1
|
Fiore D, Cappelli LV, Zhaoqi L, Kotlov N, Sorokina M, Phillip J, Zumbo P, Yoffe L, Ghione P, Wang A, Han X, Taylor A, Chiu W, Fragliasso V, Tabbo F, Zamponi N, Di Siervi N, Kayembe C, Medico G, Patel RP, Gaudiano M, Machiorlatti R, Astone G, Cacciapuoti MT, Zanetti G, Pignataro C, Eric RA, Patel S, Zammarchi F, Zanettini C, Queiroz L, Nikitina A, Kudryashova O, Karelin A, Nikitin D, Tychinin D, Postovalova E, Bagaev A, Svekolkin V, Belova E, Tikhonova K, Degryse S, Xu C, Novero D, Ponzoni M, Tiacci E, Falini B, Song J, Khodos I, De Stanchina E, Macari G, Cafforio L, Gardini S, Piva R, Medico E, Ng SY, Moskowitz A, Epstein Z, Intlekofer A, Ahmed D, Chan WC, Martin P, Ruan J, Bertoni F, Foà R, Brody JD, Weinstock DM, Osan J, Santambrogio L, Elemento O, Betel D, Tam W, Ruella M, Cerchietti L, Rabadan R, Horwitz S, Inghirami G. A patient-derived T cell lymphoma biorepository uncovers pathogenetic mechanisms and host-related therapeutic vulnerabilities. Cell Rep Med 2025; 6:102029. [PMID: 40147445 DOI: 10.1016/j.xcrm.2025.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/24/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Peripheral T cell lymphomas (PTCLs) comprise heterogeneous malignancies with limited therapeutic options. To uncover targetable vulnerabilities, we generate a collection of PTCL patient-derived tumor xenografts (PDXs) retaining histomorphology and molecular donor-tumor features over serial xenografting. PDX demonstrates remarkable heterogeneity, complex intratumor architecture, and stepwise trajectories mimicking primary evolutions. Combining functional transcriptional stratification and multiparametric imaging, we identify four distinct PTCL microenvironment subtypes with prognostic value. Mechanistically, we discover a subset of PTCLs expressing Epstein-Barr virus-specific T cell receptors and uncover the capacity of cancer-associated fibroblasts of counteracting treatments. PDXs' pre-clinical testing captures individual vulnerabilities, mirrors donor patients' clinical responses, and defines effective patient-tailored treatments. Ultimately, we assess the efficacy of CD5KO- and CD30- Chimeric Antigen Receptor T Cells (CD5KO-CART and CD30_CART, respectively), demonstrating their therapeutic potential and the synergistic role of immune checkpoint inhibitors for PTCL treatment. This repository represents a resource for discovering and validating intrinsic and extrinsic factors and improving the selection of drugs/combinations and immune-based therapies.
Collapse
Affiliation(s)
- Danilo Fiore
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute for Experimental Endocrinology and Oncology, "G.Salvatore" IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Luca Vincenzo Cappelli
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Liu Zhaoqi
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Jude Phillip
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Chemical and Biomolecular Engineering, Oncology, Sidney Kimmel Comprehensive Cancer Center, Core Member, Institute for Nanobiotechnology (INBT), Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Liron Yoffe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paola Ghione
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Xueshuai Han
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Abigail Taylor
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - William Chiu
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valentina Fragliasso
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Laboratory of translational research, Azienda USL - IRCCS di Reggio Emilia, 42122 Reggio Emila, Italy
| | - Fabrizio Tabbo
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; SC Oncologia ASL CN2 Alba Bra Ospedale Michele e Pietro Ferrero, 12060 Verduno, (CN), Italy
| | - Nahuel Zamponi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Nicolás Di Siervi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Clarisse Kayembe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giovanni Medico
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcello Gaudiano
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rodolfo Machiorlatti
- Department of Pathology, Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Giuseppina Astone
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maria Teresa Cacciapuoti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giorgia Zanetti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Ruiz Arvin Eric
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sanjay Patel
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Claudio Zanettini
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucio Queiroz
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Chengqi Xu
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Domenico Novero
- Division of Pathological Anatomy, Quality and Safety of Diagnosis and Treatment, Città della Salute e della Scienza, 10126 Turin, Italy
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Enrico Tiacci
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Brunangelo Falini
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Joo Song
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | | | | | | | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; National Cancer Institute, Bethesda, MD 20892, USA
| | - Allison Moskowitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Epstein
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Intlekofer
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dogan Ahmed
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Peter Martin
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Jia Ruan
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Francesco Bertoni
- Lymphoma Genomics, Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, EOC,6500 Bellinzona, Switzerland
| | - Robin Foà
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Joshua D Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, US; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jaspreet Osan
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Oliver Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Wayne Tam
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematopathology, Northwell Health, New York, NY 11740, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Steven Horwitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2
|
Ren W, Fang Z, Dolzhenko E, Saunders CT, Cheng Z, Popic V, Peltz G. A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632219. [PMID: 39868308 PMCID: PMC11761040 DOI: 10.1101/2025.01.09.632219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A more complete map of the pattern of genetic variation among inbred mouse strains is essential for characterizing the genetic architecture of the many available mouse genetic models of important biomedical traits. Although structural variants (SVs) are a major component of genetic variation, they have not been adequately characterized among inbred strains due to methodological limitations. To address this, we generated high-quality long-read sequencing data for 40 inbred strains; and designed a pipeline to optimally identify and validate different types of SVs. This generated a database for 40 inbred strains with 573,191SVs, which included 10,815 duplications and 2,115 inversions, that also has 70 million SNPs and 7.5 million insertions/deletions. Analysis of this SV database led to the discovery of a novel bi-genic model for susceptibility to a B cell lymphoma that spontaneously develops in SJL mice, which was initially described 55 years ago. The first genetic factor is a previously identified endogenous retrovirus encoded protein that stimulates CD4 T cells to produce the cytokines required for lymphoma growth. The second genetic factor is a newly found deletion SV, which ablates a protein whose promotes B lymphoma development in SJL mice. Characterizing the genetic architecture of SJL lymphoma susceptibility could provide new insight into the pathogenesis of a human lymphoma that has similarities with this murine lymphoma.
