR1 mRNA m 6A methylation regulated by the TGF‑β signaling pathway in paclitaxel‑resistant ovarian cancer. Int J Oncol 2023; 63:112. [PMID: 37594126 PMCID: PMC10552772 DOI: 10.3892/ijo.2023.5560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Ovarian cancer (OC) lacks effective biomarkers for diagnosis at an early stage and often develops chemoresistance after the initial treatment at an advanced stage. RNA‑binding motif protein 15 (RBM15) is an RNA m6A methylation mediator that serves an oncogenic role in some cancers. However, the function and molecular mechanisms of RBM15 in ovarian tumorigenesis and chemoresistance remain to be elucidated. The present study identified the overexpression of RBM15 in OC tissues and paclitaxel (PTX)‑resistant cells using reverse transcription‑quantitative (q)PCR, western blotting and immunohistochemistry. Clinical data analyses showed that high expression of RBM15 was associated with poor prognosis in patients with OC. Overexpression of RBM15 led to an increase in cell viability and colony formation and a decrease in cell sensitivity to PTX and apoptosis, whereas the knockdown of RBM15 resulted in the inhibition of cell viability and colony formation in vitro and tumor formation in vivo and increased cell apoptosis and sensitivity to PTX in a time‑ and dose‑dependent manner. Furthermore, RBM15 knockdown reduced the spheroid formation of PTX‑resistant OC cells. Silencing of RBM15 decreased multidrug resistance 1 (MDR1) mRNA m6A methylation detected by the methylated RNA immunoprecipitation‑qPCR assay and downregulated the expression of a chemo‑drug efflux pump MDR1 at the mRNA and protein levels. Finally, RBM15 expression was suppressed by the activation of the TGF‑β signaling pathway. Thus, the findings revealed a TGF‑β/RBM15/MDR1 regulatory mechanism. Targeting RBM15 may provide a novel therapeutic strategy for the treatment of PTX‑resistant OC.
Collapse
Affiliation(s)
- Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
12
|
Yi M, Wang S, Zhang X, Jiang L, Xia X, Zhang T, Fang X. Linc-ROR Promotes EMT by Targeting miR-204-5p/SMAD4 in Endometriosis. Reprod Sci 2023; 30:2665-2679. [PMID: 36917423 DOI: 10.1007/s43032-023-01204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Endometriosis (EMs) is a systemic and chronic disease with cancer-like feature, namely, distant implantation, which caused heavy healthy burden of nearly 200 million females. LncRNAs have been proved as new modulators in epithelial-mesenchymal transition (EMT) and EMs. Quantitative real-time PCR was conducted to measure the expression level of long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR), and miR-204-5p in ectopic endometrium (n = 25), eutopic endometrium (n = 20), and natural control endometrium (n = 22). Overexpression of Linc-ROR, knockdown or overexpression of miR-204-5p in End1/E6E7 and Ishikawa cells, was conducted to detect the function of Linc-ROR and miR-204-5p in EMs. Furthermore, luciferase reports were used to confirm the combination of Linc-ROR and miR-204-5p and the combination between miR-204-5p and SMAD4. Cell-Counting Kit-8, EdU assay, transwell assays, and Western blotting were used to detect the function of Linc-ROR and miR-204-5p in EMs cancer-like behaviors and EMT process. Linc-ROR was up-regulated in ectopic endometrium. Overexpressed Linc-ROR promotes cell proliferation, invasion, and EMT process. Linc-ROR regulated the EMT process, cellular proliferation, and invasion of EMs via binding to miR-204-5p. In addition, overexpression of Linc-ROR up-regulated SMAD4, a target protein of miR-204-5p, with which regulated EMT process and cancer-like behaviors in EMs together. Linc-ROR/miR-204-5p/SMAD4 axis plays a vital role in regulation EMT process in EMs, which might become a novel therapeutic targets and powerful biomarkers in EMs therapy.
