1
|
Zhao Q, Xie H, Wang X, Xie J, Liu J, Bai Y, Liu B, Ding H, Kuang S, Zhang B. Comprehensive bioinformatics analysis of the prognostic value and immune infiltration of CAPN2 in pancreatic adenocarcinoma. Gene 2025; 934:149035. [PMID: 39454972 DOI: 10.1016/j.gene.2024.149035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a highly aggressive cancer with a poor prognosis, highlighting an urgent requirement for effective biomarkers for its early diagnosis and prognosis prediction. CAPN2, a calcium-dependent protease, has been implicated in various cancers, but its role in PAAD remains unclear. METHODS In this study, we utilized multiple bioinformatics methods, including differential expression, survival, correlation, and enrichment analyses, to investigate the prognostic value of CAPN2 in PAAD using data from the TCGA and GEO databases. Additionally, the correlation between CAPN2 expression and the tumor microenvironment (TME), immunotherapy potential, and drug sensitivity was also explored. RESULTS CAPN2 was upregulated in PAAD tissues and was correlated with higher tumor grade. And high expression of CAPN2 was significantly associated with reduced overall survival, establishing it as an independent prognostic biomarker for PAAD. Enrichment analysis implicated that CAPN2 was involved in multiple biological processes and pathways associated with tumor immunity. Furthermore, CAPN2 expression had a negative correlation with immune cell infiltration and a positive association with tumor mutational burden, which may have potential implications for immunotherapy strategies. CONCLUSIONS CAPN2 is a promising biomarker for PAAD prognosis and a potential therapeutic target. Its association with the TME and immunotherapy response highlights its importance in PAAD progression and patient outcomes, warranting further investigation into its role and potential clinical applications.
Collapse
Affiliation(s)
- Qiuyan Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haoran Xie
- Hepatobiliary Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xing Wang
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Jiabei Xie
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jin Liu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yangqiu Bai
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Bowei Liu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Hui Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Shengli Kuang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Bingyong Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Ma X, Zhou K, Yan T, Hu L, Xie S, Zheng H, Tong Y, Zhang H, Wang Y, Gong Z, Chen C, Tian Y, Guo L, Lu R. Calpain 2 promotes Lenvatinib resistance and cancer stem cell traits via both proteolysis-dependent and independent approach in hepatocellular carcinoma. MOLECULAR BIOMEDICINE 2024; 5:74. [PMID: 39739077 PMCID: PMC11688263 DOI: 10.1186/s43556-024-00242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Lenvatinib, an approved first-line regimen, has been widely applied in hepatocellular carcinoma (HCC). However, clinical response towards Lenvatinib was limited, emphasizing the importance of understanding the underlying mechanism of its resistance. Herein, we employed integrated bioinformatic analysis to identify calpain-2 (CAPN2) as a novel key regulator for Lenvatinib resistance in HCC, and its expression greatly increased in both Lenvatinib-resistant HCC cell lines and clinical samples. Further in vitro and in vivo experiments indicated that knocking down CAPN2 greatly sensitized HCC cells to Lenvatinib treatment, while overexpression of CAPN2 achieved opposite effects in a Lenvatinib-sensitive HCC cell line. Interestingly, we observed a close relationship between CAPN2 expression and cancer stem cell (CSC) traits in HCC cells, evidenced by impaired sphere-forming and CSC-related marker expressions after CAPN2 knockdown, and verse vice. Mechanistically, we strikingly discovered that CAPN2 exerted its function by both enzyme-dependent and enzyme-independent manner simultaneously: activating β-Catenin signaling through its enzyme activity, and preventing GLI1/GLI2 degradation through direct binding to YWHAE in an enzyme-independent manner, which disrupting the association between YWHAE and GLI1/GLI2 to inhibit YWHAE-induced degradation of GLIs. Notably, further co-immunoprecipitation assays revealed that YWHAE could promote the protein stability of CAPN2 via recruiting a deubiquitinase COPS5 to prevent ubiquitination-induced degradation of CAPN2. In summary, our data demonstrated that CAPN2 promoted Lenvatinib resistance via both catalytic activity-dependent and -independent approaches. Reducing CAPN2 protein rather than inhibiting its activity might be a promising strategy to improve Lenvatinib treatment efficiency in HCC.
