1
|
Chang X, Zhang Y, Deng M, Yang R, Zhang J, Hao M, Miao J. OTUD1 inhibits endometriosis fibrosis by deubiquitinating MADH7. Mol Hum Reprod 2025; 31:gaaf014. [PMID: 40279273 DOI: 10.1093/molehr/gaaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/12/2025] [Indexed: 04/27/2025] Open
Abstract
Fibrosis constitutes the principal pathophysiological mediator of pain and infertility manifestations in endometriosis, and the inhibitory factor of the TGF-β pathway, MADH7, makes a vital impact on the progression of fibrosis. Ovarian tumor domain-containing protein 1 (OTUD1) deubiquitinase binds to the MADH7 protein, although its specific role in endometriosis needs to be investigated. This study is the first to explore the role of OTUD1 in endometriosis and to investigate its impact on the growth of endometriosis lesions in vitro and in vivo, using C57BL/6N female mice and human primary stromal endometriosis cells (HEMCs). Moreover, the obtained results demonstrated that OTUD1 inhibited the expression of fibrosis-related proteins in HEMCs in vitro, and the mechanistic execution of this phenotype was achieved via coordinated deubiquitination coupled with MADH7-mediated transcriptional reprogramming. These events stopped the growth of lesions in vivo and reduced abdominal inflammation. The study demonstrated the critical role of the deubiquitinating enzyme OTUD1 in endometriosis, indicating its potential therapeutic effect on endometriosis.
Collapse
Affiliation(s)
- Xiangyu Chang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Mengqi Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruiye Yang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiamin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Menglin Hao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
2
|
Gong Y, Li R, Zhang R, Jia L. USP2 reversed cisplatin resistance through p53-mediated ferroptosis in NSCLC. BMC Med Genomics 2025; 18:39. [PMID: 40011884 PMCID: PMC11866681 DOI: 10.1186/s12920-025-02108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND It has demonstrated the indispensable role of ferroptosis in conferring cisplatin resistance in non-small cell lung cancer (NSCLC), as well as the involvement of ubiquitin-specific protease (USP) in regulating ferroptosis. This paper aspired to the mechanism of USP2 and ferroptosis on NSCLC cisplatin resistance. METHODS Ubiquitin-specific protease mRNA expression, was detected through RT-qPCR. In vitro functional assays assessed the effects of USP2 overexpression on DDP resistance, cell proliferation capability, and ferroptosis markers in A549/DDP and H1299/DDP cells. Ubiquitination assays evaluated the ubiquitination levels of p53 following USP2 overexpression. Co-immunoprecipitation (Co-IP) assays confirmed the binding relationship between USP2 and p53. In vivo experiments in mice explored the specific role of the USP2-p53 axis in a xenograft tumor model. RESULTS USP2 expression was suppressed in cisplatin-resistant NSCLC cells. USP2 overexpression inhibited cell viability in cisplatin-resistant cells. Among the ferroptosis markers, the results showed that USP2 overexpression promoted LDH release, Fe2+ level, MDA and Lipid ROS, while inhibited GPX4 activity and GSH levels. The WB results revealed that USP2 overexpression inhibited GPX4, SLC7A11 and cytoplasm p53 protein expression, while promoted the nucleus p53 protein expression. Moreover, USP2 directly bound to p53 and USP2 overexpression stabilized p53 protein by suppressing its ubiquitination. In vivo experiments further suggest that the USP2-p53 pathway plays a crucial role in regulating cisplatin sensitivity in A549/DDP cells. CONCLUSION USP2 acted on the K305R site of p53, which resulted in its deubiquitination. This cellular process could modulate cisplatin resistance through ferroptosis in NSCLC. This study could provide a potential therapeutic target to NSCLC.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Oncology, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, 044000, Shanxi, China
| | - Ruichao Li
- Department of Oncology, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, 044000, Shanxi, China
| | - Rui Zhang
- Department of Oncology, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, 044000, Shanxi, China
| | - Li Jia
- Department of Oncology, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, 044000, Shanxi, China.