Collapse
Affiliation(s)
- Mingyu Yi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Li Jiang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Ibrahim HM, Abdelrahman AE, Elsebai E, Gharieb SA, Fahmy MM, Ramadan MS, Wasfy MA, Abdullatif A. Clinicopathologic Impact of NANOG, ZEB1, and EpCAM Biomarkers on Prognosis of Serous Ovarian Carcinoma. Asian Pac J Cancer Prev 2023; 24:3247-3259. [PMID: 37774079 PMCID: PMC10762767 DOI: 10.31557/apjcp.2023.24.9.3247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVES Serous ovarian carcinoma (SOC) is a biologically heterogeneous with different genomic and molecular profiles, beside clinical response to the chemotherapy with subsequent in obstacles in starting unified, acceptable treatments and so we assess immunoexpression of Nanog, ZEB1, and EpCAM in SOC. METHODS In this study, the immunoexpression of Nanog, ZEB1, and EpCAM was studied in 60 cases of SOC. Overall survival (OS), disease-free survival (DFS) data and response to chemotherapy were analyzed. RESULTS NANOG was immunostained in 65% of the cases with a significant association with tumor grade, lymph node metastasis, and FIGO stage (p < 0.001 for each). ZEB1 showed moderate- high expression in 58.3% of the cases with significant up-regulation of ZEB1 expression with SOC grade, nodal metastasis, and SOC FIGO stage (p<0.001). EpCAM revealed high expression in 60% of the cases with significant association with higher grade, nodal metastasis, and advanced stage (p < 0.001 for each). Up-regulation of Nanog was significantly associated with response to chemotherapy, relapse, shorter OS and DFS (p < 0.001 for each). ZEB1 overexpression exhibited a significant association with response to chemotherapy (p= 0.012), relapse, shorter OS and DFS (p<0.001 for each). Moreover, the high EpCAM had a significant association with response to chemotherapy (p= 0.043), relapse (p < 0.001) shorter OS (p=0.006) and DFS (p< 0.001). CONCLUSIONS Up-regulation of Nanog and ZEB-1 and EpCAM perhaps promote an aggressive SOC with a high risk of relapse and unfavorable response to standard chemotherapy regimen.
Collapse
Affiliation(s)
- Hanaa M. Ibrahim
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.
| | | | - Eman Elsebai
- Department ofClinical Oncology, Faculty of Medicine, Zagazig University, Egypt.
| | - Shimaa A. Gharieb
- Department ofClinical Oncology, Faculty of Medicine, Zagazig University, Egypt.
| | - Moamna M. Fahmy
- Department ofClinical Oncology, Faculty of Medicine, Zagazig University, Egypt.
| | - Mohamed S.H. Ramadan
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Egypt.
| | - Mohamed A. Wasfy
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Egypt.
| | - Asmaa Abdullatif
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|
14
|
Guan W, Yuan J, Li X, Gao X, Wang F, Liu H, Shi J, Xu G. Cyclin dependent kinase 14 as a paclitaxel-resistant marker regulated by the TGF-β signaling pathway in human ovarian cancer. J Cancer 2023; 14:2538-2551. [PMID: 37670966 PMCID: PMC10475357 DOI: 10.7150/jca.86842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
Cyclin dependent kinase 14 (CDK14) plays a central role in the control of cell proliferation and cell cycle progression. However, the specific function and regulatory mechanism of CDK14 on paclitaxel (PTX) resistance in ovarian cancer (OC) remain unclear. The present study demonstrated that CDK14 was overexpressed in OC tissues and cells at mRNA and protein levels detected by qRT-PCR, Western blot, and immunohistochemistry. Survival analysis showed that elevated CDK14 was related to the poor prognosis of OC patients. Overexpression of CDK14 was correlated with chemoresistance in OC. The expression level of CDK14 was higher in PTX-resistant OC cells (SK3R-PTX and OV3R-PTX) than in their counterpart-sensitive cells (SK-OV-3 and OVCAR-3). Knockdown of CDK14 decreased multidrug resistance 1 (MDR1) and β-catenin expression in SK3R-PTX and OV3R-PTX cells and resensitized OC cells to PTX by decreasing cell proliferation and inducing cell apoptosis. Administration of transforming growth factor (TGF)-β1 decreased CDK14 protein in PTX-resistant OC cells. The inhibitory effect of TGF-β1 on CDK14 expression was abolished in the presence of a TGF-β type I receptor kinase inhibitor (SB-431542). Furthermore, TGF-β signal transducer Smad2 protein directly bound to the region -437 to -446 upstream of the CDK14 transcription start site (TSS), resulting in downregulating the expression of CDK14. These data indicate that CDK14 is a PTX-resistant marker and is regulated by the TGF-β signaling pathway. Targeting CDK14 to enhance the sensitivity of PTX may provide a new therapeutic strategy for reversing the PTX resistance in OC.