Collapse
Affiliation(s)
- Xiaolu Ma
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Kaixia Zhou
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Tianqing Yan
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ling Hu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Suhong Xie
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Hui Zheng
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ying Tong
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Heng Zhang
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Zhiyun Gong
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Cuncun Chen
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Yanan Tian
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Lin Guo
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
Ma S, Meng G, Liu T, You J, He R, Zhao X, Cui Y. The Wnt signaling pathway in hepatocellular carcinoma: Regulatory mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 180:117508. [PMID: 39362068 DOI: 10.1016/j.biopha.2024.117508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that arises from hepatocytes. Multiple signaling pathways play a regulatory role in the occurrence and development of HCC, with the Wnt signaling pathway being one of the primary regulatory pathways. In normal hepatocytes, the Wnt signaling pathway maintains cell regeneration and organ development. However, when aberrant activated, the Wnt pathway is closely associated with invasion, cancer stem cells(CSCs), drug resistance, and immune evasion in HCC. Among these factors, the development of drug resistance is one of the most important factors affecting the efficacy of HCC treatment. These mechanisms form the basis for tumor cell adaptation and evolution within the body, enabling continuous changes in tumor cells, resistance to drugs and immune system attacks, leading to metastasis and recurrence. In recent years, there have been numerous new discoveries regarding these mechanisms. An increasing number of drugs targeting the Wnt signaling pathway have been developed, with some already entering clinical trials. Therefore, this review encompasses the latest research on the role of the Wnt signaling pathway in the onset and progression of HCC, as well as advancements in its therapeutic strategies.
Collapse
Affiliation(s)
- Shihui Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guorui Meng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Tong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Junqi You
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Risheng He
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Xudong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yunfu Cui
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
4
|
Qian L, Xu Z, Luo T, Gao Z, Cheng K, He X, Zhang Z, Ren S, Zhu Y. In silico identification and verification of Tanshinone IIA-related prognostic genes in hepatocellular carcinoma. Front Immunol 2024; 15:1482914. [PMID: 39544939 PMCID: PMC11560438 DOI: 10.3389/fimmu.2024.1482914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Currently, adequate treatment and prognostic prediction means for Hepatocellular Carcinoma (HCC) haven't entered into medical vision. Tanshinone IIA (TanIIA) is a natural product, which can be utilized as a potential treatment of HCC due to its high anti-tumor activity. However, the effect on HCC prognosis, as well as the potential targets and molecular mechanism of TanIIA still remain ambiguous. Herein, we investigated them via network pharmacology, explored TanIIA-related prognostic genes by machine learning methods, and verified using molecular docking and cell experiments. METHODS Potential TanIIA-targeted genes and HCC-related genes were obtained from the corresponding database. The Protein-Protein Interaction (PPI) network and enrichment analyses of the intersection targets were conducted. Furthermore, a TanIIA-related prognostic model was built and verified. We attempted to explore the expression of the TanIIA-related prognostic genes and evaluate its chemotherapeutic sensitivities and the immune infiltrations. Followed by exploration of anti-tumor activity on the human HCC cells Hep3B and HepG2 cell lines in vitro (CCK-8, flow cytometry and transwell assay), the docking molecular was performed. Ultimately, the corresponding protein expressions were determined by western blotting. RESULTS A total of 64 intersecting targets were collected. Similarly, GO/KEGG enrichment analysis showed that TanIIA can inhibit HCC by affecting multiple pathways, especially the MAPK signaling pathway. A five-gene signature related to TanIIA was constructed on account of Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model. Among five genes, ALB, ESR1 and SRC tend to be core genes because of probable status as potential targets for sorafenib. Molecular docking results demonstrated the potential for active interaction between the core genes relevant proteins and TanIIA. Studies in vitro had shown that TanIIA regulated the expressions of Bcl-2, Bax and MMP9 in HCC cells, inhibiting their growth, inducing apoptosis and preventing cell invasion. Additionally, we are able to detect an up-regulated trend in the expression of ALB and ESR1, while a down-regulated in the expression of SRC by TanIIA. CONCLUSION Regulating the expression of TanIIA-related gene signatures (ALB, SRC and ESR1), and inhibiting the SRC/MAPK/ERK signaling axis might potentially contribute to the TanIIA treatment of HCC. And the three gene signatures could be identified for predicting the prognosis of HCC, which may provide novel biomarkers for HCC treatment.
