1
|
Xu X, Zhang Y, Huang G, Perekatt A, Wang Y, Chen L. Advances and applications of gut organoids: modeling intestinal diseases and therapeutic development. LIFE MEDICINE 2025; 4:lnaf012. [PMID: 40276096 PMCID: PMC12018802 DOI: 10.1093/lifemedi/lnaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/04/2025] [Indexed: 04/26/2025]
Abstract
Gut organoids are 3D cellular structures derived from adult or pluripotent stem cells, capable of closely replicating the physiological properties of the gut. These organoids serve as powerful tools for studying gut development and modeling the pathogenesis of intestinal diseases. This review provides an in-depth exploration of technological advancements and applications of gut organoids, with a focus on their construction methods. Additionally, the potential applications of gut organoids in disease modeling, microenvironmental simulation, and personalized medicine are summarized. This review aims to offer perspectives and directions for understanding the mechanisms of intestinal health and disease as well as for developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
| | - Yuping Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Key Laboratory of Basic and Translational Research of Malignant Tumor, Shantou Central Hospital, Shantou 515041, China
| | - Ansu Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
- Institute of Microphysiological Systems, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ponzone L, Audrito V, Landi C, Moiso E, Levra Levron C, Ferrua S, Savino A, Vitale N, Gasparrini M, Avalle L, Vantaggiato L, Shaba E, Tassone B, Saoncella S, Orso F, Viavattene D, Marina E, Fiorilla I, Burrone G, Abili Y, Altruda F, Bini L, Deaglio S, Defilippi P, Menga A, Poli V, Porporato PE, Provero P, Raffaelli N, Riganti C, Taverna D, Cavallo F, Calautti E. RICTOR/mTORC2 downregulation in BRAF V600E melanoma cells promotes resistance to BRAF/MEK inhibition. Mol Cancer 2024; 23:105. [PMID: 38755661 PMCID: PMC11097536 DOI: 10.1186/s12943-024-02010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.
Collapse
Affiliation(s)
- Luca Ponzone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Claudia Landi
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Enrico Moiso
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Chiara Levra Levron
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10126, Italy
| | - Sara Ferrua
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Aurora Savino
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Nicoletta Vitale
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lidia Avalle
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Lorenza Vantaggiato
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Enxhi Shaba
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Beatrice Tassone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Personal Care, dsm-firmenich, Kaiseraugst, 4303, Switzerland
| | - Stefania Saoncella
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Francesca Orso
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Daniele Viavattene
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Eleonora Marina
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Irene Fiorilla
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Giulia Burrone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10124, Italy
| | - Youssef Abili
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- GenomeUp, Rome, 00144, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Luca Bini
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Silvia Deaglio
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Medical Sciences, University of Turin, Turin, 10124, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Alessio Menga
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Valeria Poli
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Paolo Ettore Porporato
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Paolo Provero
- Neuroscience Department "Rita Levi Montalcini", University of Turin, Turin, 10126, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Chiara Riganti
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Oncology, University of Turin, Turin, 10124, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Enzo Calautti
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy.
| |
Collapse
|
5
|
Peng N, Liu J, Hai S, Liu Y, Zhao H, Liu W. Role of Post-Translational Modifications in Colorectal Cancer Metastasis. Cancers (Basel) 2024; 16:652. [PMID: 38339403 PMCID: PMC10854713 DOI: 10.3390/cancers16030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract. CRC metastasis is a multi-step process with various factors involved, including genetic and epigenetic regulations, which turn out to be a serious threat to CRC patients. Post-translational modifications (PTMs) of proteins involve the addition of chemical groups, sugars, or proteins to specific residues, which fine-tunes a protein's stability, localization, or interactions to orchestrate complicated biological processes. An increasing number of recent studies suggest that dysregulation of PTMs, such as phosphorylation, ubiquitination, and glycosylation, play pivotal roles in the CRC metastasis cascade. Here, we summarized recent advances in the role of post-translational modifications in diverse aspects of CRC metastasis and its detailed molecular mechanisms. Moreover, advances in drugs targeting PTMs and their cooperation with other anti-cancer drugs, which might provide novel targets for CRC treatment and improve therapeutic efficacy, were also discussed.
Collapse
Affiliation(s)
- Na Peng
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Shuangshuang Hai
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Yihong Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Haibo Zhao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Weixin Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| |
Collapse
|