1
|
Gins C, Guimiot F, Drunat S, Prévost C, Rosenblatt J, Capri Y, Letard P, Khung-Savatovsky S, Mahi Henni MA, Elalaoui SC, Alison M, Guilmin Crepon S, Gressens P, Verloes A, Basto R, El Ghouzzi V, Passemard S. Radial Microbrain (Micrencephaly) Is Caused by a Recurrent Variant in the RTTN Gene. Neurol Genet 2025; 11:e200221. [PMID: 40151166 PMCID: PMC11949245 DOI: 10.1212/nxg.0000000000200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/22/2024] [Indexed: 03/29/2025]
Abstract
Background and Objectives Genetic primary microcephaly (PM) is a defect in early brain development leading to congenital microcephaly, mostly recessively inherited, and mild-to-moderate intellectual disability. PM has been largely elucidated, thanks to exome and genome sequencing. However, radial microbrain, the most severe form of genetic PM or micrencephaly described in the 1980s, which leads to early lethality or very severe intellectual handicap, remains without a molecular diagnosis. We sought to identify the cause of radial microbrain by analyzing the genotype of children/adults and fetuses with an extremely small brain. Methods We searched for individuals with the smallest head circumference among patients with a confirmed diagnosis of PM included in 2 French and European observational studies coordinated at the Robert Debré Children's Hospital in Paris. Their neurodevelopment and brain imaging were analyzed, as well as next-generation sequencing for a panel of microcephaly genes or exome sequencing. Neuropathologic and immunohistologic analyses of extremely severe microcephalic fetal brains and stage-matched controls were performed. A nonparametric test and Mann-Whitney post-test were used to compare the cortical thickness between groups. Results We identified 5 individuals (4 female patients, 7 years 10 months-19 years) with a particularly small brain among a series of 50, all suffering from a severe neurodevelopmental disorder with no ability to communicate verbally and, in 3 of them, no ability to walk. Genetic analysis revealed in all individuals the presence of the same homozygous variant c.2953A>G (p.R985G) in the RTTN gene (ROTATIN). The same variant was found in 2 fetuses whose neuropathologic evaluation showed a major reduction in the thickness of the ventricular zone and neuronal heterotopias. The cortical plate was reduced by 70% compared with controls, irrespective of the region considered. Immunostaining with vimentin showed a 50% loss of radial glial columns, characteristic of radial microbrain. Discussion Our data show that the homozygous c.2953A>G substitution in RTTN is a recurrent variant responsible for radial microbrain, the most severe form of primary microcephaly. Our combined neurologic, imaging, and histopathologic approaches provide a better understanding of the severity of this condition and its prognosis. Trial Registration Information ClinicalTrials.gov number: NCT01565005.
Collapse
Affiliation(s)
- Clarisse Gins
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, Paris, France
| | - Fabien Guimiot
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, Paris, France
- Département de Génétique, UF de fœtopathologie, DMU BIOGE'M, APHP, Hôpital Robert Debré, Paris, France
| | - Séverine Drunat
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, Paris, France
- Département de Génétique, UF de Génétique Moléculaire, DMU BIOGE'M, APHP, Hôpital Robert Debré, Paris, France
| | - Clemence Prévost
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, Paris, France
| | - Jonathan Rosenblatt
- Unité de Médecine Foetale, DMU Gynécologie Périnatalité, APHP, Hôpital Robert Debré, Paris, France
| | - Yline Capri
- Département de Génétique, UF de Génétique Clinique, DMU BIOGE'M, APHP, Hôpital Robert Debré, Paris, France
| | - Pascaline Letard
- Département de Génétique, UF de fœtopathologie, DMU BIOGE'M, APHP, Hôpital Robert Debré, Paris, France
| | - Suonavy Khung-Savatovsky
- Département de Génétique, UF de fœtopathologie, DMU BIOGE'M, APHP, Hôpital Robert Debré, Paris, France
| | | | | | - Marianne Alison
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, Paris, France
- Service de Radiologie pédiatrique, APHP, Hôpital Robert Debré, Paris, France
| | | | - Pierre Gressens
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, Paris, France
| | - Alain Verloes
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, Paris, France
- Département de Génétique, UF de Génétique Clinique, DMU BIOGE'M, APHP, Hôpital Robert Debré, Paris, France
| | - Renata Basto
- Biology of Centrosomes and Genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | | | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, Paris, France
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, Paris, France
| |
Collapse
|
2
|