Collapse
Affiliation(s)
- Lichao Qian
- Department of Geratology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhongchi Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Tianjiong Luo
- Department of Geratology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhao Gao
- Department of Geratology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kun Cheng
- Department of Geratology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaolong He
- Department of General Surgery, The First People’s Hospital of Taian, Taian, Shandong, China
| | - Zhongai Zhang
- Department of Geratology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
| | - Yinxing Zhu
- Department of Traditional Chinese Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, China
| |
Collapse
|
5
|
Rasl J, Caslavsky J, Grusanovic J, Chvalova V, Kosla J, Adamec J, Grousl T, Klimova Z, Vomastek T. Depletion of calpain2 accelerates epithelial barrier establishment and reduces growth factor-induced cell scattering. Cell Signal 2024; 121:111295. [PMID: 38996955 DOI: 10.1016/j.cellsig.2024.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Calpain2 is a conventional member of the non-lysosomal calpain protease family that has been shown to affect the dynamics of focal and cell-cell adhesions by proteolyzing the components of adhesion complexes. Here, we inactivated calpain2 using CRISPR/Cas9 in epithelial MDCK cells. We show that depletion of calpain2 has multiple effects on cell morphology and function. Calpain2-depleted cells develop epithelial shape, however, they cover a smaller area, and cell clusters are more compact. Inactivation of calpain2 enhanced restoration of transepithelial electrical resistance after calcium switch, decreased cell migration, and delayed cell scattering induced by HGF/SF. In addition, calpain2 depletion prevented morphological changes induced by ERK2 overexpression. Interestingly, proteolysis of several calpain2 targets, including E-cadherin, β-catenin, talin, FAK, and paxillin, was not discernibly affected by calpain2 depletion. Taken together, these data suggest that calpain2 regulates the stability of cell-cell and cell-substratum adhesions indirectly without affecting the proteolysis of these adhesion complexes.
Collapse
Affiliation(s)
- Jan Rasl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josef Caslavsky
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josipa Grusanovic
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vera Chvalova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kosla
- Laboratory of Viral and Cellular Genetics and Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jiri Adamec
- Department of Interdisciplinary Oncology, Louisiana State University HSC School of Medicine, New Orleans, USA
| | - Tomas Grousl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| | - Tomas Vomastek
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| |
Collapse
|
6
|
Zhu F, Jiang J, Chen X, Fu L, Liu H, Zhang H. Amentoflavone regulates the miR-124-3p/CAPN2 axis to promote mitochondrial autophagy in HCC cells. Toxicol Res (Camb) 2024; 13:tfae110. [PMID: 39050595 PMCID: PMC11263925 DOI: 10.1093/toxres/tfae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a disease with poor prognosis and high mortality. Amentoflavone (AF) possesses the characteristics of marginal toxicity, stable curative effect, and good anti-HCC activity. This study aimed to evaluate the molecular mechanism of AF inhibiting HCC and provide a new idea for HCC treatment. METHODS Clinical tissue of HCC was collected. AF was given with HCC cells, and transfected with corresponding vectors. MiR-124-3p expression in HCC clinical samples and cells was ascertained by qRT-PCR assay. HCC cells viability was identified by CCK-8 assay. LC3 protein expression was ascertained by immunofluorescence assay. The expressions of CAPN2, β-catenin and mitochondrial autophagy-related proteins were detected by western blot. Dual-luciferase reporter gene assay confirmed the targeting relationship of miR-124-3p and CAPN2. RESULTS MiR-124-3p expression was inhibited and CAPN2 expression was increased in HCC tissues and cells. AF decreased HCC cell viability, up-regulated miR-124-3p expression, and inhibited CAPN2 expression and β-catenin nuclear transcription. Moreover, AF could activate the mitochondrial autophagy of HCC cells. MiR-124-3p specifically regulated CAPN2 expression. This study found that CAPN2 could promote β-catenin nuclear translocation, thus activating wnt/β-catenin pathway to inhibit mitochondrial autophagy in HCC cells. MiR-124-3p mimics enhanced AF function in promoting mitochondrial autophagy in HCC cells. However, CAPN2 overexpression, miR-124-3p inhibitor and SKL2001 attenuated the effectiveness of AF. CONCLUSION This study confirmed that AF regulated miR-124-3p/CAPN2 axis to restraint β-catenin nuclear translocation and then inhibit the wnt/β-catenin pathway, thereby promoting mitochondrial autophagy in HCC.
