1
|
Zhao J, Kang M, Li H, Rong L, Wang Y, Xue Y, Yao Y, Fang Y. QRICH1 suppresses pediatric T-cell acute lymphoblastic leukemia by inhibiting GRP78. Cell Death Dis 2024; 15:646. [PMID: 39227586 PMCID: PMC11371816 DOI: 10.1038/s41419-024-07040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that commonly affects children and adolescents with a poor prognosis. The terminal unfolded protein response (UPR) is an emerging anti-cancer approach, although its role in pediatric T-ALL remains unclear. In our pediatric T-ALL cohort from different centers, a lower QRICH1 expression was found associated with a worse prognosis of pediatric T-ALL. Overexpression of QRICH1 significantly inhibited cell proliferation and stimulated apoptosis of T-ALL both in vitro and in vivo. Upregulation of QRICH1 significantly downregulated 78 KDa glucose-regulated protein (GRP78) and upregulated CHOP, thus activating the terminal UPR. Co-overexpression of GRP78 in T-ALL cells overexpressing QRICH1 partially reverted the inhibited proliferation and stimulated apoptosis. QRICH1 bound to the residues Asp212 and Glu155 of the nucleotide-binding domain (NBD) of GRP78, thereby inhibiting its ATP hydrolysis activity. In addition, QRICH1 was associated with endoplasmic reticulum (ER) stress in T-ALL, and overexpression of QRICH1 reversed drug resistance. Overall, low QRICH1 expression is an independent risk factor for a poor prognosis of pediatric T-ALL. By inhibiting GRP78, QRICH1 suppresses pediatric T-ALL.
Collapse
Affiliation(s)
- Ji'ou Zhao
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Huimin Li
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liucheng Rong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaping Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuqian Yao
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Patel SK, Zhdanovskaya N, Sergio I, Cardinale A, Rosichini M, Varricchio C, Pace E, Capalbo C, Locatelli F, Macone A, Velardi E, Palermo R, Felli MP. Thymic-Epithelial-Cell-Dependent Microenvironment Influences Proliferation and Apoptosis of Leukemic Cells. Int J Mol Sci 2024; 25:1412. [PMID: 38338689 PMCID: PMC10855934 DOI: 10.3390/ijms25031412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.
Collapse
Affiliation(s)
- Sandesh Kumar Patel
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| | - Antonella Cardinale
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Marco Rosichini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Franco Locatelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 12631 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00161 Roma, Italy;
| | - Enrico Velardi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| |
Collapse
|
3
|
Giuli MV, Hanieh PN, Forte J, Fabiano MG, Mancusi A, Natiello B, Rinaldi F, Del Favero E, Ammendolia MG, Marianecci C, Checquolo S, Carafa M. pH-sensitive niosomes for ATRA delivery: A promising approach to inhibit Pin1 in high-grade serous ovarian cancer. Int J Pharm 2024; 649:123672. [PMID: 38052280 DOI: 10.1016/j.ijpharm.2023.123672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
The peptidyl-prolyl cis/trans isomerase Pin1 positively regulates numerous cancer-driving pathways, and it is overexpressed in several malignancies, including high-grade serous ovarian cancer (HGSOC). The findings that all-trans retinoic acid (ATRA) induces Pin1 degradation strongly support that ATRA treatment might be a promising approach for HGSOC targeted therapy. Nevertheless, repurposing ATRA into the clinics for the treatment of solid tumors remains an unmet need mainly due to the insurgence of resistance and its ineffective delivery. In the present study, niosomes have been employed for improving ATRA delivery in HGSOC cell lines. Characterization of niosomes including hydrodynamic diameter, ζ-potential, morphology, entrapment efficiency and stability over time and in culture media was performed. Furthermore, pH-sensitiveness and ATRA release profile were investigated to demonstrate the capability of these vesicles to release ATRA in a stimuli-responsive manner. Obtained results documented a nanometric and monodispersed samples with negative ζ-potential. ATRA was efficiently entrapped, and a substantial release was observed in the presence of acidic pH (pH 5.5). Finally, unloaded niosomes showed good biocompatibility while ATRA-loaded niosomes significantly increased ATRA Pin1 inhibitory activity, which was consistent with cell growth inhibition. Taken together, ATRA-loaded niosomes might represent an appealing therapeutic strategy for HGSOC therapy.