Guguin J, Chen TY, Cuinat S, Besson A, Bertiaux E, Boutaud L, Ardito N, Imaz Murguiondo M, Cabet S, Hamel V, Thomas S, Pain B, Edery P, Putoux A, Tang TK, Mazoyer S, Delous M. A Taybi-Linder syndrome-related RTTN variant impedes neural rosette formation in human cortical organoids. PLoS Genet 2024; 20:e1011517. [PMID: 39680576 PMCID: PMC11684760 DOI: 10.1371/journal.pgen.1011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/30/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Taybi-Linder syndrome (TALS) is a rare autosomal recessive disorder characterized by severe microcephaly with abnormal gyral pattern, severe growth retardation and bone abnormalities. It is caused by pathogenic variants in the RNU4ATAC gene. Its transcript, the small nuclear RNA U4atac, is involved in the excision of ~850 minor introns. Here, we report a patient presenting with TALS features but no pathogenic variants were found in RNU4ATAC, instead the homozygous RTTN c.2953A>G variant was detected by whole-exome sequencing. After deciphering the impact of the variant on the RTTN protein function at centrosome in engineered RTTN-depleted RPE1 cells and patient fibroblasts, we analysed neural stem cells (NSC) derived from CRISPR/Cas9-edited induced pluripotent stem cells and revealed major cell cycle and mitotic abnormalities, leading to aneuploidy, cell cycle arrest and cell death. In cortical organoids, we discovered an additional function of RTTN in the self-organisation of NSC into neural rosettes, by observing delayed apico-basal polarization of NSC. Altogether, these defects contributed to a marked delay of rosette formation in RTTN-mutated organoids, thus impeding their overall growth and shedding light on mechanisms leading to microcephaly.
Collapse
Affiliation(s)
- Justine Guguin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Ting-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Silvestre Cuinat
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Eloïse Bertiaux
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Lucile Boutaud
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Nolan Ardito
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | | | - Sara Cabet
- Service d’imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, Institut NeuroMyoGène, Université de Lyon, Lyon, France
| | - Virginie Hamel
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Sophie Thomas
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Bertrand Pain
- University of Lyon, Université de Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Tang K. Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| |
Collapse
|
3
|
Cabet S, Putoux A, Lesca G, Lesage A, Massoud M, Guibaud L. Prenatal diagnosis of microcephaly with simplified gyral pattern: series of eight cases. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:271-275. [PMID: 37551048 DOI: 10.1002/uog.27450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Microcephaly with simplified gyral pattern (MSG) is an intrinsic genetic central nervous system disorder, characterized by microcephaly (a reduction of brain volume) and a simplified gyral pattern (a reduced number of gyri and shallow sulci associated with normal cortical thickness and neuroanatomical architecture), related to a reduced number of neuronal progenitors in the germinal matrix. We report the first prenatal series of MSG and define the prenatal imaging pattern, which should inform diagnosis and guide prenatal counseling in cases of fetal microcephaly. In this single-center retrospective study of fetuses with MSG, we assessed features on ultrasound and magnetic resonance imaging (MRI), as well as genetic and neuropathological/postnatal data. We included eight patients who had been referred following observation of microcephaly. Ultrasound examination confirmed microcephaly, with a mean growth delay in head circumference of 3.4 weeks, associated with both a lack of gyration and a lack of opercularization of the Sylvian fissure and without any extracephalic anomaly. Fetal brain MRI confirmed lack of gyration with normal cortical thickness and normal intensity of the white matter in all cases. These MRI features led to exclusion of migration/corticogenesis disorders (lissencephaly/polymicrogyria), instead suggesting MSG. The posterior fossa was normal in seven of the eight cases. The corpus callosum was thin in four cases, hypoplastic in two and dysgenetic in two. In four cases, the pregnancy was terminated. The diagnosis of MSG was confirmed from neuropathological and postnatal MRI data. MSG was associated with a genetic diagnosis of RTTN (n = 1) and ASPM (n = 2) biallelic variants in three of the six cases in which genetic work-up was performed. Mild or moderate intellectual deficit with speech delay was present in the three surviving children who were at least 5 years of age at their last examination, without seizures. In conclusion, in the presence of isolated fetal microcephaly with lack of gyration on ultrasound, fetal cerebral MRI is key to diagnosing MSG, which, in the majority of cases, affects the supratentorial space exclusively, and to ruling out other cortical malformations that show a similar sonographic pattern. In addition to imaging, genetic assessment may guide prenatal counseling, since the prenatal prognosis of MSG is different from that of both diffuse polymicrogyria and lissencephaly. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- S Cabet