Collapse
Affiliation(s)
- Fengting Zhu
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| | - Jingwen Jiang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| | - Xuewu Chen
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| | - Lei Fu
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| | - Hui Liu
- Departments of Interventional Radiology, Central South University, Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, people’s Blvd., Haikou 570208, Hainan Province, P.R. China
| | - Hui Zhang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| |
Collapse
|
7
|
Qi Z, Bai X, Wu L, Zhang P, Guo Z, Yu Y. CAPN2 promotes apalutamide resistance in metastatic hormone-sensitive prostate cancer by activating protective autophagy. J Transl Med 2024; 22:538. [PMID: 38844946 PMCID: PMC11155045 DOI: 10.1186/s12967-024-05335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Apalutamide, a novel endocrine therapy agent, has been shown to significantly improve the prognosis of patients with metastatic hormone-sensitive prostate cancer (mHSPC). However, resistance to apalutamide has also been reported, and the underlying mechanism for this response has yet to be clearly elucidated. First, this study established apalutamide-resistant prostate cancer (PCa) cells, and confirmed that apalutamide activated the release of calcium ions (Ca2+) and endoplasmic reticulum stress (ERS) to enhance autophagy. Second, RNA sequencing, western blotting, and immunohistochemistry revealed significantly decreased Calpain 2 (CAPN2) expression in the apalutamide-resistant PCa cells and tissues. Furthermore, immunofluorescence and transmission electron microscopy (TEM) showed that CAPN2 promoted apalutamide resistance by activating protective autophagy. CAPN2 promoted autophagy by reducing Forkhead Box O1 (FOXO1) degradation while increasing nuclear translocation via nucleoplasmic protein isolation and immunofluorescence. In addition, FOXO1 promoted protective autophagy through the transcriptional regulation of autophagy-related gene 5 (ATG5). Furthermore, a dual-fluorescence assay confirmed that transcription factor 3 (ATF3) stimulation promoted CAPN2-mediated autophagy activation via transcriptional regulation. In summary, CAPN2 activated protective autophagy by inhibiting FOXO1 degradation and promoting its nuclear translocation via transcriptional ATG5 regulation. ATF3 activation and transcriptional CAPN2 regulation jointly promoted this bioeffect. Thus, our findings have not only revealed the mechanism underlying apalutamide resistance, but also provided a promising new target for the treatment of metastatic PCa.
Collapse
Affiliation(s)
- Zihao Qi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Huaihe Hospital of Henan University, Kaifeng, 475000, P. R. China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Linjie Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Peng Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
| | - Zhongqiang Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
| | - Ying Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
- Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
| |
Collapse
|
8
|
Slapak EJ, El Mandili M, Ten Brink MS, Kros A, Bijlsma MF, Spek CA. CAPN2-responsive mesoporous silica nanoparticles: A promising nanocarrier for targeted therapy of pancreatic cancer. Cancer Lett 2024; 590:216845. [PMID: 38589004 DOI: 10.1016/j.canlet.2024.216845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.