Collapse
Affiliation(s)
- Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuzhu Gao
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jimin Shi
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Chen NN, Ma XD, Miao Z, Zhang XM, Han BY, Almaamari AA, Huang JM, Chen XY, Liu YJ, Su SW. Doxorubicin resistance in breast cancer is mediated via the activation of FABP5/PPARγ and CaMKII signaling pathway. Front Pharmacol 2023; 14:1150861. [PMID: 37538178 PMCID: PMC10395833 DOI: 10.3389/fphar.2023.1150861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer is the most prevalent malignancy among women. Doxorubicin (Dox) resistance was one of the major obstacles to improving the clinical outcome of breast cancer patients. The purpose of this study was to investigate the relationship between the FABP signaling pathway and Dox resistance in breast cancer. The resistance property of MCF-7/ADR cells was evaluated employing CCK-8, Western blot (WB), and confocal microscopy techniques. The glycolipid metabolic properties of MCF-7 and MCF-7/ADR cells were identified using transmission electron microscopy, PAS, and Oil Red O staining. FABP5 and CaMKII expression levels were assessed through GEO and WB approaches. The intracellular calcium level was determined by flow cytometry. Clinical breast cancer patient's tumor tissues were evaluated by immunohistochemistry to determine FABP5 and p-CaMKII protein expression. In the presence or absence of FABP5 siRNA or the FABP5-specific inhibitor SBFI-26, Dox resistance was investigated utilizing CCK-8, WB, and colony formation methods, and intracellular calcium level was examined. The binding ability of Dox was explored by molecular docking analysis. The results indicated that the MCF-7/ADR cells we employed were Dox-resistant MCF-7 cells. FABP5 expression was considerably elevated in MCF-7/ADR cells compared to parent MCF-7 cells. FABP5 and p-CaMKII expression were increased in resistant patients than in sensitive individuals. Inhibition of the protein expression of FABP5 by siRNA or inhibitor increased Dox sensitivity in MCF-7/ADR cells and lowered intracellular calcium, PPARγ, and autophagy. Molecular docking results showed that FABP5 binds more powerfully to Dox than the known drug resistance-associated protein P-GP. In summary, the PPARγ and CaMKII axis mediated by FABP5 plays a crucial role in breast cancer chemoresistance. FABP5 is a potentially targetable protein and therapeutic biomarker for the treatment of Dox resistance in breast cancer.
Collapse
Affiliation(s)
- Nan-Nan Chen
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin-Di Ma
- Breast Center, Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuang Miao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiang-Mei Zhang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bo-Ye Han
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ahmed Ali Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia-Min Huang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue-Yan Chen
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yun-Jiang Liu
- Breast Center, Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Su-Wen Su
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
16
|
Tito C, Genovese I, Giamogante F, Benedetti A, Miglietta S, Barazzuol L, Cristiano L, Iaiza A, Carolini S, De Angelis L, Masciarelli S, Nottola SA, Familiari G, Petrozza V, Lauriola M, Tamagnone L, Ilari A, Calì T, Valdivia HH, Valdivia CR, Colotti G, Fazi F. Sorcin promotes migration in cancer and regulates the EGF-dependent EGFR signaling pathways. Cell Mol Life Sci 2023; 80:202. [PMID: 37442828 PMCID: PMC10345051 DOI: 10.1007/s00018-023-04850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.
Collapse
Affiliation(s)
- Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Ilaria Genovese
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Anna Benedetti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Selenia Miglietta
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessia Iaiza
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Sabatino Carolini
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Tamagnone
- Department of Life Science and Public Health, Histology and Embryology Unit - Catholic University of the Sacred Hearth, Fondazione Policlinico Gemelli - IRCCS, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Hector H. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Carmen R. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| |
Collapse
|
17
|
Ning R, Pan S, Xiao D, Zheng Y, Zhang J. ANO10 is a potential prognostic biomarker and correlates with immune infiltration in breast cancer. Am J Cancer Res 2023; 13:1845-1862. [PMID: 37293146 PMCID: PMC10244099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/13/2023] [Indexed: 06/10/2023] Open
Abstract
Several diseases have been linked to the dysfunction of anoctamins. Anoctamins play a wide range of physiological roles, including cell proliferation, migration, epithelial secretion, and calcium-activated chloride channel activity. However, the function of anoctamin 10 (ANO10) in breast cancer is still unclear. ANO10 was highly expressed in bone marrow, blood, skin, adipose tissue, thyroid gland and salivary gland, while ANO10 was expressed at low levels in liver and skeletal muscle. Compared to benign breast lesions, the protein level of ANO10 was lower in malignant breast tumors. However, breast cancer patients with low ANO10 expression have favorable survival outcomes. ANO10 was negatively correlated with the infiltration of memory CD4 T cells, naïve B cells, CD8 T cells, chemokines and chemokine receptors. Furthermore, the ANO10 low expression group was more sensitive to certain chemotherapy drugs, including bleomycin, doxorubicin, gemcitabine, mitomycin and etoposide. Altogether, ANO10 is a potential biomarker that can effectively predict the prognosis of breast cancer. Our findings highlight the promising prognostic value and therapeutic target of ANO10 in breast cancer.