- Pediatric and Fetal Imaging Department, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
- Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Claude Bernard Lyon 1 University, Lyon, France
- Multidisciplinary Center for Prenatal Diagnosis, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - A Putoux
- Multidisciplinary Center for Prenatal Diagnosis, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
- Department of Genetics, Groupement Hospitalier Est, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - G Lesca
- Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Claude Bernard Lyon 1 University, Lyon, France
- Department of Genetics, Groupement Hospitalier Est, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - A Lesage
- Department of Medical Imaging, CHU Sainte-Justine, Montréal, QC, Canada
| | - M Massoud
- Department of Gynecology and Obstetrics, Multidisciplinary Center for Prenatal Diagnosis, CHLS, Hospices Civils de Lyon, Lyon, France
| | - L Guibaud
- Pediatric and Fetal Imaging Department, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
- Multidisciplinary Center for Prenatal Diagnosis, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
4
|
Romano F, Amadori E, Madia F, Severino M, Capra V, Rizzo R, Barone R, Corradi B, Maragliano L, Shams Nosrati MS, Falace A, Striano P, Zara F, Scala M. Case Report: Novel biallelic moderately damaging variants in RTTN in a patient with cerebellar dysplasia. Front Pediatr 2023; 11:1326552. [PMID: 38178912 PMCID: PMC10764497 DOI: 10.3389/fped.2023.1326552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Rotatin, encoded by the RTTN gene, is a centrosomal protein with multiple, emerging functions, including left-right specification, ciliogenesis, and neuronal migration. Recessive variants in RTTN are associated with a neurodevelopmental disorder with microcephaly and malformations of cortical development known as "Microcephaly, short stature, and polymicrogyria with seizures" (MSSP, MIM #614833). Affected individuals show a wide spectrum of clinical manifestations like intellectual disability, poor/absent speech, short stature, microcephaly, and congenital malformations. Here, we report a subject showing a distinctive neuroradiological phenotype and harboring novel biallelic variants in RTTN: the c.5500A>G, p.(Asn1834Asp), (dbSNP: rs200169343, ClinVar ID:1438510) and c.19A>G, p.(Ile7Val), (dbSNP: rs201165599, ClinVar ID:1905275) variants. In particular brain magnetic resonance imaging (MRI) showed a peculiar pattern, with cerebellar hypo-dysplasia, and multiple arachnoid cysts in the lateral cerebello-medullary cisterns, in addition to left Meckel cave. Thus, we compare his phenotypic features with current literature, speculating a possible role of newly identified RTTN variants in his clinical picture, and supporting a relevant variability in this emerging condition.
Collapse
Affiliation(s)
- Ferruccio Romano
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Child Neuropsichiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Renata Rizzo
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Beatrice Corradi
- Department of Experimental Medicine, University of Genova, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Antonio Falace
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
5
|
Bergwell M, Smith A, Smith E, Dierlam C, Duran R, Haastrup E, Napier-Jameson R, Seidel R, Potter W, Norris A, Iyer J. A primary microcephaly-associated sas-6 mutation perturbs centrosome duplication, dendrite morphogenesis, and ciliogenesis in Caenorhabditis elegans. Genetics 2023; 224:iyad105. [PMID: 37279547 PMCID: PMC10411591 DOI: 10.1093/genetics/iyad105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
The human SASS6(I62T) missense mutation has been linked with the incidence of primary microcephaly in a Pakistani family, although the mechanisms by which this mutation causes disease remain unclear. The SASS6(I62T) mutation corresponds to SAS-6(L69T) in Caenorhabditis elegans. Given that SAS-6 is highly conserved, we modeled this mutation in C. elegans and examined the sas-6(L69T) effect on centrosome duplication, ciliogenesis, and dendrite morphogenesis. Our studies revealed that all the above processes are perturbed by the sas-6(L69T) mutation. Specifically, C. elegans carrying the sas-6(L69T) mutation exhibit an increased failure of centrosome duplication in a sensitized genetic background. Further, worms carrying this mutation also display shortened phasmid cilia, an abnormal phasmid cilia morphology, shorter phasmid dendrites, and chemotaxis defects. Our data show that the centrosome duplication defects caused by this mutation are only uncovered in a sensitized genetic background, indicating that these defects are mild. However, the ciliogenesis and dendritic defects caused by this mutation are evident in an otherwise wild-type background, indicating that they are stronger defects. Thus, our studies shed light on the novel mechanisms by which the sas-6(L69T) mutation could contribute to the incidence of primary microcephaly in humans.