Collapse
Affiliation(s)
- Wenlong Ren
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | | | | | - Zhuanfen Cheng
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | | | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
3
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas.
| |
Collapse
|
4
|
Krug A, Saidane A, Martinello C, Fusil F, Michels A, Buchholz CJ, Ricci JE, Verhoeyen E. In vivo CAR T cell therapy against angioimmunoblastic T cell lymphoma. J Exp Clin Cancer Res 2024; 43:262. [PMID: 39272178 PMCID: PMC11401350 DOI: 10.1186/s13046-024-03179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND For angioimmunoblastic T cell lymphoma (AITL), a rare cancer, no specific treatments are available and survival outcome is poor. We previously developed a murine model for AITL that mimics closely human disease and allows to evaluate new treatments. As in human AITL, the murine CD4+ follicular helper T (Tfh) cells are drivers of the malignancy. Therefore, chimeric antigen receptor (CAR) T cell therapy might represent a new therapeutic option. METHODS To prevent fratricide among CAR T cells when delivering an CD4-specific CAR, we used a lentiviral vector (LV) encoding an anti-CD4 CAR, allowing exclusive entry into CD8 T cells. RESULTS These anti-CD4CAR CD8-targeted LVs achieved in murine AITL biopsies high CAR-expression levels in CD8 T cells. Malignant CD4 Tfh cells were eliminated from the mAITL lymphoma, while the CAR + CD8 T cells expanded upon encounter with the CD4 receptor and were shaped into functional cytotoxic cells. Finally, in vivo injection of the CAR + CD8-LVs into our preclinical AITL mouse model carrying lymphomas, significantly prolonged mice survival. Moreover, the in vivo generated functional CAR + CD8 T cells efficiently reduced neoplastic T cell numbers in the mAITL tumors. CONCLUSION This is the first description of in vivo generated CAR T cells for therapy of a T cell lymphoma. The strategy described offers a new therapeutic concept for patients suffering from CD4-driven T cell lymphomas.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Aymen Saidane
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | | | - Floriane Fusil
- CIRI - International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
| | - Alexander Michels
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
- Frankfurt-Cancer-Institute (FCI), Goethe-University, Frankfurt, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France.
- CIRI - International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France.
| |
Collapse
|
5
|
Chalhoub B, Franco Puntes V, Mondragón L. Metallic nanoparticles biodistribution for the study of lymphoma in animal models. Methods Cell Biol 2024; 192:159-180. [PMID: 39863388 DOI: 10.1016/bs.mcb.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects. Inorganic materials (i.e., metal nanoparticles) can be used as imaging and radiotherapy agents demonstrating that nanoparticle-based therapies can combine and act as "precision medicine" for targeting tumors while leaving healthy tissue intact. Therefore, nanoparticles (NPs) appear as ideal platforms for multimodal therapy constituting a more than promising strategy in the search of effective combined treatments for T cell lymphoma. In our laboratory, we aim at validating these therapeutic strategies making use of metal NPs able to provide a diagnostic and therapeutic effect at the same time. Validation of the synthesized NPs will be possible thanks to the availability of an in vivo T cell lymphoma animal model also developed in the lab. Here, we describe basic protocols for the administration and biodistribution studies in solid tumors which could be of significant help for future therapies development and follow-up.
