1
|
Jia Y, Jia R, Chen Y, Lin X, Aishan N, li H, Wang L, Zhang X, Ruan J. The role of RNA binding proteins in cancer biology: A focus on FMRP. Genes Dis 2025; 12:101493. [PMID: 40271197 PMCID: PMC12017997 DOI: 10.1016/j.gendis.2024.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 04/25/2025] Open
Abstract
RNA-binding proteins (RBPs) act as crucial regulators of gene expression within cells, exerting precise control over processes such as RNA splicing, transport, localization, stability, and translation through their specific binding to RNA molecules. The diversity and complexity of RBPs are particularly significant in cancer biology, as they directly impact a multitude of RNA metabolic events closely associated with tumor initiation and progression. The fragile X mental retardation protein (FMRP), as a member of the RBP family, is central to the neurodevelopmental disorder fragile X syndrome and increasingly recognized in the modulation of cancer biology through its influence on RNA metabolism. The protein's versatility, stemming from its diverse RNA-binding domains, enables it to govern a wide array of transcript processing events. Modifications in FMRP's expression or localization have been associated with the regulation of mRNAs linked to various processes pertinent to cancer, including tumor proliferation, metastasis, epithelial-mesenchymal transition, cellular senescence, chemotherapy/radiotherapy resistance, and immunotherapy evasion. In this review, we emphasize recent findings and analyses that suggest contrasting functions of this protein family in tumorigenesis. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention of cancer, some of which have already moved into clinical trials or clinical practice.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xuanyi Lin
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Nadire Aishan
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Han li
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Chen Z, Zhao Y. The mechanism underlying metastasis in triple-negative breast cancer: focusing on the interplay between ferroptosis, epithelial-mesenchymal transition, and non-coding RNAs. Front Pharmacol 2025; 15:1437022. [PMID: 39881868 PMCID: PMC11774878 DOI: 10.3389/fphar.2024.1437022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer with lack the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is the most aggressive breast cancer and the most difficult to treat due to its poor response to treatments and extremely invasive characteristics. The typical treatment for TNBC frequently results in relapse because of the lack of particular treatment choices. It is urgent to focus on identifying a workable and effective target for the treatment of TNBC. Cancer metastasis is significantly influenced by epithelial-mesenchymal transition (EMT). Ferroptosis is an iron-dependent cell death form, and changes its key factor to affect the proliferation and metastasis of TNBC. Several reports have established associations between EMT and ferroptosis in TNBC metastasis. Furthermore, non-coding RNA (ncRNA), which has been previously described, can also control cancer cell death and metastasis. Thus, in this review, we summarize the correlation and pathways among the ferroptosis, EMT, and ncRNAs in TNBC metastasis. Also, aim to find out a novel strategy for TNBC treatment through the ncRNA-ferroptosis-EMT axis.
Collapse
Affiliation(s)
- Ziyi Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Healthcare Hospital of Shandong Province Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
3
|
Deng Y, Jia J, Yi M. EDCLoc: a prediction model for mRNA subcellular localization using improved focal loss to address multi-label class imbalance. BMC Genomics 2024; 25:1252. [PMID: 39731012 DOI: 10.1186/s12864-024-11173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this. These methods face the problem of class imbalance in multi-label classification, causing models to favor majority classes and overlook minority classes during training. Additionally, traditional feature extraction methods have high computational costs, incomplete features, and may lead to the loss of critical information. On the other hand, deep learning methods face challenges related to hardware performance and training time when handling complex sequences. They may suffer from the curse of dimensionality and overfitting problems. Therefore, there is an urgent need for more efficient and accurate prediction models. RESULTS To address these issues, we propose a multi-label classifier, EDCLoc, for predicting mRNA subcellular localization. EDCLoc reduces training pressure through a stepwise pooling strategy and applies grouped convolution blocks of varying sizes at different levels, combined with residual connections, to achieve efficient feature extraction and gradient propagation. The model employs global max pooling at the end to further reduce feature dimensions and highlight key features. To tackle class imbalance, we improved the focal loss function to enhance the model's focus on minority classes. Evaluation results show that EDCLoc outperforms existing methods in most subcellular regions. Additionally, the position weight matrix extracted by multi-scale CNN filters can match known RNA-binding protein motifs, demonstrating EDCLoc's effectiveness in capturing key sequence features. CONCLUSIONS EDCLoc outperforms existing prediction tools in most subcellular regions and effectively mitigates class imbalance issues in multi-label classification. These advantages make EDCLoc a reliable choice for multi-label mRNA subcellular localization. The dataset and source code used in this study are available at https://github.com/DellCode233/EDCLoc .