Collapse
Affiliation(s)
- Ran Ning
- Department of Pathology, The Affiliated Chaohu Hospital of Anhui Medical UniversityChaohu 238000, Anhui, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of ChinaHefei 230000, Anhui, China
- School of Medical Oncology, Wan Nan Medical CollegeWuhu 241000, Anhui, China
| | - Dashu Xiao
- Department of Pathology, The Affiliated Chaohu Hospital of Anhui Medical UniversityChaohu 238000, Anhui, China
| | - Yan Zheng
- Department of Pathology, The Affiliated Chaohu Hospital of Anhui Medical UniversityChaohu 238000, Anhui, China
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of ChinaHefei 230000, Anhui, China
| |
Collapse
|
18
|
Hashemi M, Zandieh MA, Talebi Y, Rahmanian P, Shafiee SS, Nejad MM, Babaei R, Sadi FH, Rajabi R, Abkenar ZO, Rezaei S, Ren J, Nabavi N, Khorrami R, Rashidi M, Hushmandi K, Entezari M, Taheriazam A. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023; 160:114392. [PMID: 36804123 DOI: 10.1016/j.biopha.2023.114392] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sareh Sadat Shafiee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Roghayeh Babaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
19
|
Deng L, Fan Z, Xiao X, Liu H, Zhang J. Dual-Channel Heterogeneous Graph Neural Network for Predicting microRNA-Mediated Drug Sensitivity. J Chem Inf Model 2022; 62:5929-5937. [PMID: 36413746 DOI: 10.1021/acs.jcim.2c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many studies have confirmed that microRNAs (miRNAs) are mediated in the sensitivity of tumor cells to anticancer drugs. MiRNAs are emerging as a type of promising therapeutic targets to overcome drug resistance. However, there is limited attention paid to the computational prediction of the associations between miRNAs and drug sensitivity. In this work, we proposed a heterogeneous network-based representation learning method to predict miRNA-drug sensitivity associations (DGNNMDA). An miRNA-drug heterogeneous network was constructed by integrating miRNA similarity network, drug similarity network, and experimentally validated miRNA-drug sensitivity associations. Next, we developed a dual-channel heterogeneous graph neural network model to perform feature propagation among the homogeneous and heterogeneous nodes so that our method can learn expressive representations for miRNA and drug nodes. On two benchmark datasets, our method outperformed other seven competitive methods. We also verified the effectiveness of the feature propagations on homogeneous and heterogeneous nodes. Moreover, we have conducted two case studies to verify the reliability of our methods and tried to reveal the regulatory mechanism of miRNAs mediated in drug sensitivity. The source code and datasets are freely available at https://github.com/19990915fzy/DGNNMDA.
Collapse
Affiliation(s)
- Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Ziyu Fan
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Xiaojun Xiao
- Software School, Xinjiang University, Urumqi830091, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing211816, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, California92161, United States
| |
Collapse
|
20
|
Li J, Li Z, Gao Y, Zhao H, Guo J, Liu Z, Yin C, Zhao X, Yue W. Integrating single-cell RNA sequencing and prognostic model revealed the carcinogenicity and clinical significance of FAM83D in ovarian cancer. Front Oncol 2022; 12:1055648. [PMID: 36568230 PMCID: PMC9773999 DOI: 10.3389/fonc.2022.1055648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ovarian cancer (OC) is a fatal gynecological tumor with high mortality and poor prognosis. Yet, its molecular mechanism is still not fully explored, and early prognostic markers are still missing. In this study, we assessed carcinogenicity and clinical significance of family with sequence similarity 83 member D (FAM83D) in ovarian cancer by integrating single-cell RNA sequencing (scRNA-seq) and a prognostic model. Methods A 10x scRNA-seq analysis was performed on cells from normal ovary and high-grade serous ovarian cancer (HGSOC) tissue. The prognostic model was constructed by Lasso-Cox regression analysis. The biological function of FAM83D on cell growth, invasion, migration, and drug sensitivity was examined in vitro in OC cell lines. Luciferase reporter assay was performed for binding analysis between FAM83D and microRNA-138-5p (miR-138-5p). Results Our integrative analysis identified a subset of malignant epithelial cells (C1) with epithelial-mesenchymal transition (EMT) and potential hyperproliferation gene signature. A FAM83D+ malignant epithelial subcluster (FAM83D+ MEC) was associated with cell cycle regulation, apoptosis, DNA repair, and EMT activation. FAM83D resulted as a viable prognostic marker in a prognostic model that efficiently predict the overall survival of OC patients. FAM83D downregulation in SKOV3 and A2780 cells increased cisplatin sensitivity, reducing OC cell proliferation, migration, and invasion. MiR-138-5p was identified to regulate FAM83D's carcinogenic effect in OC cells. Conclusions Our findings highlight the importance of miR-138 -5p/FAM83D/EMT signaling and may provide new insights into therapeutic strategies for OC.