Collapse
Affiliation(s)
- Barbara Chalhoub
- T Cell Lymphoma Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Víctor Franco Puntes
- Design and Pharmacokinetics of Nanoparticles, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Universitari, Barcelona, Spain; Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Institut Català de Nanociència i Nanotecnologia (ICN2), Inorganic Nanoparticles, Edifici ICN2, Barcelona, Spain; Institut Català de Recerca i Estudis Avançats, (ICREA), Barcelona, Spain
| | - Laura Mondragón
- T Cell Lymphoma Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
| |
Collapse
|
6
|
Krug A, Mhaidly R, Tosolini M, Mondragon L, Tari G, Turtos AM, Paul-Bellon R, Asnafi V, Marchetti S, Di Mascio L, Travert M, Bost F, Bachy E, Argüello RJ, Fournié JJ, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. Dependence on mitochondrial respiration of malignant T cells reveals a new therapeutic target for angioimmunoblastic T-cell lymphoma. Cell Death Discov 2024; 10:292. [PMID: 38897995 PMCID: PMC11187159 DOI: 10.1038/s41420-024-02061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer metabolic reprogramming has been recognized as one of the cancer hallmarks that promote cell proliferation, survival, as well as therapeutic resistance. Up-to-date regulation of metabolism in T-cell lymphoma is poorly understood. In particular, for human angioimmunoblastic T-cell lymphoma (AITL) the metabolic profile is not known. Metabolic intervention could help identify new treatment options for this cancer with very poor outcomes and no effective medication. Transcriptomic analysis of AITL tumor cells, identified that these cells use preferentially mitochondrial metabolism. By using our preclinical AITL mouse model, mimicking closely human AITL features, we confirmed that T follicular helper (Tfh) tumor cells exhibit a strong enrichment of mitochondrial metabolic signatures. Consistent with these results, disruption of mitochondrial metabolism using metformin or a mitochondrial complex I inhibitor such as IACS improved the survival of AITL lymphoma-bearing mice. Additionally, we confirmed a selective elimination of the malignant human AITL T cells in patient biopsies upon mitochondrial respiration inhibition. Moreover, we confirmed that diabetic patients suffering from T-cell lymphoma, treated with metformin survived longer as compared to patients receiving alternative treatments. Taking together, our findings suggest that targeting the mitochondrial metabolic pathway could be a clinically efficient approach to inhibit aggressive cancers such as peripheral T-cell lymphoma.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Marie Tosolini
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Laura Mondragon
- T cell lymphoma group, Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Spain
| | - Gamze Tari
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - Adriana Martinez Turtos
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Rachel Paul-Bellon
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Institut Necker Enfants-Malades, Université Paris-Cité and INSERM U1151, Paris, France
| | - Sandrine Marchetti
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Léa Di Mascio
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Marion Travert
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - Frédéric Bost
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Emmanuel Bachy
- Hospices Civils de Lyon and Claude Bernard Lyon 1 University, Lyon, France
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Labex TOUCAN, Toulouse, France
| | - Jean-Jacques Fournié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex TOUCAN, Toulouse, France
| | - Philippe Gaulard
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, département de pathologie, F-94010, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, F-94010, Créteil, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France.
- CIRI, Université de Lyon; INSERM U1111; ENS de Lyon; University Lyon1; CNRS, UMR5308, 69007, Lyon, France.
| |
Collapse
|
7
|
Lin CC, Lee HL, Chuo HY, Chen TA, Liu MY, Chen LM. Plasmacytosis mimicking multiple myeloma in angioimmunoblastic T-cell lymphoma: A case report and review of literature. World J Clin Cases 2024; 12:3226-3234. [PMID: 38898855 PMCID: PMC11185400 DOI: 10.12998/wjcc.v12.i17.3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 04/23/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Angioimmunoblastic T-cell lymphoma (AITL) is a common subtype of peripheral T-cell lymphoma. Approximately half of patients with AITL may concurrently present with hypergammaglobulinemia. Increased numbers of plasma cells in the bone marrow are commonly observed at diagnosis. These tumors mimic plasma cell myelomas, hindering a conundrum of clinical diagnoses and potentially delaying appropriate treatment. CASE SUMMARY A 78-year-old woman experienced poor appetite, weight loss of 5 kg, fatigue 2 months before presentation, and shortness of breath 2 d before presentation, but no fever or night sweats. Physical examination revealed splenomegaly and many palpable masses over the bilateral axillary regions, approximately > 2 cm in size, with rubbery consistency and no tenderness. Blood tests revealed anemia and thrombocytopenia, lactate dehydrogenase level of 153 U/L, total protein level of 10.9 g/dL, albumin to globulin ratio of 0.2, and immunoglobulin G level more than the upper limit of 3000 mg/dL. The free kappa and lambda light chain concentrations were 451 and 614 mg/L, respectively. A pathological examination confirmed the diagnosis of AITL. The initial treatment was the cyclophosphamide, epirubicin, vincristine, and prednisolone regimen. Following this treatment, pleural effusion was controlled, and the patient was discharged in a stable condition and followed up in our outpatient department. CONCLUSION This report highlights the importance of differentiating reactive plasmacytosis from plasma cell myeloma in patients with hypergammaglobulinemia. A precise diagnosis of AITL requires a comprehensive evaluation, involving clinical, immunophenotypic, and histological findings conducted by a multidisciplinary team to ensure appropriate treatment.
