1
|
Sun X, Hu X. Unveiling Matrix Metalloproteinase 13's Dynamic Role in Breast Cancer: A Link to Physical Changes and Prognostic Modulation. Int J Mol Sci 2025; 26:3083. [PMID: 40243781 PMCID: PMC11988641 DOI: 10.3390/ijms26073083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The biomechanical properties of the extracellular matrix (ECM) including its stiffness, viscoelasticity, collagen architecture, and temperature constitute critical biomechanical cues governing breast cancer progression. Matrix metalloproteinase 13 (MMP13) is an important marker of breast cancer and plays important roles in matrix remodelling and cell metastasis. Emerging evidence highlights MMP13 as a dynamic modulator of the ECM's physical characteristics through dual mechanoregulatory mechanisms. While MMP13-mediated collagen degradation facilitates microenvironmental softening, thus promoting tumour cell invasion, paradoxically, its crosstalk with cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) drives pathological stromal stiffening via aberrant matrix deposition and crosslinking. This biomechanical duality is amplified through feedforward loops with an epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) populations, mediated by signalling axes such as TGF-β/Runx2. Intriguingly, MMP13 exhibits context-dependent mechanomodulatory effects, demonstrating anti-fibrotic activity and inhibiting the metastasis of breast cancer. At the same time, angiogenesis and increased metabolism are important mechanisms through which MMP13 promotes a temperature increase in breast cancer. Targeting the spatiotemporal regulation of MMP13's mechanobiological functions may offer novel therapeutic strategies for disrupting the tumour-stroma vicious cycle.
Collapse
Affiliation(s)
- Xiaomeng Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China;
| | - Xiaojuan Hu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China;
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China
| |
Collapse
|
2
|
Yan D, He Q, Wang C, Li T, Yi X, Yu H, Wu W, Yang H, Wang W, Ma L. miR-135b: A Potential Biomarker for Pathological Diagnosis and Biological Therapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70002. [PMID: 40034060 DOI: 10.1002/wrna.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs found in eukaryotes with post-transcriptional regulatory functions. A variety of miRNAs is differentially expressed in cancer tissues and thus can be used as biomarkers. microRNA-135b-5p (miR-135b) has been shown to be involved in the pathological processes of a variety of neoplastic and non-neoplastic diseases. Under different conditions, miR-135b has different tumor suppressive and carcinogenic effects. miR-135b regulates the development of cancer, including metabolism, proliferation, apoptosis, invasion, fibrosis, angiogenesis, immunomodulation, and drug resistance. miR-135b can be used as a new biomarker for tumor diagnosis and prognosis, which has the potential for clinical guidance. This article reviews the relevant research on miR-135B in the field of tumors, including the biogenesis background of miR-135b, the expression of miR-135b in tumors, and the related targets and signaling pathways of miR-135b mediating tumor progression in order to sort out and explore the clinical transformation value of miR-135b.