Collapse
Affiliation(s)
- Mary Bergwell
- Oklahoma Medical Research Foundation, Cell Cycle & Cancer Biology Research Program, Oklahoma City, OK 73104, USA
| | - Amy Smith
- Pfizer Inc., Pharmaceutical R&D – Drug Product Design & Development, Chesterfield, MO 63017, USA
| | - Ellie Smith
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Carter Dierlam
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Ramon Duran
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Erin Haastrup
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | | | - Rory Seidel
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - William Potter
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Adam Norris
- Southern Methodist University, Department of Biological Sciences, Dallas, TX 75275, USA
| | - Jyoti Iyer
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| |
Collapse
|
6
|
Chun YW, Miyamoto M, Williams CH, Neitzel LR, Silver-Isenstadt M, Cadar AG, Fuller DT, Fong DC, Liu H, Lease R, Kim S, Katagiri M, Durbin MD, Wang KC, Feaster TK, Sheng CC, Neely MD, Sreenivasan U, Cortes-Gutierrez M, Finn AV, Schot R, Mancini GMS, Ament SA, Ess KC, Bowman AB, Han Z, Bichell DP, Su YR, Hong CC. Impaired Reorganization of Centrosome Structure Underlies Human Infantile Dilated Cardiomyopathy. Circulation 2023; 147:1291-1303. [PMID: 36970983 PMCID: PMC10133173 DOI: 10.1161/circulationaha.122.060985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND During cardiomyocyte maturation, the centrosome, which functions as a microtubule organizing center in cardiomyocytes, undergoes dramatic structural reorganization where its components reorganize from being localized at the centriole to the nuclear envelope. This developmentally programmed process, referred to as centrosome reduction, has been previously associated with cell cycle exit. However, understanding of how this process influences cardiomyocyte cell biology, and whether its disruption results in human cardiac disease, remains unknown. We studied this phenomenon in an infant with a rare case of infantile dilated cardiomyopathy (iDCM) who presented with left ventricular ejection fraction of 18% and disrupted sarcomere and mitochondria structure. METHODS We performed an analysis beginning with an infant who presented with a rare case of iDCM. We derived induced pluripotent stem cells from the patient to model iDCM in vitro. We performed whole exome sequencing on the patient and his parents for causal gene analysis. CRISPR/Cas9-mediated gene knockout and correction in vitro were used to confirm whole exome sequencing results. Zebrafish and Drosophila models were used for in vivo validation of the causal gene. Matrigel mattress technology and single-cell RNA sequencing were used to characterize iDCM cardiomyocytes further. RESULTS Whole exome sequencing and CRISPR/Cas9 gene knockout/correction identified RTTN, the gene encoding the centrosomal protein RTTN (rotatin), as the causal gene underlying the patient's condition, representing the first time a centrosome defect has been implicated in a nonsyndromic dilated cardiomyopathy. Genetic knockdowns in zebrafish and Drosophila confirmed an evolutionarily conserved requirement of RTTN for cardiac structure and function. Single-cell RNA sequencing of iDCM cardiomyocytes showed impaired maturation of iDCM cardiomyocytes, which underlie the observed cardiomyocyte structural and functional deficits. We also observed persistent localization of the centrosome at the centriole, contrasting with expected programmed perinuclear reorganization, which led to subsequent global microtubule network defects. In addition, we identified a small molecule that restored centrosome reorganization and improved the structure and contractility of iDCM cardiomyocytes. CONCLUSIONS This study is the first to demonstrate a case of human disease caused by a defect in centrosome reduction. We also uncovered a novel role for RTTN in perinatal cardiac development and identified a potential therapeutic strategy for centrosome-related iDCM. Future study aimed at identifying variants in centrosome components may uncover additional contributors to human cardiac disease.