Collapse
Affiliation(s)
- Yu Deng
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China.
| | - Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China.
| | - Mengyue Yi
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| |
Collapse
|
4
|
Liu J, Sun Y, Qi P, Wo Y, Pang Y, Xu Q, Xu M, Huang S, Wang Q. Gene expression profiling for the diagnosis of male breast cancer. BMC Cancer 2024; 24:1584. [PMID: 39731080 DOI: 10.1186/s12885-024-13358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Male breast cancer (MBC) is a rare malignancy, but its global incidence has shown a notable increase in recent decades. Factors such as limited health literacy, inadequate health education, and reluctance to seek medical attention contribute to the late-stage diagnosis of most MBC patients. Consequently, there is an urgent need for a highly specific and sensitive diagnostic approach to MBC. METHODS This retrospective study enrolled 20 patients with 30 surgical or biopsy MBC specimens from August 2020 to August 2023. The 90-gene expression assay was performed to determine the tissue of origin. Predicted tumor types were then compared to the reference diagnosis for accuracy calculation. The differentially expressed genes were identified between male and female breast cancer. RESULT The 90-gene expression assay demonstrated an overall accuracy of 96.7% (29/30) when compared with the pathological diagnosis. For primary, lymph node metastatic, and distant metastatic tumors, the accuracies were 100% (15/15), 90.9% (10/11), and 100% (4/4), respectively. Five genes (RPS4Y1, PI15, AZGP1, PRRX1, and AGR2) were up-regulated, and six (XIST, PIGR, SFRP1, PLA2G2A, S100A2, and CHI3L1) were down-regulated in MBC. CONCLUSION Our findings highlight the promising performance of the 90-gene expression assay in accurately identifying the tumor origin in MBC. Incorporating this assay into pathological diagnoses has the potential to empower oncologists with precision treatment options, ultimately enhancing the care and outcomes for patients with MBC.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifeng Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Canhelp Genomics Research Center, Canhelp Genomics Co., Ltd, Hangzhou, China
| | - Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixin Wo
- Canhelp Genomics Research Center, Canhelp Genomics Co., Ltd, Hangzhou, China
| | - Yue Pang
- Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghua Xu
- Canhelp Genomics Research Center, Canhelp Genomics Co., Ltd, Hangzhou, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Zhang W, Zhang P, Wang X, Lin Y, Xu H, Mao R, Zhu S, Lin T, Cai J, Lin J, Kang M. SORBS2-Mediated inhibition of malignant behaviors in esophageal squamous cell carcinoma through TIMP3. Int Immunopharmacol 2024; 142:113096. [PMID: 39288625 DOI: 10.1016/j.intimp.2024.113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is characterized by high invasiveness and poor prognosis. The role of Sorbin and SH3 domain-containing protein 2 (SORBS2) in ESCC remains largely unexplored. METHODS The expression levels of SORBS2 in ESCC were detected using RNA-seq and proteomics data. The biological functions of SORBS2 in ESCC were investigated through in vivo and in vitro experiments. The mechanism of SORBS2 was explored using RIP-seq technology, which identified the key downstream molecule metalloproteinase-3 (TIMP3). The interaction between SORBS2 and TIMP3, including specific binding sites, was validated through RIP-qPCR and RNA pull-down assays. The impact of altered SORBS2 expression in ESCC on HUVECs was assessed using endothelial tube formation assays. RESULTS SORBS2 expression was significantly downregulated in ESCC tissues, and its decreased expression was associated with poor prognosis. Overexpression of SORBS2 in ESCC cell lines inhibited cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, SORBS2 bound to the 3' UTR of TIMP3 mRNA, enhancing its stability and thereby regulating TIMP3 expression. Rescue experiments demonstrated that increased TIMP3 expression could reverse the promotive effects of SORBS2 knockdown on ESCC, confirming TIMP3 as a critical downstream molecule of SORBS2. Furthermore, downregulation of SORBS2 in ESCC cells was associated with activation of HUVEC functions, whereas upregulation of TIMP3 could reverse this effect. The SORBS2/TIMP3 axis may exert tumor suppressive effects by influencing extracellular matrix degradation. CONCLUSION This study confirms that SORBS2 inhibits ESCC tumor progression by regulating extracellular matrix degradation through TIMP3, providing a potential therapeutic target for future treatment interventions.
Collapse
Affiliation(s)
- Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaoqing Wang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ye Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Cardiothoracic Surgery, Affiliated Hospital of Putian University, Putian, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
6
|
Praygod TF, Li J, Li H, Tan W, Hu Z, Zhou L. Identification of RNA-binding protein RBMS3 as a potential biomarker for immunotherapy in bladder cancer. Cancer Biomark 2024; 41:CBM230489. [PMID: 39392600 DOI: 10.3233/cbm-230489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA-binding protein (RBP) plays pivotal roles in the malignant progression of cancer by regulating gene expression. In this paper, we aimed to develop RBP-based prognostic signature and identify critical hub RBPs in bladder cancer (BLCA). Firstly, a risk model based on differentially expressed RBP gens (DERBPs) between normal and tumor tissues was successfully established, which can predict the tumor stromal score and drug sensitivity. Then two another RBP risk models based on miRNA-correlated RBPs or lncRNA-correlated RBPs were also established, and RBMS3 was identified as the overlapping gene in the three models. Data from multiple bioinformatics databases revealed that RBMS3 was an independent prognostic factor for overall survival (OS), and was associated with an immunosuppressive tumor microenvironment (TME) in BLCA. Further, Single-cell RNA-Seq (scRNA-Seq) data and the human protein altas (HPA) database showed that RBMS3 expression (both mRNA and protein) were up-regulated in BLCA tumor and tumor stromal cells. Finally, RBMS3 was shown to be associated with worse response to BLCA immunotherapy. Overall, RBMS3 is a key prognostic RBP with TME remodeling function and may serve as a target for BLCA immunotherapy.
