1
|
Ion G, Bostan M, Hardman WE, Putt McFarland M, Bleotu C, Radu N, Diaconu CC, Mihaila M, Caramihai MD, Hotnog CM. Nutrients Lowering Obesity-Linked Chemokines Blamable for Metastasis. Int J Mol Sci 2025; 26:2275. [PMID: 40076892 PMCID: PMC11899810 DOI: 10.3390/ijms26052275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Food intake is an essential contributor to both health and disease. Nutrients contribute to a beneficial metabolic equilibrium at the cellular level, preventing or delaying disease onset. Dietary intake contributes to obesity, and obesity supports further cancer and metastasis. Metastasis, a multifactorial and multistep process, is supported by the systemic inflammation of obesity. Spreading of the cancer cells requires the presence of a plethora of recruiter and regulator molecules. Molecules such as chemokines are provided at high levels by obesity-associated fat depots. Chemokine up-regulation in adipose tissue of obese individuals has been associated with different types of cancers such as breast, prostate, colon, liver, and stomach. Chemokines support all metastasis steps from invasion/migration to intravasation, circulation, extravasation, and ending with colonization. The obesity pool of chemokines supporting these processes includes CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL18, CCL19, CCL20, CXCL1, CXCL5, CXCL 8, CXCL10, and CXCL12. Keeping obesity under control can be beneficial in reducing the levels of pro-inflammatory chemokines and the risk of poor cancer outcome. Nutrients can help, support, and boost cancer treatment effects or jeopardize the treatment. Constituents with anti-inflammatory and anti-obesity properties such as polyphenols, organosulfur components, fatty acids, curcumin, and vitamin E have a proven beneficial effect in lowering obesity and its contribution to metastasis.
Collapse
Affiliation(s)
- Gabriela Ion
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Wanda Elaine Hardman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (M.P.M.)
| | - Margaret Putt McFarland
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (M.P.M.)
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Nicoleta Radu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (C.C.D.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Mihai Dan Caramihai
- Faculty of Automatic Control and Computer Science, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Camelia Mia Hotnog
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Department of Biochemistry and Biophysics, Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Sun Z, Shi M, Xia J, Li X, Chen N, Wang H, Gao Z, Jia J, Yang P, Ji D, Gu J. HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF V600E-mutant microsatellite stable colorectal cancer. J Immunother Cancer 2025; 13:e010460. [PMID: 39800382 PMCID: PMC11749543 DOI: 10.1136/jitc-2024-010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND B-Raf proto-oncogene, serine/threonine kinase (BRAF)V600E-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup. METHODS We first performed a large-scale drug screening using patient-derived organoid models and cell lines to pinpoint potential therapies. Subsequently, we investigated the synergistic effects of identified effective inhibitors and probed their cooperative mechanisms. Concurrently, we explored the immune characteristics of BRAFV600E MSS CRC using RNA sequencing and multiplex immunohistochemistry. Finally, we established a CT26 BRAFV637E mouse cell line and validated the efficacy of combining these inhibitors and programmed death 1 (PD-1) blockades in immunocompetent mice. RESULTS Drug screening identified histone deacetylase (HDAC) inhibitor and mitogen-activated protein kinase kinase (MEK) inhibitor as significantly effective against BRAFV600E MSS CRC. Further research revealed that these two inhibitors have superior synergistic effects by comprehensively inhibiting the activation of the epidermal growth factor receptor, mitogen-activated protein kinase, and phosphoinositide 3-kinase-protein kinase B pathways and suppressing the key target homeobox C6 (HOXC6). HOXC6, overexpressed in BRAFV600E MSS CRC, regulates the MYC gene and contributes to treatment resistance, tumor growth, and metastasis. Moreover, the combination therapy demonstrated the ability to enhance antitumor immunity by synergistically upregulating the expression of immune activation-related genes, activating the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) pathway, and diminishing the tumor cells' DNA mismatch repair capacity. Notably, BRAFV600E MSS CRC was identified to exhibit a distinct immune microenvironment with increased PD-1+ cell infiltration and potential responsiveness to immunotherapy. Echoing the above findings, in vivo, HDAC and MEK inhibitors significantly improved PD-1 blockade efficacy, accompanied by increased CD8+ T-cell infiltration. CONCLUSIONS Our findings indicate that combining HDAC inhibitor, MEK inhibitor, and PD-1 blockade is a potential strategy for treating BRAFV600E-mutant MSS CRC, warranting further investigation in clinical settings.