Collapse
Affiliation(s)
- Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiahao Guo
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhibin Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China,*Correspondence: Wentao Yue, ; Xiaoting Zhao, ; Chenghong Yin,
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China,*Correspondence: Wentao Yue, ; Xiaoting Zhao, ; Chenghong Yin,
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China,*Correspondence: Wentao Yue, ; Xiaoting Zhao, ; Chenghong Yin,
| |
Collapse
|
21
|
Shuqing L, Zhiling Z. Patients with stage IA ovarian clear cell carcinoma do not require chemotherapy following surgery. Cancer Med 2022; 12:6668-6674. [PMID: 36416131 PMCID: PMC10067103 DOI: 10.1002/cam4.5453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC) is an infrequent histological subtype of epithelial ovarian cancer (EOC). The present study aimed to investigate whether chemotherapy is indispensable for patients with stage IA OCCC. METHODS Data were collected from the Surveillance, Epidemiology and End Results database between 2004 and 2015. All subjects were diagnosed with stage IA OCCC, according to their postoperative pathological reports. In the present study, 1038 patients were retrospectively investigated, among whom 692 patients received chemotherapy. Propensity score matching (PSM) was performed to prevent selection bias. The multivariate Cox proportional hazards model was used to analyze the correlation between variables and 5-year overall survival. RESULTS An equal number of patients (n = 346) who did or did not undergo chemotherapy after PSM were further enrolled in the study. The results showed that the mortality of OCCC increased for the patients aged ≥50 years. In addition, older age was associated with lower 5-year overall survival (p < 0.05). However, chemotherapy did not extend the 5-year overall survival (p = 0.524) of patients with stage IA OCCC, according to the multivariate Cox regression analysis. CONCLUSIONS Chemotherapy did not affect the overall survival of patients with stage IA OCCC following surgery.
Collapse
Affiliation(s)
- Li Shuqing
- Department of Obstetrics and Gynecology Obstetrics and Gynecology Hospital of Fudan University Shanghai China
| | - Zhu Zhiling
- Department of Obstetrics and Gynecology Obstetrics and Gynecology Hospital of Fudan University Shanghai China
| |
Collapse
|
22
|
Li X, Gao X, Yuan J, Wang F, Xu X, Wang C, Liu H, Guan W, Zhang J, Xu G. The miR-33a-5p/CROT axis mediates ovarian cancer cell behaviors and chemoresistance via the regulation of the TGF-β signal pathway. Front Endocrinol (Lausanne) 2022; 13:950345. [PMID: 36120434 PMCID: PMC9478117 DOI: 10.3389/fendo.2022.950345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Due to the lack of symptoms and detection biomarkers at the early stage, most patients with ovarian cancer (OC) are diagnosed at an advanced stage and often face chemoresistance and relapse. Hence, defining detection biomarkers and mechanisms of chemoresistance is imperative. A previous report of a cDNA microarray analysis shows a potential association of carnitine O-octanoyltransferase (CROT) with taxane resistance but the biological function of CROT in OC remains unknown. The current study explored the function and regulatory mechanism of CROT on cellular behavior and paclitaxel (PTX)-resistance in OC. We found that CROT was downregulated in OC tissues and PTX-resistant cells. Furthermore, CROT expression was negatively correlated with the prognosis of OC patients. Overexpression of CROT inhibited the OC cell proliferation, migration, invasion, and colony formation, arrested the cell cycle at the G2/M phase, and promoted cell apoptosis. In addition, miR-33a-5p bound directly to the 3'UTR of CROT to negatively regulate the expression of CROT and promoted OC cell growth. Finally, overexpression of CROT decreased the phosphorylation of Smad2, whereas knockdown of CROT increased the nuclear translocation of Smad2 and Smad4, two transducer proteins of TGF-β signaling, indicating that CROT is a tumor suppressor which mediates OC cell behaviors through the TGF-β signaling pathway. Thus, targeting the miR-33a-5p/CROT axis may have clinical potential for the treatment of patients with OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuzhu Gao
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fancheng Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jihong Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