Collapse
Affiliation(s)
- Tarimo Fredrick Praygod
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Zhou
- Institute of Interdisciplinary Research, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, China
- Research Institute of Guangdong Polytechnic Normal University in Heyuan City, Guangdong, China
| |
Collapse
|
7
|
Gu M, Xu X, Wang X, Wang Y, Zhao Y, Hu X, Zhu L, Deng Z, Han C. Target Ligand Separation and Identification of Isoforsythiaside as a Histone Lysine-Specific Demethylase 1 Covalent Inhibitor Against Breast Cancer Metastasis. J Med Chem 2024; 67:19874-19888. [PMID: 39499621 DOI: 10.1021/acs.jmedchem.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Histone lysine-specific demethylase 1 (LSD1) is hyperactive in breast cancer, which is associated with the metastasis of the tumor. Current irreversible LSD1 inhibitors are all synthesized by covalently binding to the flavin adenine dinucleotide cofactor, which often have side effects due to the high affinity for a variety of targets. Here, we identified isoforsythiaside (IFA), a natural phenylpropanoid glycoside isolated from Forsythia suspensa, as a novel covalent inhibitor of LSD1. The target ligand fishing technique and LC-MS/MS analysis identified that IFA could covalently bind to the Ser817 residue of LSD1 by α,β-unsaturated ketone moiety to block the amine oxidase-like domain of LSD1. Moreover, RBMS3/Twist1/MMP2, the downstream signaling pathway of LSD1, was activated after IFA treatment to inhibit the metastasis of MDA-MB-231 cells in vitro and in vivo. This study provided novel molecular templates for development of LSD1 covalence-binding inhibitor and laid a foundation for developing agents against breast carcinoma metastasis for targeting LSD1.
Collapse
Affiliation(s)
- Mengzhen Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoqing Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxian Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Zhenzhong Deng
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Massey S, Kongchan N, Gao Y, Chaudhury A, Olokpa E, Karch J, Malovannaya A, Cheng C, Zhang X, Neilson JR. PKC-mediated phosphorylation governs the stability and function of CELF1 as a driver of EMT in breast epithelial cells. J Biol Chem 2024; 300:107826. [PMID: 39343007 PMCID: PMC11585768 DOI: 10.1016/j.jbc.2024.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
Epithelial to mesenchymal transition (EMT) is believed to be a principal factor contributing to cancer metastasis. The post-transcriptional and post-translational mechanisms underlying EMT are comparatively underexplored. We previously demonstrated that the CELF1 RNA binding protein is necessary and sufficient to drive the EMT of breast epithelial cells, and that the relative protein expression of CELF1 in this context was dictated at the post-translational level. Here, we elucidate the mechanism of this regulation. Mass spectrometric analysis of CELF1 isolated from mesenchymal MCF-10A cells identified multiple sites of serine and threonine phosphorylation on the protein, correlating with the increased stability of this protein in this cellular state. Analysis of phosphomimetic and serine/threonine-to-alanine phosphomutant variants of CELF1 revealed that these phosphorylation sites indeed dictate CELF1 stability, ubiquitination state, and function in vitro. Via co-immunoprecipitation and in vitro kinase assays, we identified the protein kinase C alpha and epsilon isozymes as the kinases responsible for CELF1 phosphorylation in a breast cell line. Genetic epistasis experiments confirmed that these PKCs function upstream of CELF1 in this EMT program, and CELF1 phosphorylation impacts tumor metastasis in a xenograft model. This work is the first to formally establish the mechanisms underlying post-translational control of CELF1 expression and function during EMT of breast epithelial cells. Given the broad dysregulation of CELF1 expression in human breast cancer, our results may ultimately provide knowledge that may be leveraged for novel therapeutic interventions in this context.