Collapse
Affiliation(s)
- Zhuang Sun
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengyuan Shi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinhong Xia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanyang Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Peking University Shougang Hospital, Beijing, China
| | - Jinying Jia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Peng Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dengbo Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Gu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
3
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Zhang C, Zeng M, Xu Y, Huang B, Shi P, Zhu X, Cao Y. S100A6 mediated epithelial-mesenchymal transition affects chemosensitivity of colorectal cancer to oxaliplatin. Gene 2024; 914:148406. [PMID: 38521111 DOI: 10.1016/j.gene.2024.148406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE To investigate the mechanism by which S100 calcium-binding protein A6 (S100A6) affects colorectal cancer (CRC) cells to oxaliplatin (L-OHP) chemotherapy, and to explore new strategies for CRC treatment. METHODS S100A6 expression was assessed in both parental and L-OHP-resistant CRC cells using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assays (ELISA). Lentiviral vectors were utilized to induce the knockdown of S100A6 expression, followed by comprehensive evaluations of cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT). Additionally, RNA-seq analysis was conducted to identify genes associated with the knockdown of S100A6. RESULTS Elevated S100A6 expression in CRC tissues correlated with an adverse prognosis in patients with CRC. Higher expression of S100A6 was also observed in L-OHP-resistant CRC cells, which showed enhanced proliferation, migration, invasion, and antiapoptotic capabilities. Notably, the knockdown of S100A6 expression resulted in decreased proliferation, increased apoptosis, and suppression of EMT and tumorigenicity in L-OHP-resistant CRC cells. Transcriptome sequencing reveals a noteworthy association between S100A6 and vimentin expression. Application of the EMT agonist, transforming growth factor β (TGF-β), induces EMT in CRC cells. S100A6 expression positively correlates with TGF-β expression. TGF-β facilitated the expression of EMT-related molecules and reduced the chemosensitivity of L-OHP in S100A6-knockdown cells. CONCLUSION In conclusion, the knockdown of S100A6 may overcome the L-OHP resistance of CRC cells by modulating EMT.
Collapse
Affiliation(s)
- Chunying Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Menglu Zeng
- Department of Clinical Laboratory, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynaecology and Paediatrics, Fujian Medical University, Fuzhou, China
| | - Yihan Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bihan Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Pengchong Shi
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianjin Zhu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
5
|
Huang W, Jiang M, Lin Y, Qi Y, Li B. Crosstalk between cancer cells and macrophages promotes OSCC cell migration and invasion through a CXCL1/EGF positive feedback loop. Discov Oncol 2024; 15:145. [PMID: 38713320 PMCID: PMC11076430 DOI: 10.1007/s12672-024-00972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 1 (CXCL1) and epithelial growth factor (EGF) are highly secreted by oral squamous cell carcinoma (OSCC) cells and tumor-associated macrophages, respectively. Recent studies have shown that there is intricate "cross-talk" between OSCC cells and macrophages. However, the underlying mechanisms are still poorly elucidated. METHODS The expression of CXCL1 was detected by immunohistochemistry in OSCC clinical samples. CXCL1 levels were evaluated by RT‒PCR and ELISA in an OSCC cell line and a normal epithelial cell line. The expression of EGF was determined by RT‒PCR and ELISA. The effect of EGF on the proliferation of OSCC cells was evaluated by CCK-8 and colony formation assays. The effect of EGF on the migration and invasion ability and epithelial-mesenchymal transition (EMT) of OSCC cells was determined by wound healing, Transwell, RT‒PCR, Western blot and immunofluorescence assays. The polarization of macrophages was evaluated by RT‒PCR and flow cytometry. Western blotting was used to study the molecular mechanism in OSCC. RESULTS The expression of C-X-C motif chemokine ligand 1 (CXCL1) was higher in the OSCC cell line (Cal27) than in immortalized human keratinocytes (Hacat cells). CXCL1 derived from Cal27 cells upregulates the expression of epithelial growth factor (EGF) in macrophages. Paracrine stimulation mediated by EGF further facilitates the epithelial-mesenchymal transition (EMT) of Cal27 cells and initiates the upregulation of CXCL1 in a positive feedback-manner. Mechanistically, EGF signaling-induced OSCC cell invasion and migration can be ascribed to the activation of NF-κB signaling mediated by the epithelial growth factor receptor (EGFR), as determined by western blotting. CONCLUSIONS OSCC cell-derived CXCL1 can stimulate the M2 polarization of macrophages and the secretion of EGF. Moreover, EGF significantly activates NF-κB signaling and promotes the migration and invasion of OSCC cells in a paracrine manner. A positive feedback loop between OSCC cells and macrophages was formed, contributing to the promotion of OSCC progression.