Collapse
Affiliation(s)
- Chia-Ching Lin
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsu-Lin Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsin-Yi Chuo
- Department of Internal Medicine, Taichung Armed-Forces General Hospital, Taichung 411, Taiwan
| | - Tuo-An Chen
- Department of Pathology, Taichung Armed-Forces General Hospital, Taichung 411, Taiwan
| | - Ming-Yueh Liu
- Department of Radiation Oncology, Taichung Armed-Forces General Hospital, Taichung 411, Taiwan
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Li-Mien Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| |
Collapse
|
8
|
Krug A, Tosolini M, Madji Hounoum B, Fournié JJ, Geiger R, Pecoraro M, Emond P, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. Inhibition of choline metabolism in an angioimmunoblastic T-cell lymphoma preclinical model reveals a new metabolic vulnerability as possible target for treatment. J Exp Clin Cancer Res 2024; 43:43. [PMID: 38321568 PMCID: PMC10845598 DOI: 10.1186/s13046-024-02952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Angioimmunoblastic T-cell lymphoma (AITL) is a malignancy with very poor survival outcome, in urgent need of more specific therapeutic strategies. The drivers of malignancy in this disease are CD4+ follicular helper T cells (Tfh). The metabolism of these malignant Tfh cells was not yet elucidated. Therefore, we decided to identify their metabolic requirements with the objective to propose a novel therapeutic option. METHODS To reveal the prominent metabolic pathways used by the AITL lymphoma cells, we relied on metabolomic and proteomic analysis of murine AITL (mAITL) T cells isolated from our established mAITL model. We confirmed these results using AITL patient and healthy T cell expression data. RESULTS Strikingly, the mAITL Tfh cells were highly dependent on the second branch of the Kennedy pathway, the choline lipid pathway, responsible for the production of the major membrane constituent phosphatidylcholine. Moreover, gene expression data from Tfh cells isolated from AITL patient tumors, confirmed the upregulation of the choline lipid pathway. Several enzymes involved in this pathway such as choline kinase, catalyzing the first step in the phosphatidylcholine pathway, are upregulated in multiple tumors other than AITL. Here we showed that treatment of our mAITL preclinical mouse model with a fatty acid oxydation inhibitor, significantly increased their survival and even reverted the exhausted CD8 T cells in the tumor into potent cytotoxic anti-tumor cells. Specific inhibition of Chokα confirmed the importance of the phosphatidylcholine production pathway in neoplastic CD4 + T cells, nearly eradicating mAITL Tfh cells from the tumors. Finally, the same inhibitor induced in human AITL lymphoma biopsies cell death of the majority of the hAITL PD-1high neoplastic cells. CONCLUSION Our results suggest that interfering with choline metabolism in AITL reveals a specific metabolic vulnerability and might represent a new therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Inserm, Toulouse, France
| | - Blandine Madji Hounoum
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Inserm, Toulouse, France
- Labex TOUCAN, Toulouse, France
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrick Emond
- UMR iBrain, Université de Tours, Inserm, Tours, France
| | - Philippe Gaulard
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomedicale, Creteil, INSERMU955, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Département de Pathologie, 94010, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomedicale, Creteil, INSERMU955, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, 94010, Créteil, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France.
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, University Lyon1, CNRS, UMR5308, Lyon, 69007, France.
| |
Collapse
|
9
|
Lage LADPC, Culler HF, Reichert CO, da Siqueira SAC, Pereira J. Angioimmunoblastic T-cell lymphoma and correlated neoplasms with T-cell follicular helper phenotype: from molecular mechanisms to therapeutic advances. Front Oncol 2023; 13:1177590. [PMID: 37182145 PMCID: PMC10169672 DOI: 10.3389/fonc.2023.1177590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is the second most frequent subtype of mature T-cell lymphoma (MTCL) in the Western world. It derives from the monoclonal proliferation of T-follicular helper (TFH) cells and is characterized by an exacerbated inflammatory response and immune dysregulation, with predisposition to autoimmunity phenomena and recurrent infections. Its genesis is based on a multistep integrative model, where age-related and initiator mutations involve epigenetic regulatory genes, such as TET-2 and DNMT3A. Subsequently, driver-mutations, such as RhoA G17V and IDH-2 R172K/S promote the expansion of clonal TFH-cells ("second-hit"), that finally begin to secrete cytokines and chemokines, such as IL-6, IL-21, CXCL-13 and VEGF, modulating a network of complex relationships between TFH-cells and a defective tumor microenvironment (TME), characterized by expansion of follicular dendritic cells (FDC), vessels and EBV-positive immunoblasts. This unique pathogenesis leads to peculiar clinical manifestations, generating the so-called "immunodysplastic syndrome", typical of AITL. Its differential diagnosis is broad, involving viral infections, collagenosis and adverse drug reactions, which led many authors to use the term "many-faced lymphoma" when referring to AITL. Although great advances in its biological knowledge have been obtained in the last two decades, its treatment is still an unmet medical need, with highly reserved clinical outcomes. Outside the setting of clinical trials, AITL patients are still treated with multidrug therapy based on anthracyclines (CHOP-like), followed by up-front consolidation with autologous stem cell transplantation (ASCT). In this setting, the estimated 5-year overall survival (OS) is around 30-40%. New drugs, such as hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDAi), have been used for relapsed/refractory (R/R) disease with promising results. Such agents have their use based on a biological rationale, have significant potential to improve the outcomes of patients with AITL and may represent a paradigm shift in the therapeutic approach to this lymphoma in the near future.