Collapse
Affiliation(s)
- Shebna Massey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Natee Kongchan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Gao
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Arindam Chaudhury
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Emuejevoke Olokpa
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; McNair Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Joel R Neilson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
9
|
Górnicki T, Lambrinow J, Mrozowska M, Krawczyńska K, Staszko N, Kmiecik A, Piotrowska A, Gomułkiewicz A, Romanowicz H, Smolarz B, Podhorska-Okołów M, Grzegrzółka J, Rusak A, Dzięgiel P. Impact of RBMS 3 Progression on Expression of EMT Markers. Cells 2024; 13:1548. [PMID: 39329736 PMCID: PMC11430492 DOI: 10.3390/cells13181548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a complex cellular process that allows cells to change their phenotype from epithelial to mesenchymal-like. Type 3 EMT occurs during cancer progression. The aim of this study was to investigate the role of RNA-binding motif single-stranded interacting protein 3 (RBMS 3) in the process of EMT. To investigate the impact of RBMS 3 on EMT, we performed immunohistochemical (IHC) reactions on archived paraffin blocks of invasive ductal breast carcinoma (n = 449), allowing us to analyze the correlation in expression between RBMS 3 and common markers of EMT. The IHC results confirmed the association of RBMS 3 with EMT markers. Furthermore, we performed an in vitro study using cellular models of triple negative and HER-2-enriched breast cancer with the overexpression and silencing of RBMS 3. RT-qPCR and Western blot methods were used to detect changes at both the mRNA and protein levels. An invasion assay and confocal microscopy were used to study the migratory potential of cells depending on the RBMS 3 expression. The studies conducted suggest that RBMS 3 may potentially act as an EMT-promoting agent in the most aggressive subtype of breast cancer, triple negative breast cancer (TNBC), but as an EMT suppressor in the HER-2-enriched subtype. The results of this study indicate the complex role of RBMS 3 in regulating the EMT process and present it as a future potential target for personalized therapies and a diagnostic marker in breast cancer.
Collapse
Affiliation(s)
- Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Jakub Lambrinow
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Klaudia Krawczyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Natalia Staszko
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland; (H.R.); (B.S.)
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland; (H.R.); (B.S.)
| | - Marzena Podhorska-Okołów
- Division of Ultrastructure Research, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland;
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; (J.L.); (M.M.); (K.K.); (N.S.); (A.K.); (A.P.); (A.G.); (J.G.); (A.R.); (P.D.)
| |
Collapse
|
10
|
Du L, Lu Y, Wang J, Zheng Y, Li H, Liu Y, Wu X, Zhou J, Wang L, He L, Shi J, Xu L, Li X, Lu Q, Yin X. LncRNA KIFAP3-5:1 inhibits epithelial-mesenchymal transition of renal tubular cell through PRRX1 in diabetic nephropathy. Cell Biol Toxicol 2024; 40:47. [PMID: 38869718 PMCID: PMC11176233 DOI: 10.1007/s10565-024-09874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
Long noncoding RNAs play an important role in several pathogenic processes in diabetic nephropathy, but the relationship with epithelial-mesenchymal transition in DN is unclear. Herein, we found that KIFAP3-5:1 expression was significantly down-regulated in DN plasma samples, db/db mouse kidney tissues and high glucose treated renal tubular epithelial cells compared to normal healthy samples and untreated cells. Overexpression of KIFAP3-5:1 improved renal fibrosis in db/db mice and rescued epithelial-mesenchymal transition of high glucose cultured renal tubular epithelial cells. The silence of KIFAP3-5:1 will exacerbate the progression of EMT. Mechanistically, KIFAP3-5:1 was confirmed to directly target to the -488 to -609 element of the PRRX1 promoter and negatively modulate PRRX1 mRNA and protein expressions. Furthermore, rescue assays demonstrated that the knockdown of PRRX1 counteracted the KIFAP3-5:1 low expression-mediated effects on EMT in hRPTECs cultured under high glucose. The plasma KIFAP3-5:1 of DN patients is highly correlated with the severity of renal dysfunction and plays an important role in the prediction model of DN diseases. These findings suggested that KIFAP3-5:1 plays a critical role in regulation of renal EMT and fibrosis through suppress PRRX1, and highlight the clinical potential of KIFAP3-5:1 to assist in the diagnosis of diabetic nephropathy.