Collapse
Affiliation(s)
- Wei Huang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Mingjing Jiang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Ying Lin
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Ying Qi
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Bo Li
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China.
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin University, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, 130021, China.
| |
Collapse
|
6
|
Chang Y, Yang Y, Li C, Chan M, Lu M, Chen M, Chen C, Hsiao M. RAB31 drives extracellular vesicle fusion and cancer-associated fibroblast formation leading to oxaliplatin resistance in colorectal cancer. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e141. [PMID: 38939899 PMCID: PMC11080812 DOI: 10.1002/jex2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 06/29/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with tumorigenesis and drug resistance. The Rab superfamily of small G-proteins plays a role in regulating cell cytoskeleton and vesicle transport. However, it is not yet clear how the Rab family contributes to cancer progression by participating in EMT. By analysing various in silico datasets, we identified a statistically significant increase in RAB31 expression in the oxaliplatin-resistant group compared to that in the parental or other chemotherapy drug groups. Our findings highlight RAB31's powerful effect on colorectal cancer cell lines when compared with other family members. In a study that analysed multiple online meta-databases, RAB31 RNA levels were continually detected in colorectal tissue arrays. Additionally, RAB31 protein levels were correlated with various clinical parameters in clinical databases and were associated with negative prognoses for patients. RAB31 expression levels in all three probes were calculated using a computer algorithm and were found to be positively correlated with EMT scores. The expression of the epithelial-type marker CDH1 was suppressed in RAB31 overexpression models, whereas the expression of the mesenchymal-type markers SNAI1 and SNAI2 increased. Notably, RAB31-induced EMT and drug resistance are dependent on extracellular vesicle (EV) secretion. Interactome analysis confirmed that RAB31/AGR2 axis-mediated exocytosis was responsible for maintaining colorectal cell resistance to oxaliplatin. Our study concluded that RAB31 alters the sensitivity of oxaliplatin, a supplementary chemotherapy approach, and is an independent prognostic factor that can be used in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | | | - Ming‐Hsien Chan
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Meng‐Lun Lu
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Ming‐Huang Chen
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Center of Immuno‐Oncology, Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Chi‐Long Chen
- Department of PathologyTaipei Medical University Hospital, Taipei Medical UniversityTaipeiTaiwan
- Department of Pathology, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | | |
Collapse
|
7
|
Yan H, Sasaki T, Gon Y, Nishiyama K, Kanki H, Mochizuki H. Driver gene KRAS aggravates cancer-associated stroke outcomes. Thromb Res 2024; 233:55-68. [PMID: 38029547 DOI: 10.1016/j.thromres.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The incidence of cancer-associated stroke has increased with the prolonged survival times of cancer patients. Recent genetic studies have led to progress in cancer therapeutics, but relationships between oncogenic mutations and stroke remain elusive. Here, we focused on the driver gene KRAS, which is the predominant RAS isoform mutated in multiple cancer types, in cancer associated stroke study. KRASG13D/- and parental human colorectal carcinoma HCT116 cells were inoculated into mice that were then subjected to a photochemically-induced thrombosis model to establish ischemic stroke. We found that cancer inoculation exacerbated neurological deficits after stroke. Moreover, mice inoculated with KRASG13D/- cells showed worse neurological deficits after stroke compared with mice inoculated with parental cells. Stroke promoted tumor growth, and the KRASG13D/- allele enhanced this growth. Brain RNA sequencing analysis and serum ELISA showed that chemokines and cytokines mediating pro-inflammatory responses were upregulated in mice inoculated with KRASG13D/- cells compared with those inoculated with parental cells. STAT3 phosphorylation was promoted following ischemic stroke in the KRASG13D/- group compared with in the parental group, and STAT3 inhibition significantly ameliorated stroke outcomes by mitigating microglia/macrophage polarization. Finally, we compared the prognosis and mortality of colorectal cancer patients with or without stroke onset between 1 January 2007 and 31 December 2020 using a hospital-based cancer registry and found that colorectal cancer patients with stroke onset within 3 months after cancer diagnosis had a worse prognosis. Our work suggests an interplay between KRAS and ischemic stroke that may offer insight into future treatments for cancer-associated stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Li S, Yu M, Wang X, Fei B. MiR-597-5p inhibits carcinogenesis and macrophage recruitment in colitis-related colorectal cancer via reducing the expression of CXCL5. Cancer Biol Ther 2023; 24:2274122. [PMID: 37942533 PMCID: PMC10773537 DOI: 10.1080/15384047.2023.2274122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 11/10/2023] Open