ZEB1: Catalyst of immune escape during tumor metastasis. Biomed Pharmacother 2022; 153:113490. [DOI: 10.1016/j.biopha.2022.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
|
24
|
Wang C, Xu X, Zhang P, Xiong S, Yuan J, Gao X, Guan W, Wang F, Li X, Dou H, Xu G. Lipid-coated albumin-paclitaxel nanoparticles loaded with sorcin-siRNA reverse cancer chemoresistance via restoring intracellular calcium ion homeostasis. J Nanobiotechnology 2022; 20:319. [PMID: 35799174 PMCID: PMC9264675 DOI: 10.1186/s12951-022-01487-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/31/2022] [Indexed: 12/17/2022] Open
Abstract
Chemoresistance is often a cause of the failure of chemotherapy in cancer treatment. Sorcin (SRI) is a soluble resistance-related calcium-binding protein involved in chemoresistant processes and is overexpressed in many chemoresistant cancer cells, including paclitaxel (PTX)-resistant ovarian cancer. Increased SRI can reduce the concentration of calcium ions in the cytosol and mitochondria and the decrease of calcium ion concentration prevents the occurrence of apoptosis. Here we examined the SRI expression in multiple cancers using a human TissueArray and found that SRI expression was significantly higher in malignant tumor tissues. Furthermore, SRI was overexpressed, while intracellular calcium concentration was decreased, in chemoresistant cancer cells. To restore intracellular calcium homeostasis and overcome chemoresistance, we developed lipid-coated albumin-PTX nanoparticles loaded with SRI-siRNA (LANP-PTX-siSRI) for PTX and SRI-siRNA co-delivery. LANP-PTX-siSRI had dual-target roles in the regulation of SRI and the delivery of PTX into chemoresistant cells. The LANP-PTX-siSRI inhibited the expression of SRI and enhanced intracellular calcium, leading to the induction of apoptosis and the inhibition of the growth of PTX-resistant cancer cells in vitro and in vivo. In addition, the mechanism study revealed that the overexpression of SRI was associated with an impaired TGF-β signaling pathway. The administration of TGF-β1 inhibited two calcium-binding proteins SRI and S100A14. In conclusion, our data unveil that restoring intracellular calcium ion homeostasis via reducing SRI expression can reverse chemoresistance. Thus, the fabricated LANP-PTX-siSRI has a potentially therapeutical application.
Collapse
Affiliation(s)
- Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuhan Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Xuzhu Gao
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
25
|
Rae S, Spillane C, Blackshields G, Madden SF, Keenan J, Stordal B. The EMT-activator ZEB1 is unrelated to platinum drug resistance in ovarian cancer but is predictive of survival. Hum Cell 2022; 35:1547-1559. [PMID: 35794446 PMCID: PMC9374625 DOI: 10.1007/s13577-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
The IGROVCDDP cisplatin-resistant ovarian cancer cell line is an unusual model, as it is also cross-resistant to paclitaxel. IGROVCDDP, therefore, models the resistance phenotype of serous ovarian cancer patients who have failed frontline platinum/taxane chemotherapy. IGROVCDDP has also undergone epithelial-mesenchymal transition (EMT). We aim to determine if alterations in EMT-related genes are related to or independent from the drug-resistance phenotypes. EMT gene and protein markers, invasion, motility and morphology were investigated in IGROVCDDP and its parent drug-sensitive cell line IGROV-1. ZEB1 was investigated by qPCR, Western blotting and siRNA knockdown. ZEB1 was also investigated in publicly available ovarian cancer gene-expression datasets. IGROVCDDP cells have decreased protein levels of epithelial marker E-cadherin (6.18-fold, p = 1.58e-04) and higher levels of mesenchymal markers vimentin (2.47-fold, p = 4.43e-03), N-cadherin (4.35-fold, p = 4.76e-03) and ZEB1 (3.43-fold, p = 0.04). IGROVCDDP have a spindle-like morphology consistent with EMT. Knockdown of ZEB1 in IGROVCDDP does not lead to cisplatin sensitivity but shows a reversal of EMT-gene signalling and an increase in cell circularity. High ZEB1 gene expression (HR = 1.31, n = 2051, p = 1.31e-05) is a marker of poor overall survival in high-grade serous ovarian-cancer patients. In contrast, ZEB1 is not predictive of overall survival in high-grade serous ovarian-cancer patients known to be treated with platinum chemotherapy. The increased expression of ZEB1 in IGROVCDDP appears to be independent of the drug-resistance phenotypes. ZEB1 has the potential to be used as biomarker of overall prognosis in ovarian-cancer patients but not of platinum/taxane chemoresistance.