Collapse
Affiliation(s)
- Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yinfei Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jingyi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yijia Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yunfei Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiaoling Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jieling Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Lei Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Linlin He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jiasen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xizhi Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
11
|
Yin T, Zhang Y, Zhao Y, Zhang X, Han S, Wang Y, Yang B. Tumor suppressor function of RBMS3 overexpression in EOC associated with immune cell infiltration. Heliyon 2024; 10:e30603. [PMID: 38726149 PMCID: PMC11079397 DOI: 10.1016/j.heliyon.2024.e30603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Objectives Epithelial ovarian cancer (EOC) is considered to be a prevalent female malignancy with both high incidence and mortality. It is reported that RNA-binding protein 3 (RBMS3) executives a tumor suppressor function in different cancers. This investigation was designed to examine the expression of RBMS3 in epithelial ovarian cancer, the effects on EOC cells, and its connection to immune cells that infiltrate tumors in the EOC microenvironment. Methods The expression levels of RBMS3 in EOC tissues as well as their correlations with immune cell infiltration and clinical outcome were examined using bioinformatics approaches. Western blotting as well as immunohistochemistry were carried out to determine the protein levels in EOC tissues. In addition, qRT-PCR was employed to look at the expression of the mRNA. The role of RBMS3 in EOC cells was investigated, and an RBMS3 lentiviral vector was developed. The effects of RBMS3 on subcutaneous tumor development, the proliferation protein Ki-67, the tumor angiogenesis indicator CD31, and its function in controlling the tumor immune microenvironment were evaluated by in vivo tests. Results There was a considerable decrease in RBMS3 expression in EOC tissues, which was linked to a poor prognosis for patients and the infiltration of multiple immune cell. Given immunohistochemical studies, tissues with increased RBMS3 expression had decreased markers of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages, whereas M1 macrophage markers were elevated. RBMS3 appears to suppress the capabilities of proliferating, invading, and migrating in EOC cells according to in vitro tests, whereas tumors overexpressing RBMS3 developed more slowly in syngeneic mouse models. The overexpression of RBMS3 led to a decline in the levels of Ki-67 protein and CD31. Additionally, it showed a negatively correlation with markers of regulatory T cell, myeloid-derived suppressor cell, and M2 macrophage but a positive correlation with markers of M1 macrophage. Conclusions The findings revealed that elevated RBMS3 expression plays a tumor suppressor role in EOC and was connected to patient survival in EOC. The studies conducted in vitro and in vivo demonstrated a link between RBMS3 expression and the infiltration of certain immune cells, indicating a function for RBMS3 in the immunosuppressive tumor microenvironment and its promising efficiency as a novel target for immunotherapy against EOC.
Collapse
Affiliation(s)
- Tian Yin
- Departments of Oncology Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Ying Zhang
- Departments of Oncology Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, China
| | - Yue Zhao
- Departments of Oncology Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui Province, China
| | - Xinyi Zhang
- Departments of Oncology Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, China
| | - Shuqi Han
- Departments of Oncology Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, China
| | - Yixiao Wang
- Departments of Oncology Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, China
| | - Bo Yang
- Departments of Oncology Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, China
| |
Collapse
|
12
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
13
|
Li Y, Wang S, Li G, Gao C, Cui Z, Cong M, Hu J, Zhang M, Jin X, Sun H, Kong D. The RNA-binding protein RBMS3 inhibits the progression of colon cancer by regulating the stability of LIMS1 mRNA. Cancer Med 2024; 13:e7129. [PMID: 38618967 PMCID: PMC11017296 DOI: 10.1002/cam4.7129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND The RNA-binding motif single-stranded interacting protein 3 (RBMS3) is a constituent of the RNA-binding motif (RBM) protein family, which assumes a pivotal role in governing cellular biogenesis processes such as the cell cycle and apoptosis. Despite an abundance of studies elucidating RBMS3's divergent roles in the genesis and advancement of various tumors, its involvement in colon cancer remains enigmatic. METHODS The present investigation employed data analysis from TCGA and GTEx to unveil that RBMS3 expression demonstrated a diminished presence in colon cancer tissues when juxtaposed with normal colon tissues. The effect of RBMS3 and LIM zinc finger domain 1 (LIMS1) on colon cancer was substantiated via animal models and cellular experiments. The connection between RBMS3 and LIM zinc finger domain 1 (LIMS1) was verified by molecular biology methods. RESULTS The study conclusively ascertained that augmenting RBMS3 expression quells the proliferation, migration, and invasion of colon cancer cells. Furthermore, the inquiry unveiled a plausible mechanism through which RBMS3 impacts the expression of LIMS1 by modulating its mRNA stability. The investigation ascertained that RBMS3 inhibits the progression of colon cancer by regulating LIMS1. The inhibitory function of LIMS1 and RBMS3 is closely intertwined in colon cancer, with knocking down LIMS1 being able to rescue the inhibitory effect of RBMS3 overexpression on the functionality of colon cancer cell CONCLUSIONS: The discernments delineate RBMS3 as a novel suppressor of cancer via LIMS1, thereby bestowing fresh therapeutic possibilities and illuminating the intricacies of colon cancer.