Abstract
Despite being the subject of multiple cancer studies, nothing is known about miR-597-5p's role in colitis-associated colorectal cancer (CAC). We intend to explore how miR-597-5p influences the growth and development of CAC. In order to construct a CAC model, mice were stimulated with azoxymethane (AOM)/dextran sulfate sodium (DSS). The in situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) was used for the detection of miR-597-5p expression. The protein expression of CXCL5 was determined by western blotting, immunohistochemistry and enzyme-linked immuno sorbent assay (ELISA). The histologic colitis score and hematoxylin and eosin (HE) staining were used to evaluate degree of damage to colonic tissues. The proportion of macrophages detected in colon tumors was also measured using flow cytometry. The transwell test was employed to assess macrophage migration. It was found that the miR-597-5p and its target CXCL5 had a negative correlation. MiR-597-5p expression was decreased, while CXCL5 expression was raised in CAC tissues. In AOM/DSS-induced mice, miR-597-5p deficiency in intestinal epithelial cells resulted in decreasing colon length as well as increasing tumor numbers and histologic colitis score, which was reversed by CXCL5 inhibition. MiR-597-5p deficiency facilitated macrophage recruitment in AOM/DSS-induced mice and promoted macrophage migration in vitro, which were reversed by CXCL5 inhibition. Deficiency of miR-597-5p aggravated macrophage recruitment and tumorigenesis in a mouse CAC model, suggesting that miR-597-5p agonists may have an anti-inflammatory therapeutic effect in inflammatory bowel diseases and reduce the risk of developing CAC.
Collapse
Affiliation(s)
- Shuo Li
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Miao Yu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuying Wang
- Medical Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhang Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol Rev 2023; 75:1218-1232. [PMID: 37339882 PMCID: PMC10595022 DOI: 10.1124/pharmrev.123.000906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
10
|
Korbecki J, Bosiacki M, Chlubek D, Baranowska-Bosiacka I. Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Int J Mol Sci 2023; 24:13287. [PMID: 37686093 PMCID: PMC10487711 DOI: 10.3390/ijms241713287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Human CXCR2 has seven ligands, i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8/IL-8-chemokines with nearly identical properties. However, no available study has compared the contribution of all CXCR2 ligands to cancer progression. That is why, in this study, we conducted a bioinformatic analysis using the GEPIA, UALCAN, and TIMER2.0 databases to investigate the role of CXCR2 ligands in 31 different types of cancer, including glioblastoma, melanoma, and colon, esophageal, gastric, kidney, liver, lung, ovarian, pancreatic, and prostate cancer. We focused on the differences in the regulation of expression (using the Tfsitescan and miRDB databases) and analyzed mutation types in CXCR2 ligand genes in cancers (using the cBioPortal). The data showed that the effect of CXCR2 ligands on prognosis depends on the type of cancer. CXCR2 ligands were associated with EMT, angiogenesis, recruiting neutrophils to the tumor microenvironment, and the count of M1 macrophages. The regulation of the expression of each CXCR2 ligand was different and, thus, each analyzed chemokine may have a different function in cancer processes. Our findings suggest that each type of cancer has a unique pattern of CXCR2 ligand involvement in cancer progression, with each ligand having a unique regulation of expression.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
11
|
Li J, Xu X. Immune Checkpoint Inhibitor-Based Combination Therapy for Colorectal Cancer: An Overview. Int J Gen Med 2023; 16:1527-1540. [PMID: 37131870 PMCID: PMC10149070 DOI: 10.2147/ijgm.s408349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common diseases in the world. Tumor immunotherapy is an innovative cancer treatment that acts by activating the human body's autoimmune system. Immune checkpoint block has been shown to be effective in DNA deficient mismatch repair/microsatellite instability-high CRC. However, the therapeutic effect for proficient mismatch repair/microsatellite stability patients still requires further study and optimization. At present, the main CRC strategy is to combine other therapeutic methods, such as chemotherapy, targeted therapy, and radiotherapy. Here, we review the current status and the latest progress of immune checkpoint inhibitors in the treatment of CRC. At the same time, we consider therapeutic opportunities for transforming cold to hot, as well as perspectives on possible future therapies, which may be in great demand for drug-resistant patients.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