| |
Collapse
|
3
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 PMCID: PMC11863469 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Liu X, Zhang G, Liu L, Xiong G, Liu J, Wei W. USP2 Promotes the Proliferation and Inflammation of Fibroblast-Like Synovial Cells in Rheumatoid Arthritis Through Deubiquitination of TRAF2. Biochem Genet 2025; 63:592-605. [PMID: 38480669 DOI: 10.1007/s10528-024-10737-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2025]
Abstract
Rheumatoid arthritis (RA) is a prevalent inflammatory disorder affecting about 1% of the global population. The ubiquitin-specific protease 2 (USP2) is known to have a substantial influence on the regulation of several cellular processes. Both in vivo (using rats with collagen-induced arthritis, CIA) and in vitro (using human fibroblast-like synoviocytes, HFLS-RA) models of RA were used to examine the role of USP2 in RA. The proliferation of HFLS-RA cells was assessed using the cell counting kit 8 test and EdU staining. The technique used for the assessment of gene expression was quantitative real-time PCR. Protein expression was quantified using Western blot (WB) analysis, while the quantities of inflammatory factors and matrix metalloproteinases were assessed using an ELISA test. The co-immunoprecipitation and ubiquitination tests investigated the relationships between proteins and the underlying molecular pathways. The results of this study demonstrate an upregulation of USP2 expression in both vivo and vitro models of RA. In addition, our findings indicate that the overexpression of USP2 notably exacerbates both proliferation and inflammation. The consistent downregulation of USP2 resulted in a reduction in the secretion of inflammatory cytokines and a suppression of cellular proliferation. Furthermore, it was shown that USP2 interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2) and facilitates the removal of ubiquitination chains from TRAF2, enhancing its stability. Our findings propose that USP2 functions as a favorable modulator of proliferation and inflammatory reactions in HFLS-RA, thereby indicating its potential as a therapeutic target for the treatment of RA.
Collapse
Affiliation(s)
- Xiuchan Liu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Infectious Diseases, Tianjin University Tianjin Hospital, Tianjin, China
| | - Geng Zhang
- Department of Infectious Diseases, Tianjin Medical University Baodi Clinical College, Tianjin, China
| | - Lei Liu
- Department of Infectious Diseases, Tianjin Medical University Baodi Clinical College, Tianjin, China
| | - Guangyi Xiong
- Department of Pathology, Tianjin University Tianjin Hospital, Tianjin, China
| | - Jun Liu
- Department of Joint Surgery, Tianjin University Tianjin Hospital, Tianjin, China.
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
5
|
Wang Y, Zhang Y, Luo H, Wei W, Liu W, Wang W, Wu Y, Peng C, Ji Y, Zhang J, Zhu C, Bai W, Xia L, Lei H, Xu H, Yin L, Weng W, Yang L, Liu L, Zhou A, Wei Y, Zhu Q, Zhu W, Yang Y, Xu Z, Wu Y. Identification of USP2 as a novel target to induce degradation of KRAS in myeloma cells. Acta Pharm Sin B 2024; 14:5235-5248. [PMID: 39807309 PMCID: PMC11725127 DOI: 10.1016/j.apsb.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 01/16/2025] Open
Abstract
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity. Inactivation or knockdown of USP2 leads to the degradation of KRAS, resulting in the suppression of MM cell proliferation in vitro and in vivo. Conversely, overexpressing USP2 stabilizes KRAS and partially abrogates GA-induced apoptosis in MM cells. Furthermore, elevated USP2 levels may be associated with poorer prognoses in MM patients. These findings highlight the potential of the USP2/KRAS axis as a therapeutic target in MM, suggesting that strategically inducing KRAS degradation via USP2 inhibition could be a promising approach for treating cancers with KRAS mutations.