Collapse
Affiliation(s)
- Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Hebert Fabricio Culler
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cadiele Oliana Reichert
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Juliana Pereira
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
- Department of Hematology and Oncology, Hospital Alemão Oswaldo Cruz (HAOC), São Paulo, SP, Brazil
| |
Collapse
|
10
|
Leca J, Lemonnier F, Meydan C, Foox J, El Ghamrasni S, Mboumba DL, Duncan GS, Fortin J, Sakamoto T, Tobin C, Hodgson K, Haight J, Smith LK, Elia AJ, Butler D, Berger T, de Leval L, Mason CE, Melnick A, Gaulard P, Mak TW. IDH2 and TET2 mutations synergize to modulate T Follicular Helper cell functional interaction with the AITL microenvironment. Cancer Cell 2023; 41:323-339.e10. [PMID: 36736318 DOI: 10.1016/j.ccell.2023.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Angioimmunoblastic T cell lymphoma (AITL) is a peripheral T cell lymphoma that originates from T follicular helper (Tfh) cells and exhibits a prominent tumor microenvironment (TME). IDH2 and TET2 mutations co-occur frequently in AITL, but their contribution to tumorigenesis is poorly understood. We developed an AITL mouse model that is driven by Idh2 and Tet2 mutations. Malignant Tfh cells display aberrant transcriptomic and epigenetic programs that impair TCR signaling. Neoplastic Tfh cells bearing combined Idh2 and Tet2 mutations show altered cross-talk with germinal center B cells that promotes B cell clonal expansion while decreasing Fas-FasL interaction and reducing B cell apoptosis. The plasma cell count and angiogenesis are also increased in the Idh2-mutated tumors, implying a major relationship between Idh2 mutation and the characteristic AITL TME. Our mouse model recapitulates several features of human IDH2-mutated AITL and provides a rationale for exploring therapeutic targeting of Tfh-TME cross-talk for AITL patients.
Collapse
Affiliation(s)
- Julie Leca
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada.
| | - Franҫois Lemonnier
- University Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France; AP-HP, Lymphoid Malignancies Unit, Henri Mondor Hospital, 94010 Créteil, France
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Samah El Ghamrasni
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Diana-Laure Mboumba
- University Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France
| | - Gordon S Duncan
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Jerome Fortin
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Takashi Sakamoto
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Chantal Tobin
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Kelsey Hodgson
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Jillian Haight
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Logan K Smith
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Andrew J Elia
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Thorsten Berger
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne 1011, Switzerland; Lausanne University, Lausanne 1011, Switzerland
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Philippe Gaulard
- University Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France; AP-HP, Pathology Department, Henri Mondor Hosital, 94010 Créteil, France
| | - Tak W Mak
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada; Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
11
|
Hu L, Zhang X, Li H, Lin S, Zang S. Targeting TET2 as a Therapeutic Approach for Angioimmunoblastic T Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14225699. [PMID: 36428791 PMCID: PMC9688210 DOI: 10.3390/cancers14225699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), a type of malignant lymphoma with unique genomic aberrations, significant clinicopathological features, and poor prognosis, is characterized by immune system dysregulation. Recent sequencing studies have identified recurrent mutations and interactions in tet methylcytosine dioxygenase 2 (TET2), ras homology family member A (RHOA), DNA methyltransferase 3 alpha (DNMT3A), and mitochondrial isocitrate dehydrogenase II (IDH2). Notably, since B-cell lymphomas are frequently observed along with AITL, this review first summarizes its controversial mechanisms based on traditional and recent views. Epigenetic regulation represented by TET2 plays an increasingly important role in understanding the multi-step and multi-lineage tumorigenesis of AITL, providing new research directions and treatment strategies for patients with AITL. Here, we review the latest advances in our understanding of AITL and highlight relevant issues that have yet to be addressed in clinical practice.