Collapse
Affiliation(s)
- Maria Valeria Giuli
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Jacopo Forte
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Maria Gioia Fabiano
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Angelica Mancusi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Bianca Natiello
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, Italy.
| | - Maria Grazia Ammendolia
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Molfetta R, Lecce M, Milito ND, Putro E, Pietropaolo G, Marangio C, Scarno G, Moretti M, De Smaele E, Santini T, Bernardini G, Sciumè G, Santoni A, Paolini R. SCF and IL-33 regulate mouse mast cell phenotypic and functional plasticity supporting a pro-inflammatory microenvironment. Cell Death Dis 2023; 14:616. [PMID: 37730723 PMCID: PMC10511458 DOI: 10.1038/s41419-023-06139-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Mast cells (MCs) are multifaceted innate immune cells often present in the tumor microenvironment (TME). Several recent findings support their contribution to the transition from chronic inflammation to cancer. However, MC-derived mediators can either favor tumor progression, inducing the spread of the tumor, or exert anti-tumorigenic functions, limiting tumor growth. This apparent controversial role likely depends on the plastic nature of MCs that under different microenvironmental stimuli can rapidly change their phenotype and functions. Thus, the exact effect of unique MC subset(s) during tumor progression is far from being understood. Using a murine model of colitis-associated colorectal cancer, we initially characterized the MC population within the TME and in non-lesional colonic areas, by multicolor flow cytometry and confocal microscopy. Our results demonstrated that tumor-associated MCs harbor a main connective tissue phenotype and release high amounts of Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. This MC phenotype correlates with the presence of high levels of Stem Cell Factor (SCF) and IL-33 inside the tumor. Thus, we investigated the effect of SCF and IL-33 on primary MC cultures and underscored their ability to shape MC phenotype eliciting the production of pro-inflammatory cytokines. Our findings support the conclusion that during colonic transformation a sustained stimulation by SCF and IL-33 promotes the accumulation of a prevalent connective tissue-like MC subset that through the secretion of IL-6 and TNF-α maintains a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| | - Mario Lecce
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Leibniz Institute for Immunotherapy-Division of functional immune cell modulation, Franz-Josef-Strausse, D-93053, Regensburg, Germany
| | - Nadia D Milito
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Erisa Putro
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Caterina Marangio
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Gianluca Scarno
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
5
|
Morris HE, Neves KB, Nilsen M, Montezano AC, MacLean MR, Touyz RM. Notch3/Hes5 Induces Vascular Dysfunction in Hypoxia-Induced Pulmonary Hypertension Through ER Stress and Redox-Sensitive Pathways. Hypertension 2023; 80:1683-1696. [PMID: 37254738 PMCID: PMC10355806 DOI: 10.1161/hypertensionaha.122.20449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Notch3 (neurogenic locus notch homolog protein 3) is implicated in vascular diseases, including pulmonary hypertension (PH)/pulmonary arterial hypertension. However, molecular mechanisms remain elusive. We hypothesized increased Notch3 activation induces oxidative and endoplasmic reticulum (ER) stress and downstream redox signaling, associated with procontractile pulmonary artery state, pulmonary vascular dysfunction, and PH development. METHODS Studies were performed in TgNotch3R169C mice (harboring gain-of-function [GOF] Notch3 mutation) exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and in mouse lung. Notch3-regulated genes/proteins, ER stress, ROCK (Rho-associated kinase) expression/activity, Ca2+ transients and generation of reactive oxygen species, and nitric oxide were measured. Pulmonary vascular reactivity was assessed in the presence of fasudil (ROCK inhibitor) and 4-phenylbutyric acid (ER stress inhibitor). RESULTS Hypoxia induced a more severe PH phenotype in TgNotch3R169C mice versus controls. TgNotch3R169C mice exhibited enhanced Notch3 activation and expression of Notch3 targets Hes Family BHLH Transcription Factor 5 (Hes5), with increased vascular contraction and impaired vasorelaxation that improved with fasudil/4-phenylbutyric acid. Notch3 mutation was associated with increased pulmonary vessel Ca2+ transients, ROCK activation, ER stress, and increased reactive oxygen species generation, with reduced NO generation and blunted sGC (soluble guanylyl cyclase)/cGMP signaling. These effects were ameliorated by N-acetylcysteine. pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension recapitulated Notch3/Hes5 signaling, ER stress and redox changes observed in PH mice. CONCLUSIONS Notch3 GOF amplifies vascular dysfunction in hypoxic PH. This involves oxidative and ER stress, and ROCK. We highlight a novel role for Notch3/Hes5-redox signaling and important interplay between ER and oxidative stress in PH.