Collapse
Affiliation(s)
- Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Luo
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wei Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wanting Liu
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Cheng Peng
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfang Zhang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chujiao Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenhui Bai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xia
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Leimiao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Weng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aiwu Zhou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueyue Wei
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongqing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Liu K, Tian F, Chen X, Liu B, Tian S, Hou Y, Wang L, Han M, Peng S, Tan Y, Pan Y, Chu Z, Li J, Che L, Chen D, Wen L, Qin Z, Li X, Xiang J, Bian X, Liu Q, Ye X, Wang T, Wang B. Stabilization of TGF-β Receptor 1 by a Receptor-Associated Adaptor Dictates Feedback Activation of the TGF-β Signaling Pathway to Maintain Liver Cancer Stemness and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402327. [PMID: 38981014 PMCID: PMC11425868 DOI: 10.1002/advs.202402327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-β receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-β-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-β receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-β signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-β signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-β signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-β signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-β signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.
Collapse
Affiliation(s)
- Kewei Liu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life SciencesSouthwest UniversityChongqing400715P. R. China
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Fanxuan Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Biyin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Shuoran Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Yongying Hou
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- Department of PathologyDaping Hospital, Army Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Lei Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Mengyi Han
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Shiying Peng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Yuting Tan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Yuwei Pan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Zhaole Chu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Linrong Che
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Liangzhi Wen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Zhongyi Qin
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xianfeng Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life SciencesSouthwest UniversityChongqing400715P. R. China
| | - Tao Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| |
Collapse
|
7
|
Yu M, Huo D, Yu K, Zhou K, Xu F, Meng Q, Cai Y, Chen X. Crosstalk of different cell-death patterns predicts prognosis and drug sensitivity in glioma. Comput Biol Med 2024; 175:108532. [PMID: 38703547 DOI: 10.1016/j.compbiomed.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Glioma is a malignant brain tumor originating from glial cells, and there still a challenge to accurately predict the prognosis. Programmed cell death (PCD) plays a key role in tumorigenesis and immune response. However, the crosstalk and potential role of various PCDs in prognosis and tumor microenvironment remains unknown. Therefore, we comprehensively discussed the relationship between different models of PCD and the prognosis of glioma and provided new ideas for the optimal targeted therapy of glioma. MATERIALS AND METHODS We compared and analyzed the role of 14 PCD patterns on the prognosis from different levels. We constructed the cell death risk score (CDRS) index and conducted a comprehensive analysis of CDRS and TME characteristics, clinical characteristics, and drug response. RESULTS Effects of different PCDs at the genomic, functional, and immune microenvironment levels were discussed. CDRS index containing 6 gene signatures and a nomogram were established. High CDRS is associated with a worse prognosis. Through transcriptome and single-cell data, we found that patients with high CDRS showed stronger immunosuppressive characteristics. Moreover, the high-CDRS group was resistant to the traditional glioma chemotherapy drug Vincristine, but more sensitive to the Temozolomide and the clinical experimental drug Bortezomib. In addition, we identified 19 key potential therapeutic targets during malignant differentiation of tumor cells. CONCLUSION Overall, we provide the first systematic description of the role of 14 PCDs in glioma. A new CDRS model was built to predict the prognosis and to provide a new idea for the targeted therapy of glioma.