Collapse
Affiliation(s)
- Lina Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuanye Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huifeng Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Suxia Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-13559131526
| |
Collapse
|
12
|
Krug A, Tari G, Saidane A, Gaulard P, Ricci JE, Lemonnier F, Verhoeyen E. Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers (Basel) 2022; 14:cancers14102392. [PMID: 35625998 PMCID: PMC9139536 DOI: 10.3390/cancers14102392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This work reviews the multiple efforts that have been and are being invested by researchers as well as clinicians to improve the treatment of a specific T-cell lymphoma called follicular helper peripheral T-cell lymphoma. Still, though treatments for B-cell lymphomas have improved, this particular T-cell lymphoma has little to no new therapeutic options that show marked improvements in the survival of the patients compared to treatment with chemotherapy. We report here the evaluation of targeted new therapies for this T-cell lymphoma in new preclinical models for this cancer or in clinical trials with the objective to offer better (combination) treatment options. Abstract The classification of peripheral T-cell lymphomas (PTCL) is constantly changing and contains multiple subtypes. Here, we focus on Tfh-like PTCL, to which angioimmunoblastic T-cell lymphoma (AITL) belongs, according to the last WHO classification. The first-line treatment of these malignancies still relies on chemotherapy but gives very unsatisfying results for these patients. Enormous progress in the last decade in terms of understanding the implicated genetic mutations leading to signaling and epigenetic pathway deregulation in Tfh PTCL allowed the research community to propose new therapeutic approaches. These findings point towards new biomarkers and new therapies, including hypomethylating agents, such as azacytidine, and inhibitors of the TCR-hyperactivating molecules in Tfh PTCL. Additionally, metabolic interference, inhibitors of the NF-κB and PI3K-mTOR pathways and possibly novel immunotherapies, such as antibodies and chimeric antigen receptors (CAR) directed against Tfh malignant T-cell surface markers, are discussed in this review among other new treatment options.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Gamze Tari
- Univ Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France;
| | - Aymen Saidane
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Philippe Gaulard
- Département de Pathologie, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - François Lemonnier
- Service Unité Hémopathies Lymphoides, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France
- Correspondence: or ; Tel.: +33-4-72728731
| |
Collapse
|
13
|
Yoshihara K, Nannya Y, Matsuda I, Samori M, Utsunomiya N, Okada M, Hirota S, Ogawa S, Yoshihara S. T-cell lymphoma, B-cell lymphoma, and myelodysplastic syndrome harboring common mutations: Trilineage tumorigenesis from a common founder clone. EJHAEM 2022; 3:211-214. [PMID: 35846192 PMCID: PMC9175790 DOI: 10.1002/jha2.354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
A 64-year-old man with angioimmunoblastic T-cell lymphoma (AITL) subsequently developed diffuse large B-cell lymphoma (DLBCL) and myelodysplastic syndrome (MDS). Genomic profiling of AITL, DLBCL, and MDS samples revealed that the tumor cells from all samples shared common mutations in TET2 and DNMT3A. In addition, the IDH2 mutation was observed in AITL, and TP53 mutation was observed in DLBCL and MDS. These findings illustrate the clonal relationship between AITL and DLBCL in addition to AITL and MDS, with the latter being increasingly reported. The present findings strongly support the theory of multistep and multilineage tumorigenesis from a common founder clone.
Collapse
Affiliation(s)
- Kyoko Yoshihara
- Department of HematologyHyogo College of Medicine HospitalNishinomiyaJapan
| | - Yasuhito Nannya
- Department of Pathology and Tumor BiologyKyoto UniversityKyotoJapan
| | - Ikuo Matsuda
- Department of Surgical PathologyHyogo College of MedicineNishinomiyaJapan
| | - Mami Samori
- Department of HematologyHyogo College of Medicine HospitalNishinomiyaJapan
| | - Nobuto Utsunomiya
- Department of HematologyHyogo College of Medicine HospitalNishinomiyaJapan
| | - Masaya Okada
- Department of HematologyHyogo College of Medicine HospitalNishinomiyaJapan
| | - Seiichi Hirota
- Department of Surgical PathologyHyogo College of MedicineNishinomiyaJapan
| | - Seishi Ogawa
- Department of Pathology and Tumor BiologyKyoto UniversityKyotoJapan
| | - Satoshi Yoshihara
- Department of HematologyHyogo College of Medicine HospitalNishinomiyaJapan
- Department of Transfusion Medicine and Cellular TherapyHyogo College of Medicine HospitalNishinomiyaJapan
| |
Collapse
|
14
|
Mohammed Saleh MF, Kotb A, Abdallah GEM, Muhsen IN, El Fakih R, Aljurf M. Recent Advances in Diagnosis and Therapy of Angioimmunoblastic T Cell Lymphoma. Curr Oncol 2021; 28:5480-5498. [PMID: 34940095 PMCID: PMC8699908 DOI: 10.3390/curroncol28060456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
Abstract
Angioimmunoblastic T cell lymphoma (AITL) is a common subtype of mature peripheral T cell lymphoma (PTCL). As per the 2016 World Health Organization classification, AITL is now considered as a subtype of nodal T cell lymphoma with follicular helper T cells. The diagnosis is challenging and requires a constellation of clinical, laboratory and histopathological findings. Significant progress in the molecular pathophysiology of AITL has been achieved in the past two decades. Characteristic genomic features have been recognized that could provide a potential platform for better diagnosis and future prognostic models. Frontline therapy for AITL was mainly depending on chemotherapy and the management of relapsed or refractory AITL is still unsatisfactory with a very poor prognosis. Upfront transplantation offers better survival. Novel agents have been introduced recently with promising outcomes. Several clinical trials of combinations using novel agents are underway. Herein, we briefly review recent advances in AITL diagnosis and the evolving treatment landscape.