Collapse
Affiliation(s)
- Hannah E Morris
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.E.M., K.B.N., A.C.M., R.M.T.)
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.E.M., K.B.N., A.C.M., R.M.T.)
| | - Margaret Nilsen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, United Kingdom (M.N., M.R.M.)
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.E.M., K.B.N., A.C.M., R.M.T.)
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, United Kingdom (M.N., M.R.M.)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.E.M., K.B.N., A.C.M., R.M.T.)
- Research Institute of McGill University Health Centre, McGill University, Canada (R.M.T.)
| |
Collapse
|
6
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
7
|
Pelullo M, Zema S, De Carolis M, Cialfi S, Giuli MV, Palermo R, Capalbo C, Giannini G, Screpanti I, Checquolo S, Bellavia D. 5FU/Oxaliplatin-Induced Jagged1 Cleavage Counteracts Apoptosis Induction in Colorectal Cancer: A Novel Mechanism of Intrinsic Drug Resistance. Front Oncol 2022; 12:918763. [PMID: 35847908 PMCID: PMC9283835 DOI: 10.3389/fonc.2022.918763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is characterized by early metastasis, resistance to anti-cancer therapy, and high mortality rate. Despite considerable progress in the development of new treatment options that improved survival benefits in patients with early-stage or advanced CRC, many patients relapse due to the activation of intrinsic or acquired chemoresistance mechanisms. Recently, we reported novel findings about the role of Jagged1 in CRC tumors with Kras signatures. We showed that Jagged1 is a novel proteolytic target of Kras signaling, which induces Jagged1 processing/activation resulting in Jag1-ICD release, which favors tumor development in vivo, through a non-canonical mechanism. Herein, we demonstrate that OXP and 5FU cause a strong accumulation of Jag1-ICD oncogene, through ERK1/2 activation, unveiling a surviving subpopulation with an enforced Jag1-ICD expression, presenting the ability to counteract OXP/5FU-induced apoptosis. Remarkably, we also clarify the clinical ineffectiveness of γ-secretase inhibitors (GSIs) in metastatic CRC (mCRC) patients. Indeed, we show that GSI compounds trigger Jag1-ICD release, which promotes cellular growth and EMT processes, functioning as tumor-promoting agents in CRC cells overexpressing Jagged1. We finally demonstrate that Jagged1 silencing in OXP- or 5FU-resistant subpopulations is enough to restore the sensitivity to chemotherapy, confirming that drug sensitivity/resistance is Jag1-ICD-dependent, suggesting Jagged1 as a molecular predictive marker for the outcome of chemotherapy.