Collapse
Affiliation(s)
- Meini Yu
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Diwei Huo
- Fourth Affiliated Hospital of Harbin Medical University, China
| | - Kexin Yu
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Kun Zhou
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Fei Xu
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Qingkang Meng
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Yiyang Cai
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Xiujie Chen
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Song J, Zhang J, Shi Y, Gao Q, Chen H, Ding X, Zhao M, Zhu C, Liang L, Sun X, Zhu Y, Wang W, Li Q, Di X. Hypoxia inhibits ferritinophagy-mediated ferroptosis in esophageal squamous cell carcinoma via the USP2-NCOA4 axis. Oncogene 2024; 43:2000-2014. [PMID: 38744953 DOI: 10.1038/s41388-024-03050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive system. Hypoxia is a crucial player in tumor ferroptosis resistance. However, the molecular mechanism of hypoxia-mediated ferroptosis resistance in ESCC remains unclear. Here, USP2 expression was decreased in ESCC cell lines subjected to hypoxia treatment and was lowly expressed in clinical ESCC specimens. Ubiquitin-specific protease 2 (USP2) depletion facilitated cell growth, which was blocked in USP2-overexpressing cells. Moreover, USP2 silencing enhanced the iron ion concentration and lipid peroxidation accumulation as well as suppressed ferroptosis, while upregulating USP2 promoted ferroptotic cell death in ESCC cells. Furthermore, knockout of USP2 in ESCC models discloses the essential role of USP2 in promoting ESCC tumorigenesis and inhibiting ferroptosis. In contrast, overexpression of USP2 contributes to antitumor effect and ferroptosis events in vivo. Specifically, USP2 stably bound to and suppressed the degradation of nuclear receptor coactivator 4 (NCOA4) by eliminating the Lys48-linked chain, which in turn triggered ferritinophagy and ferroptosis in ESCC cells. Our findings suggest that USP2 plays a crucial role in iron metabolism and ferroptosis and that the USP2/NCOA4 axis is a promising therapeutic target for the management of ESCC.
Collapse
Affiliation(s)
- Jiahang Song
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junfeng Zhang
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, 600083, China
| | - Yujing Shi
- Department of Oncology, Jurong People's Hospital Affiliated to Jiangsu University, Huayang Town, Jurong, 212400, China
| | - Qing Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofeng Ding
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minghui Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Caiqiang Zhu
- Department of Oncology, Jurong People's Hospital Affiliated to Jiangsu University, Huayang Town, Jurong, 212400, China
| | - Liang Liang
- Department of Oncology, Jurong People's Hospital Affiliated to Jiangsu University, Huayang Town, Jurong, 212400, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingyin Zhu
- Department of Radiology, Suzhou 100 Hospital, Suzhou, 215000, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, 400042, China.
| | - Qing Li
- Cancer Center, Army Medical Center, Chongqing, 400042, China.
| | - Xiaoke Di
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
10
|
Xu L, Ye Y, Tao Z, Wang T, Wei Y, Cai W, Wan X, Zhao P, Gu W, Gu B, Zhang L, Tian Y, Liu N, Tu Y, Ji J. O-GlcNAcylation of melanophilin enhances radiation resistance in glioblastoma via suppressing TRIM21 mediated ubiquitination. Oncogene 2024; 43:61-75. [PMID: 37950039 DOI: 10.1038/s41388-023-02881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The molecular mechanism of glioblastoma (GBM) radiation resistance remains poorly understood. The aim of this study was to elucidate the potential role of Melanophilin (MLPH) O-GlcNAcylation and the specific mechanism through which it regulates GBM radiotherapy resistance. We found that MLPH was significantly upregulated in recurrent GBM tumor tissues after ionizing radiation (IR). MLPH induced radiotherapy resistance in GBM cells and xenotransplanted human tumors through regulating the NF-κB pathway. MLPH was O-GlcNAcylated at the conserved serine 510, and radiation-resistant GBM cells showed higher levels of O-GlcNAcylation of MLPH. O-GlcNAcylation of MLPH protected its protein stability and tripartite motif containing 21(TRIM21) was identified as an E3 ubiquitin ligase promoting MLPH degradation whose interaction with MLPH was affected by O-GlcNAcylation. Our data demonstrate that MLPH exerts regulatory functions in GBM radiation resistance by promoting the NF-κB signaling pathway and that O-GlcNAcylation of MLPH both stabilizes and protects it from TRIM21-mediated ubiquitination. These results identify a potential mechanism of GBM radiation resistance and suggest a potential therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zeqiang Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yutian Wei
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wanzhi Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xin Wan
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Bin Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Liuchao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yufei Tian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
11
|
Li S, Song Y, Wang K, Liu G, Dong X, Yang F, Chen G, Cao C, Zhang H, Wang M, Li Y, Zeng T, Liu C, Li B. USP32 deubiquitinase: cellular functions, regulatory mechanisms, and potential as a cancer therapy target. Cell Death Discov 2023; 9:338. [PMID: 37679322 PMCID: PMC10485055 DOI: 10.1038/s41420-023-01629-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.