Collapse
Affiliation(s)
- Dezhi Yan
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunjian Wang
- Department of Hematology, Peking University International Hospital, Beijing, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xueping Yi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Haisheng Yu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Wu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hanyun Yang
- Faculty of Health Sciences for Occupational Therapy, Curtin University, West Australia, Australia
| | - Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Liang Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Xuan P, Qi X, Chen S, Gu J, Wang X, Cui H, Lu J, Zhang T. Subgraph Topology and Dynamic Graph Topology Enhanced Graph Learning and Pairwise Feature Context Relationship Integration for Predicting Disease-Related miRNAs. J Chem Inf Model 2025; 65:1631-1640. [PMID: 39865931 DOI: 10.1021/acs.jcim.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As an increasing number of microRNAs (miRNAs) have become biomarkers of various human diseases, prediction of the candidate disease-related miRNAs is helpful for facilitating the early diagnosis of diseases. Most of the recent prediction models concentrated on learning of the features from the heterogeneous graph composed of miRNAs and diseases. However, they failed to fully exploit the subgraph structures consisting of multiple miRNA and disease nodes, and they also did not completely integrate the context relationships among the pairwise features. We proposed a prediction model, SFPred, to integrate and encode the local topologies from neighborhood subgraphs, the dynamically evolved heterogeneous graph topology, and the context among pairwise features. First, the importance of an miRNA (disease) node to another node is formulated according to the subgraphs composed of their neighbors. Second, the features of each miRNA (disease) node continuously change when the graph encoding gradually deepens for the miRNA-disease heterogeneous network. A strategy based on multi-layer perceptron (MLP) is designed to estimate the edge weights according to the changed node features and form the dynamic graph topology. Third, considering the context relationships among the features of a pair of miRNA and disease nodes, a context relationship sensitive transformer is constructed to integrate these relationships. Finally, since the previous encoding layer of the transformer contains more detailed features of the pairwise, we present a multiperspective residual strategy to supplement the detailed features to the following encoding layer from the channel perspective and the feature one, respectively. The extensive experiments confirmed that SFPred outperforms eight state-of-the-art methods for the prediction of miRNA-disease associations, and the ablation experiments validate the effectiveness of the proposed innovations. The recall rates for the top-ranked candidate miRNAs related to the diseases and the case studies on three diseases indicate SFPred's ability in screening the reliable candidates for subsequent biological experiments.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Xiaoying Qi
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Sentao Chen
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Jing Gu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Xiuju Wang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Jun Lu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Tiangang Zhang
- School of Cyberspace Security, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Xu Y, Liu C, Meng Q. ZNF217 Mediates Transcriptional Activation of GRHL3 to Regulate SLC22A31 and Promote Malignant Progression in Thyroid Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01292-6. [PMID: 39354204 DOI: 10.1007/s12033-024-01292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
The incidence of thyroid cancer (THCA) has increased worldwide during the past 40 years. However, an understanding of the mechanisms and major transcription factors involved in THCA is insufficient to identify therapeutic targets against THCA. To reveal such mechanisms, we conducted bioinformatics analyses to assess the differential expression in human THCA sample and normal tissue sample, leading us to focus on the function of the ZNF217/GRHL3/ SLC22A31 axis in mediating biological activity in THCA. The genes of interest were interfered with lentiviral vectors, and transfection efficiency was verified using RT-qPCR. ZNF217, GRHL3, and SLC22A31 were abundantly expressed in THCA tissues or cells. Knockdown of GRHL3, ZNF217, or SLC22A31 all significantly curtailed the malignant biological behavior of THCA cells. ZNF217 promoted GRHL3 expression through transcriptional activation, thereby increasing the transcription of SLC22A31. Ectopic expression of GRHL3 or SLC22A31 abated the suppressing impact of ZNF217 or GRHL3 knockdown on the biological activity of THCA cells. Collectively, our results demonstrated that ZNF217 acted as an activator of GRHL3, thereby promoting the expression of SLC22A31 and the malignant activity of THCA cells.
Collapse
Affiliation(s)
- Ying Xu
- Department of Ultrasound Medicine, Daqing Oilfield General Hospital, No.9, Zhongkang Street, Daqing, 163000, Heilongjiang, People's Republic of China
| | - Chunxu Liu
- Department of Ultrasound Medicine, Daqing Oilfield General Hospital, No.9, Zhongkang Street, Daqing, 163000, Heilongjiang, People's Republic of China
| | - Qingrui Meng
- Department of Ultrasound Medicine, Daqing Oilfield General Hospital, No.9, Zhongkang Street, Daqing, 163000, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
Wang C, Zhang Y, Kong W, Rong X, Zhong Z, Jiang L, Chen S, Li C, Zhang F, Jiang J. Delivery of miRNAs Using Nanoparticles for the Treatment of Osteosarcoma. Int J Nanomedicine 2024; 19:8641-8660. [PMID: 39188861 PMCID: PMC11346496 DOI: 10.2147/ijn.s471900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer-based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for clinical applications.