Collapse
Affiliation(s)
- Young Wook Chun
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Matthew Miyamoto
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Charles H. Williams
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Leif R. Neitzel
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Maya Silver-Isenstadt
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Adrian G. Cadar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Daniela T. Fuller
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Daniel C. Fong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Hanhan Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Robert Lease
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sungseek Kim
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Mikako Katagiri
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Matthew D. Durbin
- Division of Neonatology-Perinatology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 26202
| | - Kuo-Chen Wang
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Tromondae K. Feaster
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Calvin C. Sheng
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - M. Diana Neely
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37201
| | - Urmila Sreenivasan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aloke V. Finn
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - Rachel Schot
- Division of Neonatology-Perinatology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 26202
| | - Grazia M. S. Mancini
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Seth A. Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin C. Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37201
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906
| | - Zhe Han
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| | - David P. Bichell
- Department of Pediatric Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Yan Ru Su
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37201
| | - Charles C. Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201
| |
Collapse
|
7
|
Human Microcephaly Protein RTTN Is Required for Proper Mitotic Progression and Correct Spindle Position. Cells 2021; 10:cells10061441. [PMID: 34207628 PMCID: PMC8229632 DOI: 10.3390/cells10061441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a complex neurodevelopmental disorder characterized by a small brain size with mild to moderate intellectual disability. We previously demonstrated that human microcephaly RTTN played an important role in regulating centriole duplication during interphase, but the role of RTTN in mitosis is not fully understood. Here, we show that RTTN is required for normal mitotic progression and correct spindle position. The depletion of RTTN induces the dispersion of the pericentriolar protein γ-tubulin and multiple mitotic abnormalities, including monopolar, abnormal bipolar, and multipolar spindles. Importantly, the loss of RTTN altered NuMA/p150Glued congression to the spindle poles, perturbed NuMA cortical localization, and reduced the number and the length of astral microtubules. Together, our results provide a new insight into how RTTN functions in mitosis.
Collapse
|
8
|
Kobren SN, Baldridge D, Velinder M, Krier JB, LeBlanc K, Esteves C, Pusey BN, Züchner S, Blue E, Lee H, Huang A, Bastarache L, Bican A, Cogan J, Marwaha S, Alkelai A, Murdock DR, Liu P, Wegner DJ, Paul AJ, Sunyaev SR, Kohane IS. Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases. Genet Med 2021; 23:1075-1085. [PMID: 33580225 PMCID: PMC8187147 DOI: 10.1038/s41436-020-01084-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Genomic sequencing has become an increasingly powerful and relevant tool to be leveraged for the discovery of genetic aberrations underlying rare, Mendelian conditions. Although the computational tools incorporated into diagnostic workflows for this task are continually evolving and improving, we nevertheless sought to investigate commonalities across sequencing processing workflows to reveal consensus and standard practice tools and highlight exploratory analyses where technical and theoretical method improvements would be most impactful. METHODS We collected details regarding the computational approaches used by a genetic testing laboratory and 11 clinical research sites in the United States participating in the Undiagnosed Diseases Network via meetings with bioinformaticians, online survey forms, and analyses of internal protocols. RESULTS We found that tools for processing genomic sequencing data can be grouped into four distinct categories. Whereas well-established practices exist for initial variant calling and quality control steps, there is substantial divergence across sites in later stages for variant prioritization and multimodal data integration, demonstrating a diversity of approaches for solving the most mysterious undiagnosed cases. CONCLUSION The largest differences across diagnostic workflows suggest that advances in structural variant detection, noncoding variant interpretation, and integration of additional biomedical data may be especially promising for solving chronically undiagnosed cases.