Collapse
Affiliation(s)
- Yafei Li
- Department of PathologyHarbin Medical UniversityHarbinChina
| | - Shuoshuo Wang
- Department of PathologyHarbin Medical UniversityHarbinChina
| | - Guoli Li
- Department of Anus and Intestine SurgeryChifeng Municipal HospitalChifengChina
| | - Chunyang Gao
- Department of AnatomyHarbin Medical UniversityHarbinChina
| | - Zihan Cui
- Department of PathologyHarbin Medical UniversityHarbinChina
| | - Mingqi Cong
- Department of PathologyHarbin Medical UniversityHarbinChina
| | - Jie Hu
- Central Operating DepartmentThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Minghui Zhang
- Department of OncologyChifeng Municipal HospitalChifengChina
| | - Xiaoming Jin
- Department of PathologyHarbin Medical UniversityHarbinChina
| | - Haiying Sun
- Gastrointestinal Rehabilitation CenterBeijing Rehabilitation Hospital of Capital Medical UniversityBeijingChina
- Gastroenterology DepartmentFirst Hospital of DandongDandongChina
| | - Dan Kong
- Department of GynaecologyTumor Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
14
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
15
|
Lv SL, Zhou X, Li YJ, Luo LY, Huang DQ. RBMS3, a downstream target of AMPK, Exerts Inhibitory Effects on Invasion and Metastasis of Lung Cancer. J Cancer 2023; 14:2784-2797. [PMID: 37781074 PMCID: PMC10539560 DOI: 10.7150/jca.86572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/06/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Lung cancer is a highly malignant disease, primarily due to its propensity for metastasis. AMP-activated protein kinase (AMPK), the principal downstream effector of Liver Kinase B1 (LKB1), orchestrates a broad spectrum of molecular targets, thereby constraining tumor invasion and metastasis. In parallel, the RNA-binding protein RBMS3 (RNA-binding motif, single-stranded-interacting protein 3) plays a pivotal role in the epithelial-mesenchymal transition (EMT), a pivotal process in tumorigenesis. Therefore, our research aims to clarify the important role of RBMS3 as a mediator in the LKB1/AMPK inhibition of tumor invasion and metastasis. Methods: We investigated the expression and correlation between RBMS3 and LKB1 in lung cancer tissues utilizing immunohistochemistry and TCGA-LUAD data, respectively. The relationship between RBMS3 and clinical pathological features and prognosis of lung cancer was also analyzed. The functions of RBMS3 in lung cancer cell proliferation, invasion, and migration were investigated in real-time in vitro. Additionally, we investigated the effects of AMPK agonists and inhibitors to explore the mediating role of RBMS3 in AMPK-induced inhibition of lung cancer invasion and migration. Results: The IHC and TCGA data both revealed low expression of RBMS3 in lung cancer. Moreover, we found that low expression of RBMS3 was positively associated with lung cancer's histological grade, clinical stage, and N stage. Additionally, low RBMS3 expression was associated with poor overall survival. Cox regression analysis revealed that RBMS3 was an independent prognostic factor for lung cancer patients. In vitro experiments verified that RBMS3 inhibited lung cancer cell proliferation, invasion, and migration. Furthermore, our findings suggested that RBMS3 played an essential role in mediating AMPK's inhibitory effect on lung cancer invasion and migration. Conclusion: Our study highlights a novel mechanism by which LKB1/AMPK pathway activation inhibits lung cancer invasion and metastasis by promoting RBMS3 expression, offering insights in developing innovative lung cancer therapies.
Collapse
Affiliation(s)
- Shi-Lin Lv
- Hospital of Gastroenterology, Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Zhou
- Queen Mary university, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yuan-jun Li
- Queen Mary university, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ling-yu Luo
- Hospital of Gastroenterology, Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - De-Qiang Huang
- Hospital of Gastroenterology, Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Digestive, Cardiovascular, and Neurological Diseases of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Miller-Kleinhenz JM, Moubadder L, Beyer KM, Zhou Y, Gaglioti AH, Collin LJ, Gohar J, Do W, Conneely K, Krishnamurti U, Gogineni K, Gabram-Mendola S, D’Angelo O, Henry K, Torres M, McCullough LE. Redlining-associated methylation in breast tumors: the impact of contemporary structural racism on the tumor epigenome. Front Oncol 2023; 13:1154554. [PMID: 37621676 PMCID: PMC10446968 DOI: 10.3389/fonc.2023.1154554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Purpose Place-based measures of structural racism have been associated with breast cancer mortality, which may be driven, in part, by epigenetic perturbations. We examined the association between contemporary redlining, a measure of structural racism at the neighborhood level, and DNA methylation in breast tumor tissue. Methods We identified 80 Black and White women diagnosed and treated for a first-primary breast cancer at Emory University Hospitals (2008-2017). Contemporary redlining was derived for census tracts using the Home Mortgage Disclosure Act database. Linear regression models were used to calculate the association between contemporary redlining and methylation in breast tumor tissue. We also examined epigenetic age acceleration for two different metrics, regressing β values for each cytosine-phosphate-guanine dinucleotide (CpG) site on redlining while adjusting for covariates. We employed multivariable Cox-proportional hazards models and 95% confidence intervals (CI) to estimate the association between aberrant methylation and mortality. Results Contemporary redlining was associated with 5 CpG sites after adjustment for multiple comparisons (FDR<0.10). All genes were implicated in breast carcinogenesis, including genes related to inflammation, immune function and stress response (ANGPT1, PRG4 and PRG4). Further exploration of the top 25 CpG sites, identified interaction of 2 sites (MRPS28 and cg11092048) by ER status and 1 site (GDP1) was associated with all-cause mortality. Contemporary redlining was associated with epigenetic age acceleration by the Hannum metric (β=5.35; CI 95%=0.30,10.4) and showed positive but non-significant correlation with the other clock. Conclusion We identified novel associations between neighborhood contemporary redlining and the breast tumor DNA methylome, suggesting that racist policies leading to inequitable social and environmental exposures, may impact the breast tumor epigenome. Additional research on the potential implications for prognosis is needed.