Collapse
Affiliation(s)
- Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Yihong Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Weihui Kong
- Department of Stomatology, the First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Ziming Zhong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Lei Jiang
- Department of Geriatric Medicine, Changchun Central Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Shuhan Chen
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Chuang Li
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Fuqiang Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
6
|
Xiao D, Zhang M, Qu Y, Su X. Functions of methyltransferase-like 3 in breast cancer: pathogenesis, drug resistance, and therapeutic target. Breast Cancer Res 2024; 26:110. [PMID: 38961497 PMCID: PMC11223289 DOI: 10.1186/s13058-024-01869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Breast cancer (BC) is a highly prevalent malignancy worldwide, with complex pathogenesis and treatment challenges. Research reveals that methyltransferase-like 3 (METTL3) is widely involved in the pathogenesis of several tumors through methylation of its target RNAs, and its role and mechanisms in BC are also extensively studied. In this review, we aim to provide a comprehensive interpretation of available studies and elucidate the relationship between METTL3 and BC. This review suggests that high levels of METTL3 are associated with the pathogenesis, poor prognosis, and drug resistance of BC, suggesting METTL3 as a potential diagnostic or prognostic biomarker and therapeutic target. Collectively, this review provides a comprehensive understanding of how METTL3 functions through RNA methylation, which provides a valuable reference for future fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Dongqiong Xiao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China
| | - Mingfu Zhang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China.
| |
Collapse
|
7
|
Liu X, Xie X, Sui C, Liu X, Song M, Luo Q, Zhan P, Feng J, Liu J. Unraveling the cross-talk between N6-methyladenosine modification and non-coding RNAs in breast cancer: Mechanisms and clinical implications. Int J Cancer 2024; 154:1877-1889. [PMID: 38429857 DOI: 10.1002/ijc.34900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
In recent years, breast cancer (BC) has surpassed lung cancer as the most common malignant tumor worldwide and remains the leading cause of cancer death in women. The etiology of BC usually involves dysregulation of epigenetic mechanisms and aberrant expression of certain non-coding RNAs (ncRNAs). N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, widely exists in ncRNAs to affect its biosynthesis and function, and is an important regulator of tumor-related signaling pathways. Interestingly, ncRNAs can also regulate or target m6A modification, playing a key role in cancer progression. However, the m6A-ncRNAs regulatory network in BC has not been fully elucidated, especially the regulation of m6A modification by ncRNAs. Therefore, in this review, we comprehensively summarize the interaction mechanisms and biological significance of m6A modifications and ncRNAs in BC. Meanwhile, we also focused on the clinical application value of m6A modification in BC diagnosis and prognosis, intending to explore new biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuelong Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Chentao Sui
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Miao Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Ping Zhan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Yin Q, Qu Z, Mathew R, Zeng L, Du Z, Xue Y, Liu D, Zheng X. Epitranscriptomic orchestrations: Unveiling the regulatory paradigm of m6A, A-to-I editing, and m5C in breast cancer via long noncoding RNAs and microRNAs. Cell Biochem Funct 2024; 42:e3996. [PMID: 38561942 DOI: 10.1002/cbf.3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) poses a persistent global health challenge, particularly in countries with elevated human development indices linked to factors such as increased life expectancy, education, and wealth. Despite therapeutic progress, challenges persist, and the role of epitranscriptomic RNA modifications in BC remains inadequately understood. The epitranscriptome, comprising diverse posttranscriptional modifications on RNA molecules, holds the potential to intricately modulate RNA function and regulation, implicating dysregulation in various diseases, including BC. Noncoding RNAs (ncRNAs), acting as posttranscriptional regulators, influence physiological and pathological processes, including cancer. RNA modifications in long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) add an extra layer to gene expression control. This review delves into recent insights into epitranscriptomic RNA modifications, such as N-6-methyladenosine (m6A), adenine-to-inosine (A-to-I) editing, and 5-methylcytosine (m5C), specifically in the context of lncRNA and miRNAs in BC, highlighting their potential implications in BC development and progression. Understanding this intricate regulatory landscape is vital for deciphering the molecular mechanisms underlying BC and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhifeng Qu