Collapse
Affiliation(s)
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Matt Velinder
- Center for Genomic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Joel B Krier
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly LeBlanc
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Cecilia Esteves
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Barbara N Pusey
- National Human Genome Research Institute (NHGRI) at the National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Health System, Miami, FL, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Alden Huang
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna Bican
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joy Cogan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shruti Marwaha
- Stanford Center for Undiagnosed Diseases, Stanford, CA, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York City, NY, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander J Paul
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Imran Naseer M, Abdulrahman Abdulkareem A, Yousef Muthaffar O, Chaudhary AG. Exome sequencing reveled a compound heterozygous mutations in RTTN gene causing developmental delay and primary microcephaly. Saudi J Biol Sci 2021; 28:2824-2829. [PMID: 34012324 PMCID: PMC8116967 DOI: 10.1016/j.sjbs.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022] Open
Abstract
RTTN (Rotatin) (OMIM 614833) is a large centrosomal protein coding gene. RTTN mutations are responsible for syndromic forms of malformation of brain development, leading to polymicrogyria, microcephaly, primordial dwarfism, seizure along with many other malformations. In this study we have identified a compound heterozygous mutation in RTTN gene having NM_173630 c.5225A > G p.His1742Arg in exon 39 and NM_173630 c.6038G > T p.Cys2013Phe in exon 45 of a consanguineous Saudi family leading to brain malformation, seizure, developmental delay, dysmorphic feature and microcephaly. Whole exome sequencing (WES) techniques was used to identify the causative mutation in the affected members of the family. WES data analysis was done and obtained data were further confirmed by using Sanger sequencing analysis. Moreover, the mutation was ruled out in 100 healthy control from normal population. To the best of our knowledge the novel compound heterozygous mutation observed in this study is the first report from Saudi Arabia. The identified compound heterozygous mutation will further explain the role of RTTN gene in development of microcephaly and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
10
|
|
11
|
Vandervore LV, Schot R, Kasteleijn E, Oegema R, Stouffs K, Gheldof A, Grochowska MM, van der Sterre MLT, van Unen LMA, Wilke M, Elfferich P, van der Spek PJ, Heijsman D, Grandone A, Demmers JAA, Dekkers DHW, Slotman JA, Kremers GJ, Schaaf GJ, Masius RG, van Essen AJ, Rump P, van Haeringen A, Peeters E, Altunoglu U, Kalayci T, Poot RA, Dobyns WB, Bahi-Buisson N, Verheijen FW, Jansen AC, Mancini GMS. Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain 2019; 142:867-884. [PMID: 30879067 PMCID: PMC6439326 DOI: 10.1093/brain/awz045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.
Collapse
Affiliation(s)
- Laura V Vandervore
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Esmee Kasteleijn
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Renske Oegema
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Pathology, Clinical Bio-informatics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Katrien Stouffs
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Marianne L T van der Sterre
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Leontine M A van Unen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter Elfferich
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Daphne Heijsman
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Anna Grandone
- Department of Molecular Genetics, Proteomics Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Johan A Slotman
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Roy G Masius
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anton J van Essen
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Patrick Rump
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Pediatric Neurology, Juliana Hospital, Els Borst-Eilersplein 275, 2545 AA Den Haag, The Netherlands
| | - Els Peeters
- Department of Medical genetics, Istanbul Medical Faculty, Istanbul University, Topkapı Mahallesi, Turgut Özal Millet Cd, 34093 Fatih/İstanbul, Turkey
| | - Umut Altunoglu
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Tugba Kalayci
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Imagine Institute, INSERM UMR-1163, Laboratory Genetics and Embryology of Congenital Malformations, Paris Descartes University, Institut des Maladies Génétiques 24, Boulevard de Montparnasse, Paris, France
| | - Nadia Bahi-Buisson
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anna C Jansen
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| |
Collapse
|
12
|
Zakaria M, Fatima A, Klar J, Wikström J, Abdullah U, Ali Z, Akram T, Tariq M, Ahmad H, Schuster J, Baig SM, Dahl N. Primary microcephaly, primordial dwarfism, and brachydactyly in adult cases with biallelic skipping of RTTN exon 42. Hum Mutat 2019; 40:899-903. [PMID: 30927481 DOI: 10.1002/humu.23755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/27/2019] [Accepted: 03/24/2019] [Indexed: 11/11/2022]
Abstract
Biallelic and pathogenic variants in the RTTN gene, encoding the centrosomal protein Rotatin, are associated with variable degrees of neurodevelopmental abnormalities, microcephaly, and extracranial malformations. To date, no reported case has reached their third decade. Herein, we report on a consanguineous family with three adult members, age 43, 57, and 60 years respectively, with primary microcephaly, developmental delay, primordial dwarfism, and brachydactyly segregating a homozygous splice site variant NM_173630.3:c.5648-5T>A in RTTN. The variant RTTN allele results in a nonhypomorphic skipping of exon 42 and a frameshift [(NP_775901.3:p.Ala1883Glyfs*6)]. Brain MRI of one affected individual showed markedly reduced volume of cerebral lobes and enlarged sulci but without signs of neural migration defects. Our assessment of three adult cases with a biallelic RTTN variant shows that a predicted shortened Rotatin, lacking the C-terminal end, are associated with stationary clinical features into the seventh decade. Furthermore, our report adds brachydactyly to the phenotypic spectrum in this pleiotropic entity.
Collapse
Affiliation(s)
- Muhammad Zakaria
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Centre for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Ambrin Fatima
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Uzma Abdullah
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Zafar Ali
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Talia Akram
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Tariq
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Habib Ahmad
- Department of Botany, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Jens Schuster
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Niklas Dahl
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|