Collapse
Affiliation(s)
- Maria Pelullo
- CLN2S - Center for Life Nano- & Neuro Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sabrina Zema
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Mariangela De Carolis
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Samantha Cialfi
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maria Valeria Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Rocco Palermo
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Carlo Capalbo
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giuseppe Giannini
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina, Italy
- *Correspondence: Saula Checquolo, ; Diana Bellavia,
| | - Diana Bellavia
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
- *Correspondence: Saula Checquolo, ; Diana Bellavia,
| |
Collapse
|
8
|
IRE1α Inhibitors as a Promising Therapeutic Strategy in Blood Malignancies. Cancers (Basel) 2022; 14:cancers14102526. [PMID: 35626128 PMCID: PMC9139960 DOI: 10.3390/cancers14102526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Synthesis, folding, and structural maturation of proteins occur in the endoplasmic reticulum (ER). Accumulation of misfolded or unfolded proteins in the ER lumen contributes to the induction of ER stress and activation of the unfolded protein response (UPR) signaling pathway. Under ER stress, the UPR tries to maintain cellular homeostasis through different pathways, including the inositol-requiring enzyme 1 alpha (IRE1α)-dependent ones. IRE1α is located in an ER membrane, and it is evolutionarily the oldest UPR sensor. Activation of IRE1α via ER stress triggers the formation of the spliced form of XBP1 (XBP1s), which has been linked to a pro-survival effect in cancer cells. The role of IRE1α is critical for blood cancer cells, and it was found that the levels of IRE1α and XBP1s are elevated in various hematological malignancies. This review paper is focused on summarizing the latest knowledge about the role of IRE1α and on the assessment of the potential utility of IRE1α inhibitors in blood cancers.
Collapse
|
9
|
Li Y, Lu L, Zhang G, Ji G, Xu H. The role and therapeutic implication of endoplasmic reticulum stress in inflammatory cancer transformation. Am J Cancer Res 2022; 12:2277-2292. [PMID: 35693091 PMCID: PMC9185617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023] Open
Abstract
Endoplasmic reticulum (ER) stress occurs when proteins are affected by various factors, fail to fold properly into higher structures and accumulate in the lumen of the ER, which activates the unfolded protein response (UPR) to restore normal cellular function or induce apoptosis as a self-protective mechanism. However, a growing number of studies have shown that the three branches of ER stress and the UPR can mediate inflammation and cancer development by interacting with inflammatory transformation-related signaling pathways. Targeting the UPR, especially the use of small molecules that target the active sites of the enzymes IRE1α and PERK and BIP/GRP78 inhibitors are potential strategies for treating tumors and have shown promising results in some tumor models. Therefore, in this review, we summarize the progress of ER stress/UPR research and the signaling pathways associated with inflammatory cancer transformation, provide an in-depth description of the mechanisms of these pathways, and outline strategies in the field of UPR biology in tumor therapy to provide new ideas for the mechanisms of inflammatory cancer transformation and tumor-related treatment.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| |
Collapse
|
10
|
Grazioli P, Orlando A, Giordano N, Noce C, Peruzzi G, Abdollahzadeh B, Screpanti I, Campese AF. Notch-Signaling Deregulation Induces Myeloid-Derived Suppressor Cells in T-Cell Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:809261. [PMID: 35444651 PMCID: PMC9013886 DOI: 10.3389/fimmu.2022.809261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 12/28/2022] Open
Abstract
Notch receptors deeply influence T-cell development and differentiation, and their dysregulation represents a frequent causative event in "T-cell acute lymphoblastic leukemia" (T-ALL). "Myeloid-derived suppressor cells" (MDSCs) inhibit host immune responses in the tumor environment, favoring cancer progression, as reported in solid and hematologic tumors, with the notable exception of T-ALL. Here, we prove that Notch-signaling deregulation in immature T cells promotes CD11b+Gr-1+ MDSCs in the Notch3-transgenic murine model of T-ALL. Indeed, aberrant T cells from these mice can induce MDSCs in vitro, as well as in immunodeficient hosts. Conversely, anti-Gr1-mediated depletion of MDSCs in T-ALL-bearing mice reduces proliferation and expansion of malignant T cells. Interestingly, the coculture with Notch-dependent T-ALL cell lines, sustains the induction of human CD14+HLA-DRlow/neg MDSCs from healthy-donor PBMCs that are impaired upon exposure to gamma-secretase inhibitors. Notch-independent T-ALL cells do not induce MDSCs, suggesting that Notch-signaling activation is crucial for this process. Finally, in both murine and human models, IL-6 mediates MDSC induction, which is significantly reversed by treatment with neutralizing antibodies. Overall, our results unveil a novel role of Notch-deregulated T cells in modifying the T-ALL environment and represent a strong premise for the clinical assessment of MDSCs in T-ALL patients.