Collapse
Affiliation(s)
| | - Leah Moubadder
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Kirsten M. Beyer
- Division of Epidemiology, Institute for Health & Society, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yuhong Zhou
- Division of Epidemiology, Institute for Health & Society, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anne H. Gaglioti
- National Center for Primary Care, Department of Family Medicine, Morehouse School of Medicine, Atlanta, GA, United States
- Center for Health Integration, Population Health Research Institute at The MetroHealth System, Case Western Reserve University, Cleveland, OH, United States
| | - Lindsay J. Collin
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Jazib Gohar
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Whitney Do
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
- Nutrition and Health Sciences Program, Laney Graduate School, Atlanta, GA, United States
| | - Karen Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Uma Krishnamurti
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Keerthi Gogineni
- Department of Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Olivia D’Angelo
- Department of Surgery, Jackson Memorial Hospital/University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kashari Henry
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Mylin Torres
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Lauren E. McCullough
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| |
Collapse
|
17
|
Expression of RBMS3 in Breast Cancer Progression. Int J Mol Sci 2023; 24:ijms24032866. [PMID: 36769184 PMCID: PMC9917836 DOI: 10.3390/ijms24032866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the study was to evaluate the localization and intensity of RNA-binding motif single-stranded-interacting protein 3 (RBMS3) expression in clinical material using immunohistochemical (IHC) reactions in cases of ductal breast cancer (in vivo), and to determine the level of RBMS3 expression at both the protein and mRNA levels in breast cancer cell lines (in vitro). Moreover, the data obtained in the in vivo and in vitro studies were correlated with the clinicopathological profiles of the patients. Material for the IHC studies comprised 490 invasive ductal carcinoma (IDC) cases and 26 mastopathy tissues. Western blot and RT-qPCR were performed on four breast cancer cell lines (MCF-7, BT-474, SK-BR-3 and MDA-MB-231) and the HME1-hTERT (Me16C) normal immortalized breast epithelial cell line (control). The Kaplan-Meier plotter tool was employed to analyze the predictive value of overall survival of RBMS3 expression at the mRNA level. Cytoplasmatic RBMS3 IHC expression was observed in breast cancer cells and stromal cells. The statistical analysis revealed a significantly decreased RBMS3 expression in the cancer specimens when compared with the mastopathy tissues (p < 0.001). An increased expression of RBMS3 was corelated with HER2(+) cancer specimens (p < 0.05) and ER(-) cancer specimens (p < 0.05). In addition, a statistically significant higher expression of RBMS3 was observed in cancer stromal cells in comparison to the control and cancer cells (p < 0.0001). The statistical analysis demonstrated a significantly higher expression of RBMS3 mRNA in the SK-BR-3 cell line compared with all other cell lines (p < 0.05). A positive correlation was revealed between the expression of RBMS3, at both the mRNA and protein levels, and longer overall survival. The differences in the expression of RBMS3 in cancer cells (both in vivo and in vitro) and the stroma of breast cancer with regard to the molecular status of the tumor may indicate that RBMS3 could be a potential novel target for the development of personalized methods of treatment. RBMS3 can be an indicator of longer overall survival for potential use in breast cancer diagnostic process.
Collapse
|
18
|
Zhou Y, Liang Z, Xia Y, Li S, Liang J, Hu Z, Tang C, Zhao Q, Gong Q, Ouyang Y. Disruption of RBMS3 suppresses PD-L1 and enhances antitumor immune activities and therapeutic effects of auranofin against triple-negative breast cancer. Chem Biol Interact 2023; 369:110260. [PMID: 36414028 DOI: 10.1016/j.cbi.2022.110260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) interaction exerts a vital role in tumor-associated immune evasion. While strategies disrupting PD-1/PD-L1 axis have shown clinical benefits in various cancers, the limited response rate prompts us to investigate the complex mechanisms underlying the molecular regulation of PD-L1. Here, we identify the RNA binding protein RBMS3 as a crucial PD-L1 regulator in triple-negative breast cancer (TNBC). Correlation analysis shows that Rbms3 significantly correlates with immunosuppressive CD274, Rbms1, NT5E and ENTPD1. RBMS3 protein binds to CD274 mRNA specifically in TNBC cells to increase PD-L1 levels. Mechanistically, RBMS3 stabilizes CD274 mRNA by interacting with its 3'UTR, which represents as an intrinsic cancer cell mechanism for driving PL-D1 upregulation in TNBC. RBMS3 depletion not only destabilizes the mRNA stability and protein expression of PD-L1, but also suppresses the migratory abilities of TNBC MDA-MB-231 cells. Importantly, combination of RBMS3 ablation with auranofin (AUF), an FDA-approved thioredoxin reductase inhibitor, facilitates anti-tumor T-cell immunity in vivo and improves AUF-mediated anti-cancer effect. Taken together, our findings reveal RBMS3 as a key post-transcriptional regulator of PD-L1 and how they contribute to immune escape in TNBC, which could lead to novel combinatorial therapeutic strategies to enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuting Zhou
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongping Liang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Xia