Collapse
Affiliation(s)
- Mostafa F. Mohammed Saleh
- Adult Hematology, Transplantation and Cellular Therapy Section, Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; (A.K.); (R.E.F.); (M.A.)
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ahmed Kotb
- Adult Hematology, Transplantation and Cellular Therapy Section, Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; (A.K.); (R.E.F.); (M.A.)
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ghada E. M. Abdallah
- Clinical Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ibrahim N. Muhsen
- Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Riad El Fakih
- Adult Hematology, Transplantation and Cellular Therapy Section, Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; (A.K.); (R.E.F.); (M.A.)
| | - Mahmoud Aljurf
- Adult Hematology, Transplantation and Cellular Therapy Section, Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; (A.K.); (R.E.F.); (M.A.)
| |
Collapse
|
15
|
Robles-Valero J, Fernández-Nevado L, Lorenzo-Martín LF, Cuadrado M, Fernández-Pisonero I, Rodríguez-Fdez S, Astorga-Simón EN, Abad A, Caloto R, Bustelo XR. Cancer-associated mutations in VAV1 trigger variegated signaling outputs and T-cell lymphomagenesis. EMBO J 2021; 40:e108125. [PMID: 34617326 PMCID: PMC8591544 DOI: 10.15252/embj.2021108125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Mutations in VAV1, a gene that encodes a multifunctional protein important for lymphocytes, are found at different frequencies in peripheral T‐cell lymphoma (PTCL), non‐small cell lung cancer, and other tumors. However, their pathobiological significance remains unsettled. After cataloguing 51 cancer‐associated VAV1 mutations, we show here that they can be classified in five subtypes according to functional impact on the three main VAV1 signaling branches, GEF‐dependent activation of RAC1, GEF‐independent adaptor‐like, and tumor suppressor functions. These mutations target new and previously established regulatory layers of the protein, leading to quantitative and qualitative changes in VAV1 signaling output. We also demonstrate that the most frequent VAV1 mutant subtype drives PTCL formation in mice. This process requires the concurrent engagement of two downstream signaling branches that promote the chronic activation and transformation of follicular helper T cells. Collectively, these data reveal the genetic constraints associated with the lymphomagenic potential of VAV1 mutant subsets, similarities with other PTCL driver genes, and potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Javier Robles-Valero
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Lucía Fernández-Nevado
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - L Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Myriam Cuadrado
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Isabel Fernández-Pisonero
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Elsa N Astorga-Simón
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain
| | - Antonio Abad
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Rubén Caloto
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Xosé R Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Prognostic value of baseline total metabolic tumour volume of 18F-FDG PET/CT imaging in patients with angioimmunoblastic T-cell lymphoma. EJNMMI Res 2021; 11:64. [PMID: 34264417 PMCID: PMC8282837 DOI: 10.1186/s13550-021-00807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose The aim of this study was to explore the prognostic value of baseline metabolic parameters of 18F-FDG PET/CT imaging in patients with angioimmunoblastic T-cell lymphoma (AITL). Materials and methods Fifty-six AITL patients (average age 64.0 ± 1.3 years) diagnosed pathologically from August 2009 to August 2019 were enrolled in this retrospective study. The total metabolic tumour volume (TMTV), total lesion glycolysis (TLG), maximum standardized uptake value (SUVmax), and correlated clinical characteristics were collected and analysed. TMTV was computed with the 41% SUVmax threshold method. The chi-square test or Fisher’s exact probability method was used to compare clinical characteristics. Kaplan–Meier curves were used to describe progression-free survival (PFS) and overall survival (OS). The log-rank test was used to analyse the difference within groups. The statistically significant factors in the univariate regression analysis were incorporated into the Cox risk proportional regression model for multivariate survival analysis. Results The TMTV cut-off value was 514.6 cm3 from the ROC curve analysis. Forty (71.4%) patients progressed and 31 (55.4%) patients died within a median follow-up time of 19.1 (interquartile range 7.8–34.6) months. The 1-year and 3-year PFS rates were 42.9% and 30.1%, and the 3-year and 5-year OS rates were 45.9% and 34.4%, respectively. Univariate survival analysis showed that high TMTV and TLG may be the factors contributing to poor PFS and OS. Multivariate analysis showed that TMTV and prognostic index for T-cell lymphoma (PIT) were independent parameters for PFS and OS in AITL patients. TMTV, combined with PIT, may have better risk stratification performance than TMTV alone. Conclusions Baseline TMTV and PIT were independent prognostic predictors in AITL patients. The combination of TMTV and PIT can facilitate prognostic stratification and contribute to personalized therapy.