Collapse
Grants
- Bing Li, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China Chunyan Liu, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kexin Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Teng Zeng
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Yang H, Li N, Chen L, Zhou L, Zhou Y, Liu J, Jia W, Chen R, Su J, Yang L, Gong X, Zhan X. Ubiquitinomics revealed disease- and stage-specific patterns relevant for the 3PM approach in human sigmoid colon cancers. EPMA J 2023; 14:503-525. [PMID: 37605648 PMCID: PMC10439878 DOI: 10.1007/s13167-023-00328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 08/23/2023]
Abstract
Objective The patients with sigmoid colorectal cancer commonly show high mortality and poor prognosis. Increasing evidence has demonstrated that the ubiquitinated proteins and ubiquitination-mediated molecular pathways influence the growth and aggressiveness of colorectal cancer. It emphasizes the scientific merits of quantitative ubiquitinomics in human sigmoid colon cancer. We hypothesize that the ubiquitinome and ubiquitination-mediated pathway networks significantly differ in sigmoid colon cancers compared to controls, which offers the promise for in-depth insight into molecular mechanisms, discovery of effective therapeutic targets, and construction of reliable biomarkers in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods The first ubiquitinome analysis was performed with anti-K-ε-GG antibody beads (PTMScan ubiquitin remnant motif [K-ε-GG])-based label-free quantitative proteomics and bioinformatics to identify and quantify ubiquitination profiling between sigmoid colon cancer tissues and para-carcinoma tissues. A total of 100 human sigmoid colon cancer samples that included complete clinical information and the corresponding gene expression data were obtained from The Cancer Genome Atlas (TCGA). Ubiquitination was the main way of protein degradation; the relationships between differentially ubiquitinated proteins (DUPs) and their differently expressed genes (DEGs) and between DUPs and their differentially expressed proteins (DEPs) were analyzed between cancer tissues and control tissues. The overall survival of those DUPs was obtained with Kaplan-Meier method. Results A total of 1249 ubiquitinated sites within 608 DUPs were identified in human sigmoid colon cancer tissues. KEGG pathway network analysis of these DUPs revealed 35 statistically significant signaling pathways, such as salmonella infection, glycolysis/gluconeogenesis, and ferroptosis. Gene Ontology (GO) analysis of 608 DUPs revealed that protein ubiquitination was involved in 98 biological processes, 64 cellular components, 51 molecule functions, and 26 immune system processes. Protein-protein interaction (PPI) network of 608 DUPs revealed multiple high-combined scores and co-expressed DUPs. The relationship analysis between DUPs and their DEGs found 4 types of relationship models, including DUP-up (increased ubiquitination level) and DEG-up (increased gene expression), DUP-up and DEG-down (decreased gene expression), DUP-down (decreased ubiquitination level) and DEG-up, and DUP-down and DEG-down. The relationship analysis between DUPs and their DEPs found 4 types of relationship models, including DUP-up and DEP-up (increased protein expression), DUP-up and DEP-down (decreased protein expression), DUP-down and DEP-up, and DUP-down and DEP-down. Survival analysis found 46 overall survival-related DUPs in sigmoid colon cancer, and the drug sensitivity of overall survival-related DUPs were identified. Conclusion The study provided the first differentially ubiquitinated proteomic profiling, ubiquitination-involved signaling pathway network changes, and the relationship models between protein ubiquitination and its gene expression and between protein ubiquitination and its protein expression, in human sigmoid colon cancer. It offers the promise for deep insights into molecular mechanisms of sigmoid colon cancer, and discovery of effective therapeutic targets and biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment in the context of 3P medicine. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00328-2.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Lei Zhou