13
|
A Novel Prognostic Chemokine-Related lncRNAs Signature Associated with Immune Landscape in Colon Adenocarcinoma. DISEASE MARKERS 2022; 2022:2823042. [PMID: 36393968 PMCID: PMC9649319 DOI: 10.1155/2022/2823042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Chemokines have been reported to be involved in tumorigenesis and progression and can also modulate the tumor microenvironment. However, it is still unclear whether chemokine-related long noncoding RNAs (lncRNAs) can affect the prognosis of colon adenocarcinoma (COAD). We summarized chemokine-related genes and downloaded RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) database. A total of 52 prognostic chemokine-related lncRNAs were screened by univariate Cox regression analysis; patients were grouped according to cluster analysis results. Lasso regression analysis was applied to determine chemokine-related lncRNAs to construct a risk model for further research. This study first investigated the differences between the prognosis and immune status of two chemokine-related lncRNAs clusters by consensus clustering. Then, using various algorithms, we obtained ten chemokine-related lncRNAs to construct a new prognostic chemokine-related lncRNAs risk model. The risk model's predictive efficiency, validity, and accuracy were further validated and determined in the test and training cohorts. Furthermore, this risk model played a vital role in predicting immune cell infiltration, immune checkpoint gene expression, tumor mutational burden (TMB), immunotherapy score, and drug sensitivity in COAD patients. These findings elucidated the critical role of novel prognostic chemokine-related lncRNAs in prognosis, immune landscape, and drug therapy, thereby providing valuable insights for prognosis assessment and personalized treatment strategies for COAD patients.
Collapse
|
14
|
Gremlin-1 Promotes Colorectal Cancer Cell Metastasis by Activating ATF6 and Inhibiting ATF4 Pathways. Cells 2022; 11:cells11142136. [PMID: 35883579 PMCID: PMC9324664 DOI: 10.3390/cells11142136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cell survival, function and fate strongly depend on endoplasmic reticulum (ER) proteostasis. Although previous studies have implicated the ER stress signaling network in all stages of cancer development, its role in cancer metastasis remains to be elucidated. In this study, we investigated the role of Gremlin-1 (GREM1), a secreted protein, in the invasion and metastasis of colorectal cancer (CRC) cells in vitro and in vivo. Firstly, public datasets showed a positive correlation between high expression of GREM1 and a poor prognosis for CRC. Secondly, GREM1 enhanced motility and invasion of CRC cells by epithelial–mesenchymal transition (EMT). Thirdly, GREM1 upregulated expression of activating transcription factor 6 (ATF6) and downregulated that of ATF4, and modulation of the two key players of the unfolded protein response (UPR) was possibly through activation of PI3K/AKT/mTOR and antagonization of BMP2 signaling pathways, respectively. Taken together, our results demonstrate that GREM1 is an invasion-promoting factor via regulation of ATF6 and ATF4 expression in CRC cells, suggesting GREM1 may be a potential pharmacological target for colorectal cancer treatment.
Collapse
|
15
|
The HER family as therapeutic targets in colorectal cancer. Crit Rev Oncol Hematol 2022; 174:103681. [PMID: 35462030 DOI: 10.1016/j.critrevonc.2022.103681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor (HER, ErbB) family has four members, epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. Although distinct in ligands and functions, all of the HER family members are receptor tyrosine kinases playing important roles in the pathogenesis of cancers. In the era of precision medicine, the HER family is one of the most important and successful cancer therapeutic targets, hallmarked by the approval of anti-EGFR therapies for the treatment of colorectal cancer and non-small cell lung cancer, and anti-HER2 therapies for the treatment of breast cancer and gastric cancer. This review briefly discusses how HER family members were discovered, their functions and roles in cancer, and most importantly, the developmental history and recent updates of therapies targeting HER family members, with colorectal cancer as a focus. We also discussed the patient selection and drug resistance to anti-EGFR therapies in the treatment of colorectal cancer.
Collapse
|