Collapse
|
17
|
Pritchett JC, Yang ZZ, Kim HJ, Villasboas JC, Tang X, Jalali S, Cerhan JR, Feldman AL, Ansell SM. High-dimensional and single-cell transcriptome analysis of the tumor microenvironment in angioimmunoblastic T cell lymphoma (AITL). Leukemia 2021; 36:165-176. [PMID: 34230608 DOI: 10.1038/s41375-021-01321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive lymphoid malignancy associated with a poor clinical prognosis. The AITL tumor microenvironment (TME) is unique, featuring a minority population of malignant CD4+ T follicular helper (TFH) cells inter-mixed with a diverse infiltrate of multi-lineage immune cells. While much of the understanding of AITL biology to date has focused on characteristics of the malignant clone, less is known about the many non-malignant populations that comprise the TME. Recently, mutational consistencies have been identified between malignant cells and non-malignant B cells within the AITL TME. As a result, a significant role for non-malignant populations in AITL biology has been increasingly hypothesized. In this study, we have utilized mass cytometry and single-cell transcriptome analysis to identify several expanded populations within the AITL TME. Notably, we find that B cells within the AITL TME feature decreased expression of key markers including CD73 and CXCR5. Furthermore, we describe the expansion of distinct CD8+ T cell populations that feature an exhausted phenotype and an underlying expression profile indicative of dysfunction, impaired cytotoxicity, and upregulation of the chemokines XCL2 and XCL1.
Collapse
Affiliation(s)
| | - Zhi-Zhang Yang
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Hyo Jin Kim
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Xinyi Tang
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Health Sciences Research and Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
18
|
Xie Y, Jaffe ES. How I Diagnose Angioimmunoblastic T-Cell Lymphoma. Am J Clin Pathol 2021; 156:1-14. [PMID: 34117736 DOI: 10.1093/ajcp/aqab090] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma derived from T-follicular helper cells. For pathologists, diagnosing AITL may be challenging due to its wide clinical and histopathologic spectrum, which can mimic a variety of reactive and neoplastic processes. METHODS We summarize and discuss the clinicopathologic features of AITL, emphasizing diagnostic tools available to the practicing pathologist. Common diagnostic dilemmas are discussed. RESULTS AITL exhibits various histologic patterns and is often associated with a prominent microenvironment that can obscure the neoplastic cells. Atypical B-cell proliferations, which can take a number of forms, are common in AITL, and clonal B-cell expansion can be seen. The atypical B cells can closely resemble Hodgkin/Reed-Sternberg cells, leading to misdiagnosis as classic Hodgkin lymphoma. Molecular studies have revealed recurrent genetic alterations, which can aid in differential diagnosis, particularly in problematic cases. CONCLUSIONS Given the complex diagnostic challenges in AITL, an integrated approach, incorporating clinical, morphologic, immunophenotypic, and molecular findings, is helpful to reach an accurate diagnosis.
Collapse
Affiliation(s)
- Yi Xie
- Department of Laboratory Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
19
|
Hu P, Ben Y, Liu J, Zheng W, Yan X, Zhang Y, Shi W. Promising Response to Lenalidomide-Combination Therapy in a Discordant Lymphoma Consisting of EBV-Positive Diffuse Large B-Cell Lymphoma and Angioimmunoblastic T-Cell Lymphoma: A Case Report. Onco Targets Ther 2021; 14:2489-2495. [PMID: 33883903 PMCID: PMC8053605 DOI: 10.2147/ott.s297539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) complicated with angioimmunoblastic T-cell lymphoma (AITL) is extremely rare and typically shows an aggressive clinical course and unsatisfactory prognosis. Here, we describe the case of a 77-year-old man who was referred to the hospital because of repeated fever, night sweats, and weight loss. He was finally diagnosed with a discordant lymphoma consisting of AITL and DLBCL, with significantly different maximum standardized uptake values on positron emission tomography/computed tomography. Based on his complex illness and poor performance status, the patient received six cycles of lenalidomide combined with R-miniCHOP regimen and achieved complete remission with tolerable and controlled toxicity. He subsequently received lenalidomide maintenance therapy and achieved sustained remission. We consider the possible causes of this discordance involved AITL and EBV-positive DLBCL, and the possible mechanism of lenalidomide action in both T-cell and B-cell non-Hodgkin lymphomas. Lenalidomide-combination therapy may be a preferable choice in patients with an EBV-associated discordant lymphoma.
Collapse
Affiliation(s)
- Pan Hu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yu Ben
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Juan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Weicheng Zheng
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiyue Yan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| |
Collapse
|