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Yuanchen Zhou
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Jixiang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 People’s Republic of China
| | - Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Ruofei Chen
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Junwen Su
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
13
|
Qiu W, Xiao Z, Yang Y, Jiang L, Song S, Qi X, Chen Y, Yang H, Liu J, Chu L. USP10 deubiquitinates RUNX1 and promotes proneural-to-mesenchymal transition in glioblastoma. Cell Death Dis 2023; 14:207. [PMID: 36949071 PMCID: PMC10033651 DOI: 10.1038/s41419-023-05734-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
The mesenchymal (MES) subtype of glioblastoma (GBM) is a highly aggressive, malignant and proliferative cancer that is resistant to chemotherapy. Runt-related transcription factor 1 (RUNX1) was shown to support MES GBM, however, its underlying mechanisms are unclear. Here, we identified USP10 as a deubiquitinating enzyme that regulates RUNX1 stabilization and is mainly expressed in MES GBM. Overexpression of USP10 upregulated RUNX1 and induced proneural-to-mesenchymal transition (PMT), thus maintaining MES properties in GBM. Conversely, USP10 knockdown inhibited RUNX1 and resulted in the loss of MES properties. USP10 was shown to interact with RUNX1, with RUNX1 being stabilized upon deubiquitylation. Moreover, we found that USP10 inhibitor Spautin-1 induced RUNX1 degradation and inhibited MES properties in vitro and in vivo. Furthermore, USP10 was strongly correlated with RUNX1 expression in samples of different subtypes of human GBM and had prognostic value for GBM patients. We identified USP10 as a key deubiquitinase for RUNX1 protein stabilization. USP10 maintains MES properties of GBM, and promotes PMT of GBM cells. Our study indicates that the USP10/RUNX1 axis may be a potential target for novel GBM treatments.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Zumu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lishi Jiang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China.
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
14
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
15
|
USP2 Inhibits Lung Cancer Pathogenesis by Reducing ARID2 Protein Degradation via Ubiquitination. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1525216. [PMID: 36567903 PMCID: PMC9779997 DOI: 10.1155/2022/1525216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Background Ubiquitination is an important regulator in physiological and pathological conditions. Ubiquitin-specific protease 2 (USP2), as a member of the USP family, exhibits oncogenic effects in multiple malignancies. However, the exact role of USP2 has not been well clarified in lung cancer pathogenesis and progression. Therefore, we aimed to further investigate the regulatory roles of USP2 in lung cancer in this study. Methods Firstly, immunoprecipitation-Mass Spectrometry (IP-MS), Co-immunoprecipitation (Co-IP), combined with immunofluorescent colocalization method, was conducted for USP2 protein interaction analysis in lung cancer cell lines. qRT-PCR, Western blot, and immunohistochemistry assays explored the USP2 expression pattern and USP2/ARID2- (AT-rich interactive domain 2-) specific shRNAs and overexpression vectors. Co-IP assays were designed to validate USP2-ARID2 protein interaction. Further functional studies including CHX chase assay, transwell assay, and wound healing assay were subsequently applied to evaluate the impact of USP2 modulation on lung cancer cells. Results USP2 suppression was characteristic in lung cancer cell line models and lung cancer samples. USP2 and ARID2 demonstrated protein-protein interaction and overlapping localization in cancer cell models. Functional experiments suggested USP2 inhibited lung cancer cell invasion and migration by reducing ARID2 protein degradation. Subsequent ubiquitination assays indicated ARID2 protein degradation via the ubiquitination was significantly reduced by USP2 interaction. Conclusions Our study provided novel insight that USP2 might suppress lung cancer by reducing ARID2 protein degradation via ubiquitination.