Collapse
Affiliation(s)
- Sophie Rae
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Cathy Spillane
- Department of Histopathology, St James' Hospital and Trinity College Dublin, Dublin, Ireland
| | - Gordon Blackshields
- Department of Histopathology, St James' Hospital and Trinity College Dublin, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Britta Stordal
- Department of Natural Sciences, Middlesex University London, London, UK.
| |
Collapse
|
26
|
Lu J, Li Y, Li YA, Wang L, Zeng AR, Ma XL, Qiang JW. In vivo detection of dysregulated choline metabolism in paclitaxel-resistant ovarian cancers with proton magnetic resonance spectroscopy. J Transl Med 2022; 20:92. [PMID: 35168606 PMCID: PMC8845351 DOI: 10.1186/s12967-022-03292-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chemoresistance gradually develops during treatment of epithelial ovarian cancer (EOC). Metabolic alterations, especially in vivo easily detectable metabolites in paclitaxel (PTX)-resistant EOC remain unclear. Methods Xenograft models of the PTX-sensitive and PTX-resistant EOCs were built. Using a combination of in vivo proton-magnetic resonance spectroscopy (1H-MRS), metabolomics and proteomics, we investigated the in vivo metabolites and dysregulated metabolic pathways in the PTX-resistant EOC. Furthermore, we analyzed the RNA expression to validate the key enzymes in the dysregulated metabolic pathway. Results On in vivo 1H-MRS, the ratio of (glycerophosphocholine + phosphocholine) to (creatine + phosphocreatine) ((GPC + PC) to (Cr + PCr))(i.e. Cho/Cr) in the PTX-resistant tumors (1.64 [0.69, 4.18]) was significantly higher than that in the PTX-sensitive tumors (0.33 [0.10, 1.13]) (P = 0.04). Forty-five ex vivo metabolites were identified to be significantly different between the PTX-sensitive and PTX-resistant tumors, with the majority involved of lipids and lipid-like molecules. Spearman’s correlation coefficient analysis indicated in vivo and ex vivo metabolic characteristics were highly consistent, exhibiting the highest positive correlation between in vivo GPC + PC and ex vivo GPC (r = 0.885, P < 0.001). These metabolic data suggested that abnormal choline concentrations were the results from the dysregulated glycerophospholipid metabolism, especially choline metabolism. The proteomics data indicated that the expressions of key enzymes glycerophosphocholine phosphodiesterase 1 (GPCPD1) and glycerophosphodiester phosphodiesterase 1 (GDE1) were significantly lower in the PTX-resistant tumors compared to the PTX-sensitive tumors (both P < 0.01). Decreased expressions of GPCPD1 and GDE1 in choline metabolism led to an increased GPC levels in the PTX-resistant EOCs, which was observed as an elevated total choline (tCho) on in vivo 1H-MRS. Conclusions These findings suggested that dysregulated choline metabolism was associated with PTX-resistance in EOCs and the elevated tCho on in vivo 1H-MRS could be as an indicator for the PTX-resistance in EOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03292-z.