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Regina Mathew
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California, USA
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhe Du
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Dechun Liu
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
9
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Wang M, Tang L, Chen S, Wang L, Wu J, Zhong C, Li Y, Chen Y. ZNF217-activated Notch signaling mediates sulforaphane-suppressed stem cell properties in colorectal cancer. J Nutr Biochem 2024; 125:109551. [PMID: 38134973 DOI: 10.1016/j.jnutbio.2023.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Cancer stem cells (CSCs) are known to contribute to the progression of colorectal cancer (CRC). However, understanding of the molecular mechanisms and key factors involved in CRC is still insufficient to identify therapeutic targets against colorectal CSCs. In an effort to identify such mechanisms, we conducted bioinformatics analyses to evaluate the expression patterns in tumor and normal colorectal tissues, leading us to focus on the role of the ZNF217/Notch1 axis in mediating stem cell properties in CRC. Our findings revealed that ZNF217 overexpression activated self-renewal ability, expression of colorectal CSC markers, and Notch signaling in CRC. Dual-luciferase reporter assay suggested a role for ZNF217 in targeting Notch1 to activate Notch signaling. We observed that the promotional effects of Notch signaling, as well as CSC markers, under ZNF217 overexpression were attenuated after Notch1 knockdown. In addition to in vitro data, our in vivo results confirmed the inhibitory effect of sulforaphane on the tumorigenicity of CSCs, depicted the suppressive role of sulforaphane on colorectal CSCs mediated by the ZNF217/Notch1 axis, thereby providing new targetable vulnerabilities and therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Menghuan Wang
- Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - LvYuwei Tang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Liudan Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jinyi Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yadong Li
- Department of Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Wang Y, Ma C, Yang X, Gao J, Sun Z. ZNF217: An Oncogenic Transcription Factor and Potential Therapeutic Target for Multiple Human Cancers. Cancer Manag Res 2024; 16:49-62. [PMID: 38259608 PMCID: PMC10802126 DOI: 10.2147/cmar.s431135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Zinc finger protein 217 (ZNF217) is one of the well-researched members of the Krüppel-like factor transcription factor family. ZNF217 possesses a characteristic structure of zinc finger motifs and plays a crucial role in regulating the biological activities of cells. Recent findings have revealed that ZNF217 is strongly associated with multiple aspects of cancer progression, impacting patient prognosis. Notably, ZNF217 is subject to regulation by non-coding RNAs, suggesting the potential for targeted manipulation of such RNAs as a robust therapeutic avenue for managing cancer in the future. The main purpose of this article is to provide a detailed examination of the role of ZNF217 in human malignant tumors and the regulation of its expression, and to offer new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Yepeng Wang
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xuekun Yang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Jun Gao
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Zhigang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
12
|
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, Liang ZF. Non-coding RNAs' function in cancer development, diagnosis and therapy. Biomed Pharmacother 2023; 167:115527. [PMID: 37751642 DOI: 10.1016/j.biopha.2023.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw.
Collapse
Affiliation(s)
- XinYi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Xiaoqing Xu
- Nanjing Renpin ENT Hospital, Nanjing 210000, Jiangsu, China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China.
| | - Zhao Feng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
13
|
Xie J, Gan L, Xue B, Wang X, Pei X. Emerging roles of interactions between ncRNAs and other epigenetic modifications in breast cancer. Front Oncol 2023; 13:1264090. [PMID: 37901333 PMCID: PMC10602744 DOI: 10.3389/fonc.2023.1264090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Up till the present moment, breast cancer is still the leading cause of cancer-related death in women worldwide. Although the treatment methods and protocols for breast cancer are constantly improving, the long-term prognosis of patients is still not optimistic due to the complex heterogeneity of the disease, multi-organ metastasis, chemotherapy and radiotherapy resistance. As a newly discovered class of non-coding RNAs, ncRNAs play an important role in various cancers. Especially in breast cancer, lncRNAs have received