Collapse
|
16
|
Xie P, Zhang Y, Chen R, Zheng J, Cui G. PTBP3 promotes tumorigenesis of glioblastoma by stabilizing Twist1. Transl Oncol 2022; 25:101520. [PMID: 35987089 PMCID: PMC9411677 DOI: 10.1016/j.tranon.2022.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
PTBP3 is upregulated in GBM and predicts poor prognosis. PTBP3 promotes proliferation, EMT, migration, and invasion of GBM. PTBP3 stabilizes Twist1 by decreasing its ubiquitination and degradation.
Objective Glioblastoma (GBM) is the most common malignancy tumor of central nervous system. PTBP3 was closely associated with the development of tumor. However, the function and molecular mechanism of PTBP3 in GBM is little known. Methods qPCR and immunoblotting were used to detect PTBP3 expression levels in glioma tissues and cells. CCK8, Edu, flow cytometry, wound healing, and transwell assays were used to examined the function of PTBP3 in GBM. qPCR, Immunoblotting, and ubiquitination assays were performed to identify the mechanism of PTBP3. Results We found that PTBP3 was upregulated in GBM, and high expression of PTBP3 correlated with the poor survival of GBM patients. PTBP3 knockdown reduced proliferation, invasion, and migration of GBM. Conversely, overexpressing PTBP3 has an opposite effect. Moreover, PTBP3 had an effect on the EMT of GBM. More importantly, we found that PTBP3 stabilized Twist1 by decreasing its ubiquitination and degradation. Furthermore, orthotopic xenograft models were used to demonstrate the PTBP3 on the development of GBM in vivo. Conclusion This study proved that PTBP3 promoted tumorigenesis of GBM by stabilizing Twist1, which provided a new therapeutic target for GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China; Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Yueqing Zhang
- Department of Neurosurgery, Huai'an Cancer Hospital, No19 shanyang Road, Huai'an, Jiangsu 223200, P.R. China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Jinyu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No.62, Huaihai Road(S.), Huai'an, Jiangsu 223002, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.
| |
Collapse
|
17
|
An R, Wang P, Guo H, Liuyu T, Zhong B, Zhang ZD. USP2 promotes experimental colitis and bacterial infections by inhibiting the proliferation of myeloid cells and remodeling the extracellular matrix network. CELL INSIGHT 2022; 1:100047. [PMID: 37192862 PMCID: PMC10120320 DOI: 10.1016/j.cellin.2022.100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 05/18/2023]
Abstract
Inflammatory bowel disease (IBD) is closely associated with dysregulation of genetic factors and microbial environment. Here, we report a susceptible role of ubiquitin-specific protease 2 (USP2) in experimental colitis and bacterial infections. USP2 is upregulated in the inflamed mucosa of IBD patients and in the colon of mice treated with dextran sulfate sodium salt (DSS). Knockout or pharmacologic inhibition of USP2 promotes the proliferation of myeloid cells to activate IL-22 and IFNγ production of T cells. In addition, knockout of USP2 in myeloid cells inhibits the production of pro-inflammatory cytokines to relieve the dysregulation of extracellular matrix (ECM) network and promote the gut epithelial integrity after DSS treatment. Consistently, Lyz2-Cre;Usp2fl/fl mice exhibit hyper-resistance to DSS-induced colitis and Citrobacter rodentium infections compared to Usp2fl/fl mice. These findings highlight an indispensable role of USP2 in myeloid cells to modulate T cell activation and epithelial ECM network and repair, indicating USP2 as a potential target for therapeutic intervention of IBD and bacterial infections in the gastrointestinal system.
Collapse
Affiliation(s)
- Ran An
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Peng Wang
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hao Guo
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Tianzi Liuyu
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|