Collapse
Affiliation(s)
- Jing Lu
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Ying Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yong Ai Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Li Wang
- Department of Pathology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - An Rong Zeng
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Xiao Liang Ma
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Jin Wei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
27
|
Zhang J, Chen J, Shan B, Lin L, Dong J, Sun Q, Zhou Q, Han X. Clinical Significance and Prognostic Value of Human Soluble Resistance-Related Calcium-Binding Protein: A Pan-Cancer Analysis. Front Med (Lausanne) 2021; 8:752619. [PMID: 34869449 PMCID: PMC8635117 DOI: 10.3389/fmed.2021.752619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The soluble resistance-related calcium-binding protein (sorcin, SRI) serves as the calcium-binding protein for the regulation of calcium homeostasis and multidrug resistance. Although the mounting evidence suggests a crucial role of SRI in the chemotherapeutic resistance of certain types of tumors, insights into pan-cancer analysis of SRI are unavailable. Therefore, this study aimed to probe the multifaceted properties of SRI across the 33 cancer types. The SRI expression was analyzed via The Cancer Genome Atlas (TCGA) and Genotype Tissue-Expression (GTEX) database. The SRI genomic alterations and drug sensitivity analysis were performed based on the cBioPortal and the CellMiner database. Furthermore, the correlations among the SRI expression and survival outcomes, clinical features, stemness, tumor mutation burden (TMB), microsatellite instability (MSI), and immune cells infiltration were analyzed using TCGA data. The differential analysis showed that SRI was upregulated in 25 tumor types compared with the normal tissues. Aberrant expression of SRI was able to predict survival in different cancers. Further, the most frequent alteration of SRI genomic was amplification. Moreover, the aberrant SRI expression was related to stemness score, epithelial-mesenchymal-transition (EMT)-related genes, MSI, TMB, and tumor immune microenvironment in various types of cancer. TIMER database mining further found that the SRI expression was significantly correlated with the infiltration levels of various immune cells in certain types of cancer. Intriguingly, the SRI expression was negatively correlated with drug sensitivity of fluorouracil, paclitaxel, docetaxel, and isotretinoin. Our findings highlight the predictive value of SRI in cancer and provide insights for illustrating the role of SRI in tumorigenesis and drug resistance.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jian Chen
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Lin Lin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie Dong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiong Zhou
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Li J, Yue H, Li W, Zhu G, Zhu T, Chen R, Lu X. Bevacizumab confers significant improvements in survival for ovarian cancer patients with low miR-25 expression and high miR-142 expression. J Ovarian Res 2021; 14:166. [PMID: 34802430 PMCID: PMC8607647 DOI: 10.1186/s13048-021-00915-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lymphovascular space invasion (LVSI) is the first step of hematogenous metastasis. Exploration of the differential miRNA expression profiles between LVSI-positive and LVSI-negative ovarian cancer tissues may help to identify key miRNAs involved in the hematogenous metastasis of ovarian cancer. This study is aimed to identify microRNAs (miRNAs) that are differentially expressed between LVSI-positive and LVSI-negative ovarian cancer tissues, followed by exploring their association with bevacizumab response in ovarian cancer patients. METHODS The Cancer Genome Altas (TGGA) dataset was used to identify the differentially expressed miRNAs between LVSI-positive and LVSI-negative ovarian cancer tissues. The prognostic value of the differentially expressed miRNAs was determined using GSE140082 dataset. RESULTS We showed that miR-25 and miR-142 were differentially expressed between LVSI-positive and LVSI-negative ovarian cancer tumors. Kaplan-Meier analysis indicated that high miR-25 expression was associated with increased progression free survival (PFS) and extended overall survival (OS). Moreover, patients with low miR-25 expression benefited significantly from bevacizumab treatment in terms of PFS. A similar trend was observed in terms of OS though without reaching statistical significance. In contrast, no significant survival benefits from bevacizumab were observed in patients with high miR-25 expression in terms of PFS and OS. There was no significant correlation between miR-142 expression and PFS. In contrast, high miR-142 expression was associated with reduced OS. Moreover, patients with high miR-142 expression benefited significantly from bevacizumab treatment in terms of PFS and OS. However, bevacizumab treatment conferred no significant improvements in both PFS and OS in patients with low miR-142 expression. The nomogram for PFS indicated that miR-25 expression had a larger contribution to PFS than debulking status and bevacizumab treatment. And the nomogram for OS illustrated both miR-25 expression and miR-142 expression as sharing a larger contribution to OS than bevacizumab treatment and debulking status. CONCLUSION In conclusion, miR-25 expression correlates with a better PFS and OS in ovarian cancer. Patients with low miR-25 expression and high miR-142 expression could benefit from bevacizumab treatment significantly.
Collapse
Affiliation(s)
- Jun Li
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Huiran Yue
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Wenzhi Li
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Guohua Zhu
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Tingting Zhu
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Ruifang Chen
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xin Lu
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| |
Collapse
|