extensive attention and have been confirmed to regulate cancer progression through a variety of pathways. Meanwhile, the study of epigenetic modification, including DNA methylation, RNA methylation and histone modification, has developed rapidly in recent years, which has greatly promoted the attention to the important role of non-coding RNAs in breast cancer. In this review, we carefully and comprehensively describe the interactions between several major classes of epigenetic modifications and ncRNAs, as well as their different subsequent biological effects, and discuss their potential for practical clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Yu Y, Fan Z, Han Y, Sun X, Dong C, Liu G, Yin X, Liu L, Bai Y, Yang B. miR-135 protects against atrial fibrillation by suppressing intracellular calcium-mediated NLRP3 inflammasome activation. J Cell Commun Signal 2023; 17:813-825. [PMID: 36692633 PMCID: PMC10409699 DOI: 10.1007/s12079-023-00721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Atrial fibrillation (AF), one of the most common types of arrhythmias, is associated with high morbidity and mortality, seriously endangering human health. Inflammation is closely associated with AF development. Activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome in cardiomyocytes has been shown to promote AF progression. Here, we demonstrate the effect of miR-135 on NLRP3 inflammasome and study the cardioprotective role of miR-135 in AF. We observed that overexpression of miR-135 in mice reduced the AF incidence and duration, and inhibited both excessive activation of NLRP3 inflammasome and the increased intracellular calcium release during AF. However, the inhibitory effect of miR-135 on AF was partly abolished in the presence of a specific agonist of the calcium-sensing receptor (CaSR). We showed in the present study that miR-135 has a protective effect against AF by suppressing intracellular calcium-mediated NLRP3 inflammasome activation, suggesting the potential of miR-135 as a therapeutic agent in the treatment of AF.
Collapse
Affiliation(s)
- Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, People's Republic of China
| | - Zheyu Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yanna Han
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Guanqun Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xinda Yin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Linhe Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150086, People's Republic of China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150086, People's Republic of China.
| |
Collapse
|
15
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
16
|
Malespín-Bendaña W, Ferreira RM, Pinto MT, Figueiredo C, Alpízar-Alpízar W, Une C, Figueroa-Protti L, Ramírez V. Helicobacter pylori infection induces abnormal expression of pro-angiogenic gene ANGPT2 and miR-203a in AGS gastric cell line. Braz J Microbiol 2023; 54:791-801. [PMID: 36877445 PMCID: PMC10235401 DOI: 10.1007/s42770-023-00940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023] Open
Abstract
Helicobacter pylori colonizes the stomach and induces an inflammatory response that can develop into gastric pathologies including cancer. The infection can alter the gastric vasculature by the deregulation of angiogenic factors and microRNAs. In this study, we investigate the expression level of pro-angiogenic genes (ANGPT2, ANGPT1, receptor TEK), and microRNAs (miR-135a, miR-200a, miR-203a) predicted to regulate those genes, using H. pylori co-cultures with gastric cancer cell lines. In vitro infections of different gastric cancer cell lines with H. pylori strains were performed, and the expression of ANGPT1, ANGPT2, and TEK genes, and miR-135a, miR-200a, and miR-203a, was quantified after 24 h of infection (h.p.i.). We performed a time course experiment of H. pylori 26695 infections in AGS cells at 6 different time points (3, 6, 12, 28, 24, and 36 h.p.i.). The angiogenic response induced by supernatants of non-infected and infected cells at 24 h.p.i. was evaluated in vivo, using the chicken chorioallantoic membrane (CAM) assay. In response to infection, ANGPT2 mRNA was upregulated at 24 h.p.i, and miR-203a was downregulated in AGS cells co-cultured with different H. pylori strains. The time course of H. pylori 26695 infection in AGS cells showed a gradual decrease of miR-203a expression concomitant with an increase of ANGPT2 mRNA and protein expression. Expression of ANGPT1 and TEK mRNA or protein could not be detected in any of the infected or non-infected cells. CAM assays showed that the supernatants of AGS-infected cells with 26695 strain induced a significantly higher angiogenic and inflammatory response. Our results suggest that H. pylori could contribute to the process of carcinogenesis by downregulating miR-203a, which further promotes angiogenesis in gastric mucosa by increasing ANGPT2 expression. Further investigation is needed to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Wendy Malespín-Bendaña
- Institute of Health Research (INISA), University of Costa Rica, 11501-2060, San José, Costa Rica.