Collapse
Affiliation(s)
- Etienne J Slapak
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - Mouad El Mandili
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Marieke S Ten Brink
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - C Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Wei J, Wu BJ, Daoud SS. Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH). Genes (Basel) 2024; 15:357. [PMID: 38540416 PMCID: PMC10969913 DOI: 10.3390/genes15030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH, also known as MASH) is a severe form of non-alcoholic fatty liver disease (NAFLD, also known as MASLD). Emerging data indicate that the progression of the disease to MASH is higher in postmenopausal women and that genetic susceptibility increases the risk of MASH-related cirrhosis. This study aimed to investigate the association between genetic polymorphisms in MASH and sexual dimorphism. We applied whole-exome sequencing (WES) to identify gene variants in 8 age-adjusted matched pairs of livers from both male and female patients. Sequencing alignment, variant calling, and annotation were performed using standard methods. Polymerase chain reaction (PCR) coupled with Sanger sequencing and immunoblot analysis were used to validate specific gene variants. cBioPortal and Gene Set Enrichment Analysis (GSEA) were used for actionable target analysis. We identified 148,881 gene variants, representing 57,121 and 50,150 variants in the female and male cohorts, respectively, of which 251 were highly significant and MASH sex-specific (p < 0.0286). Polymorphisms in CAPN14, SLC37A3, BAZ1A, SRP54, MYH11, ABCC1, and RNFT1 were highly expressed in male liver samples. In female samples, Polymorphisms in RGSL1, SLC17A2, HFE, NLRC5, ACTN4, SBF1, and ALPK2 were identified. A heterozygous variant 1151G>T located on 18q21.32 for ALPK2 (rs3809983) was validated by Sanger sequencing and expressed only in female samples. Immunoblot analysis confirmed that the protein level of β-catenin in female samples was 2-fold higher than normal, whereas ALPK2 expression was 0.5-fold lower than normal. No changes in the protein levels of either ALPK2 or β-catenin were observed in male samples. Our study suggests that the perturbation of canonical Wnt/β-catenin signaling observed in postmenopausal women with MASH could be the result of polymorphisms in ALPK2.
Collapse
Affiliation(s)
| | | | - Sayed S. Daoud
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99202, USA; (J.W.); (B.J.W.)
| |
Collapse
|
10
|
Dai D, Wu D, Ni R, Li P, Tian Z, Shui Y, Hu H, Wei Q. Novel insights into the progression and prognosis of the calpain family members in hepatocellular carcinoma: a comprehensive integrated analysis. Front Mol Biosci 2023; 10:1162409. [PMID: 37503539 PMCID: PMC10368982 DOI: 10.3389/fmolb.2023.1162409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Objectives: The goal of our bioinformatics study was to comprehensively analyze the association between the whole calpain family members and the progression and prognosis of hepatocellular carcinoma (HCC). Methods: The data were collected from The Cancer Genome Atlas (TCGA). The landscape of the gene expression, copy number variation (CNV), mutation, and DNA methylation of calpain members were analyzed. Clustering analysis was performed to stratify the calpain-related groups. The least absolute shrinkage and selection operator (LASSO)-based Cox model was used to select hub survival genes. Results: We found 14 out of 16 calpain members expressed differently between tumor and normal tissues of HCC. The clustering analyses revealed high- and low-risk calpain groups which had prognostic difference. We found the high-risk calpain group had higher B cell infiltration and higher expression of immune checkpoint genes HAVCR2, PDCD1, and TIGHT. The CMap analysis found that the histone deacetylase (HDAC) inhibitor trichostatin A and the PI3K-AKT-mTOR pathway inhibitors LY-294002 and wortmannin might have a therapeutic effect on the high-risk calpain group. The DEGs between calpain groups were identified. Subsequent univariate Cox analysis of each DEG and LASSO-based Cox model obtained a calpain-related prognostic signature. The risk score model of this signature showed good ability to predict the overall survival of HCC patients in TCGA datasets and external validation datasets from the Gene Expression Omnibus database and the International Cancer Genome Consortium database. Conclusion: We found that calpain family members were associated with the progression, prognosis, and drug response of HCC. Our results require further studies to confirm.
Collapse
Affiliation(s)
- Dongjun Dai
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Dehao Wu
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Runliang Ni
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhifeng Tian
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanguang Hu
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|