Collapse
Affiliation(s)
- Paola Grazioli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Claudia Noce
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | | | | |
Collapse
|
11
|
Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed Pharmacother 2022; 148:112785. [PMID: 35272138 DOI: 10.1016/j.biopha.2022.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Juglone (5 - hydroxy - 1, 4 - naphthalene diketone) is a kind of natural naphthoquinone, present in the roots, leaves, nut-hulls, bark and wood of walnut trees. Recent studies have found that Juglone has special significance in the treatment of cancer, which plays a significant role in the resistance of cancer cell proliferation, induction of cancer cell apoptosis, induction of autophagy, anti-angiogenesis and inhibition of cancer cell migration and invasion, etc. Additionally, its derivatives also play a tumor suppressive effect. In conclusion, Juglone and its derivatives have been identified as effective anticancer drugs. This paper reviews action mechanisms of Juglone and its derivatives in cancer treatment.
Collapse
|
12
|
3-Ketodihydrosphingosine reductase maintains ER homeostasis and unfolded protein response in leukemia. Leukemia 2022; 36:100-110. [PMID: 34373586 PMCID: PMC8732298 DOI: 10.1038/s41375-021-01378-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their metabolic pathways have been implicated in disease development and therapeutic response; however, the detailed mechanisms remain unclear. Using a sphingolipid network focused CRISPR/Cas9 library screen, we identified an endoplasmic reticulum (ER) enzyme, 3-Ketodihydrosphingosine reductase (KDSR), to be essential for leukemia cell maintenance. Loss of KDSR led to apoptosis, cell cycle arrest, and aberrant ER structure. Transcriptomic analysis revealed the indispensable role of KDSR in maintaining the unfolded protein response (UPR) in ER. High-density CRISPR tiling scan and sphingolipid mass spectrometry pinpointed the critical role of KDSR's catalytic function in leukemia. Mechanistically, depletion of KDSR resulted in accumulated 3-ketodihydrosphingosine (KDS) and dysregulated UPR checkpoint proteins PERK, ATF6, and ATF4. Finally, our study revealed the synergism between KDSR suppression and pharmacologically induced ER-stress, underscoring a therapeutic potential of combinatorial targeting sphingolipid metabolism and ER homeostasis in leukemia treatment.
Collapse
|
13
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
14
|
Ng HL, Quail E, Cruickshank MN, Ulgiati D. To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis. Biomolecules 2021; 11:biom11060849. [PMID: 34200313 PMCID: PMC8227657 DOI: 10.3390/biom11060849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development.
Collapse
Affiliation(s)
- Han Leng Ng
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- Correspondence: ; Tel.: +61-8-6457-1076
| |
Collapse
|
15
|
Role of Notch Receptors in Hematologic Malignancies. Cells 2020; 10:cells10010016. [PMID: 33374160 PMCID: PMC7823720 DOI: 10.3390/cells10010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Notch receptors are single-pass transmembrane proteins that play a critical role in cell fate decisions and have been implicated in the regulation of many developmental processes. The human Notch family comprises of four receptors (Notch 1 to 4) and five ligands. Their signaling can regulate extremely basic cellular processes such as differentiation, proliferation and death. Notch is also involved in hematopoiesis and angiogenesis, and increasing evidence suggests that these genes are involved and frequently deregulated in several human malignancies, contributing to cell autonomous activities that may be either oncogenic or tumor suppressive. It was recently proposed that Notch signaling could play an active role in promoting and sustaining a broad spectrum of lymphoid malignancies as well as mutations in Notch family members that are present in several disorders of T- and B-cells, which could be responsible for altering the related signaling. Therefore, different Notch pathway molecules could be considered as potential therapeutic targets for hematological cancers. In this review, we will summarize and discuss compelling evidence pointing to Notch receptors as pleiotropic regulators of hematologic malignancies biology, first describing the physiological role of their signaling in T- and B-cell development and homeostasis, in order to fully understand the pathological alterations reported.
Collapse
|