| | - Rui M Ferreira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto (i3S), Porto, Portugal
| | - Marta T Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto (i3S), Porto, Portugal
| | - Ceu Figueiredo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto (i3S), Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Warner Alpízar-Alpízar
- Center for Research On Microscopic Structures (CIEMic), University of Costa Rica, San José, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica
| | - Clas Une
- Institute of Health Research (INISA), University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Lucía Figueroa-Protti
- Center for Research On Microscopic Structures (CIEMic), University of Costa Rica, San José, Costa Rica
- Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Vanessa Ramírez
- Institute of Health Research (INISA), University of Costa Rica, 11501-2060, San José, Costa Rica
- Department Public Nutrition, School of Nutrition, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
17
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
18
|
The Intricate Interplay between the ZNF217 Oncogene and Epigenetic Processes Shapes Tumor Progression. Cancers (Basel) 2022; 14:cancers14246043. [PMID: 36551531 PMCID: PMC9776013 DOI: 10.3390/cancers14246043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The oncogenic transcription factor ZNF217 orchestrates several molecular signaling networks to reprogram integrated circuits governing hallmark capabilities within cancer cells. High levels of ZNF217 expression provide advantages to a specific subset of cancer cells to reprogram tumor progression, drug resistance and cancer cell plasticity. ZNF217 expression level, thus, provides a powerful biomarker of poor prognosis and a predictive biomarker for anticancer therapies. Cancer epigenetic mechanisms are well known to support the acquisition of hallmark characteristics during oncogenesis. However, the complex interactions between ZNF217 and epigenetic processes have been poorly appreciated. Deregulated DNA methylation status at ZNF217 locus or an intricate cross-talk between ZNF217 and noncoding RNA networks could explain aberrant ZNF217 expression levels in a cancer cell context. On the other hand, the ZNF217 protein controls gene expression signatures and molecular signaling for tumor progression by tuning DNA methylation status at key promoters by interfering with noncoding RNAs or by refining the epitranscriptome. Altogether, this review focuses on the recent advances in the understanding of ZNF217 collaboration with epigenetics processes to orchestrate oncogenesis. We also discuss the exciting burgeoning translational medicine and candidate therapeutic strategies emerging from those recent findings connecting ZNF217 to epigenetic deregulation in cancer.
Collapse
|
19
|
Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m 6 A methylation in cancer. Mol Oncol 2022; 17:195-229. [PMID: 36260366 PMCID: PMC9892831 DOI: 10.1002/1878-0261.13326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Zhaotong Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiawang Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haisheng Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lichen Ge
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiexin Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Hongsheng Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
20
|
Ismail A, El-Mahdy HA, Abulsoud AI, Sallam AAM, Eldeib MG, Elsakka EG, Zaki MB, Doghish AS. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int J Biol Macromol 2022; 224:1541-1565. [DOI: 10.1016/j.ijbiomac.2022.10.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
21
|
Zhou M, Dong M, Yang X, Gong J, Liao X, Zhang Q, Liu Z. The emerging roles and mechanism of m6a in breast cancer progression. Front Genet 2022; 13:983564. [PMID: 36035182 PMCID: PMC9399344 DOI: 10.3389/fgene.2022.983564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has continued to be the leading cause of cancer deaths in women, accompanied by highly molecular heterogeneity. N6-methyladenosine (m6A), a methylation that happens on adenosine N6, is the most abundant internal mRNA modification type in eukaryotic cells. Functionally, m6A methylation is a reversible modification process and is regulated by 3 enzymes with different functions, namely “writer”, “reader”, and “eraser”. Abnormal m6A modifications trigger the expression, activation, or inhibition of key signaling molecules in critical signaling pathways and the regulatory factors acting on them in BC. These m6A-related enzymes can not only be used as markers for accurate diagnosis, prediction of prognosis, and risk model construction, but also as effective targets for BC treatment. Here, we have emphasized the roles of different types of m6A-related enzymes reported in BC proliferation, invasion, and metastasis, as well as immune regulation. The comprehensive and in-depth exploration of the molecular mechanisms related to m6A will benefit in finding effective potential targets and effective stratified management of BC.
Collapse
Affiliation(s)
- Mengying Zhou
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xinghua Liao, ; Qi Zhang, ; Zeming Liu,
| |
Collapse
|