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University, China
| | - Shuai Li
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiali Liang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhixiang Hu
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chengbin Tang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Zhao
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Yongchang Ouyang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Roodnat AW, Callaghan B, Doyle C, Henry M, Goljanek-Whysall K, Simpson DA, Sheridan C, Atkinson SD, Willoughby CE. Genome-Wide RNA Sequencing of Human Trabecular Meshwork Cells Treated with TGF-β1: Relevance to Pseudoexfoliation Glaucoma. Biomolecules 2022; 12:1693. [PMID: 36421707 PMCID: PMC9687758 DOI: 10.3390/biom12111693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 08/11/2023] Open
Abstract
Pseudoexfoliation glaucoma (XFG) is an aggressive form of secondary open angle glaucoma, characterised by the production of exfoliation material and is estimated to affect 30 million people worldwide. Activation of the TGF-β pathway by TGF-β1 has been implicated in the pathogenesis of pseudoexfoliation glaucoma. To further investigate the role of TGF-β1 in glaucomatous changes in the trabecular meshwork (TM), we used RNA-Seq to determine TGF-β1 induced changes in the transcriptome of normal human trabecular meshwork (HTM) cells. The main purpose of this study was to perform a hypothesis-independent RNA sequencing analysis to investigate genome-wide alterations in the transcriptome of normal HTMs stimulated with TGF-β1 and investigate possible pathophysiological mechanisms driving XFG. Our results identified multiple differentially expressed genes including several genes known to be present in exfoliation material. Significantly altered pathways, biological processes and molecular functions included extracellular matrix remodelling, Hippo and Wnt pathways, the unfolded protein response, oxidative stress, and the antioxidant system. This cellular model of pseudoexfoliation glaucoma can provide insight into disease pathogenesis and support the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
- Personalised Medicine Centre, Ulster University, Londonderry BT47 6SB, Northern Ireland, UK
| | - Breedge Callaghan
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Chelsey Doyle
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Megan Henry
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| | - David A. Simpson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK
| | - Carl Sheridan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| | - Sarah D. Atkinson
- Personalised Medicine Centre, Ulster University, Londonderry BT47 6SB, Northern Ireland, UK
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| |
Collapse
|
20
|
RNA-binding proteins: Underestimated contributors in tumorigenesis. Semin Cancer Biol 2022; 86:431-444. [PMID: 35124196 DOI: 10.1016/j.semcancer.2022.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
mRNA export, translation, splicing, cleavage or capping determine mRNA stability, which represents one of the primary aspects regulating gene expression and function. RNA-binding proteins (RBPs) bind to their target mRNAs to regulate multiple cell functions by increasing or reducing their stability. In recent decades, studies of the role of RBPs in tumorigenesis have revealed an increasing number of proteins impacting the prognosis, diagnosis and cancer treatment. Several RBPs have been identified based on their interactions with oncogenes or tumor suppressor genes in human cancers, which are involved in apoptosis, the epithelial-mesenchymal transition (EMT), DNA repair, autophagy, cell proliferation, immune response, metabolism, and the regulation of noncoding RNAs. In this review, we propose a model showing how RBP mutations influence tumorigenesis, and we update the current knowledge regarding the molecular mechanism by which RBPs regulate cancer. Special attention is being devoted to RBPs that represent prognostic and diagnostic factors in cancer patients.
Collapse
|
21
|
Górnicki T, Lambrinow J, Mrozowska M, Podhorska-Okołów M, Dzięgiel P, Grzegrzółka J. Role of RBMS3 Novel Potential Regulator of the EMT Phenomenon in Physiological and Pathological Processes. Int J Mol Sci 2022; 23:ijms231810875. [PMID: 36142783 PMCID: PMC9503485 DOI: 10.3390/ijms231810875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
RNA-binding protein 3 (RBMS3) plays a significant role in embryonic development and the pathogenesis of many diseases, especially cancer initiation and progression. The multiple roles of RBMS3 are conditioned by its numerous alternative expression products. It has been proven that the main form of RBMS3 influences the regulation of microRNA expression or stabilization. The absence of RBMS3 activates the Wnt/β-catenin pathway. The expression of c-Myc, another target of the Wnt/β-catenin pathway, is correlated with the RBMS3 expression. Numerous studies have focused solely on the interaction of RBMS3 with the epithelial-mesenchymal transition (EMT) protein machinery. EMT plays a vital role in cancer progression, in which RBMS3 is a new potential regulator. It is also significant that RBMS3 may act as a prognostic factor of overall survival (OS) in different types of cancer. This review presents the current state of knowledge about the role of RBMS3 in physiological and pathological processes, with particular emphasis on carcinogenesis. The molecular mechanisms underlying the role of RBMS3 are not fully understood; hence, a broader explanation and understanding is still needed.
Collapse
Affiliation(s)
- Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jakub Lambrinow
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
22
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|