1
|
Cao Q, Xu W, Chen X, Luo G, Reinach PS, Yan D. PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3. Invest Ophthalmol Vis Sci 2025; 66:22. [PMID: 39786757 PMCID: PMC11725987 DOI: 10.1167/iovs.66.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes. Methods The murine CEWH model was established using an Alger brush. Corneal epithelial-specific Prmt1 knockout mice were generated using the Cre-lox system. Quantitative reverse transcription polymerase chain reaction and Western blot analyses determined the expression of candidate genes at mRNA and protein expression levels. Human corneal epithelial cells (HCECs) were transfected with siRNA using Lipofectamine RNAiMAX or infected with lentivirus to precisely alter the expression of PRMT1 or Annexin A3 (ANXA3). EdU and a scratch wound-healing assay evaluated the effects of PRMT1 or ANXA3 on HCEC proliferation and migration, respectively. Rescue experiment and chromatin immunoprecipitation assay validate the correlation between PRMT1 and ANXA3. Results Prmt1 is significantly upregulated during CEWH, accompanied by an elevated global arginine methylation level. Knockdown of PRMT1 in HCECs or in vivo knockout impairs cell proliferation, migration, and the CEWH process. Furthermore, ANXA3 was identified as a critical target of PRMT1, with PRMT1 enhancing ANXA3 expression through histone arginine methylation at its promoter region, establishing a causal correlation between them. Moreover, PRMT1 can modulate the NF-κB and JNK signaling pathways via ANXA3. Conclusions PRMT1 is a critical epigenetic regulator in CEWH, promoting wound healing by upregulating ANXA3 via histone arginine methylation. These findings highlight the potential of targeting PRMT1 to enhance corneal epithelial repair.
Collapse
Affiliation(s)
- Qiongjie Cao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenji Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangying Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter S. Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Saintilnord WN, Hegazy YA, Chesnutt K, Eckstein M, Cassidy RN, Dhahri H, Bennett RL, Melters DP, Lopes E, Fu Z, Lau K, Chandler DP, Poirier MG, Dalal Y, Licht JD, Fondufe-Mittendorf Y. Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624207. [PMID: 39605447 PMCID: PMC11601509 DOI: 10.1101/2024.11.18.624207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin architecture governs DNA accessibility and gene expression. Thus, any perturbations to chromatin can significantly alter gene expression programs and promote disease. Prior studies demonstrate that every amino acid in a histone is functionally significant, and that even a single amino acid substitution can drive specific cancers. We previously observed that naturally occurring H2B variants are dysregulated during the epithelial to mesenchymal transition (EMT) in bronchial epithelial cells. Naturally occurring H2B variants differ from canonical H2B by only a few amino acids, yet single amino acid changes in other histone variants (e.g., H3.3) can drive cancer. We therefore hypothesized that H2B variants might function like oncohistones, and investigated how they modify chromatin architecture, dynamics, and function. We find that H2B variants are frequently dysregulated in many cancers, and correlate with patient prognosis. Despite high sequence similarity, mutations in each H2B variant tend to occur at specific "hotspots" in cancer. Some H2B variants cause tighter DNA wrapping around nucleosomes, leading to more compact chromatin structures and reduced transcription factor accessibility to nucleosomal DNA. They also altered genome-wide accessibility to oncogenic regulatory elements and genes, with concomitant changes in oncogenic gene expression programs. Although we did not observe changes in cell proliferation or migration in vitro , our Gene Ontology (GO) analyses of ATAC-seq peaks and RNA-seq data indicated significant changes in oncogenic pathways. These findings suggest that H2B variants may influence early-stage, cancer-associated regulatory mechanisms, potentially setting the stage for oncogenesis later on. Thus, H2B variant expression could serve as an early cancer biomarker, and H2B variants might be novel therapeutic targets.
Collapse
|
3
|
Qin B, Lu G, Chen X, Zheng C, Lin H, Liu Q, Shang J, Feng G. H2B oncohistones cause homologous recombination defect and genomic instability through reducing H2B monoubiquitination in Schizosaccharomyces pombe. J Biol Chem 2024; 300:107345. [PMID: 38718864 PMCID: PMC11167522 DOI: 10.1016/j.jbc.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Canonical oncohistones are histone H3 mutations in the N-terminal tail associated with tumors and affect gene expression by altering H3 post-translational modifications (PTMs) and the epigenetic landscape. Noncanonical oncohistone mutations occur in both tails and globular domains of all four core histones and alter gene expression by perturbing chromatin remodeling. However, the effects and mechanisms of noncanonical oncohistones remain largely unknown. Here we characterized 16 noncanonical H2B oncohistones in the fission yeast Schizosaccharomyces pombe. We found that seven of them exhibited temperature sensitivities and 11 exhibited genotoxic sensitivities. A detailed study of two of these onco-mutants H2BG52D and H2BP102L revealed that they were defective in homologous recombination (HR) repair with compromised histone eviction and Rad51 recruitment. Interestingly, their genotoxic sensitivities and HR defects were rescued by the inactivation of the H2BK119 deubiquitination function of Ubp8 in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. The levels of H2BK119 monoubiquitination (H2Bub) in the H2BG52D and H2BP102L mutants are reduced in global genome and at local DNA break sites presumably due to enhanced recruitment of Ubp8 onto nucleosomes and are recovered upon loss of H2B deubiquitination function of the SAGA complex. Moreover, H2BG52D and H2BP102L heterozygotes exhibit genotoxic sensitivities and reduced H2Bub in cis. We therefore conclude that H2BG52D and H2BP102L oncohistones affect HR repair and genome stability via the reduction of H2Bub and propose that other noncanonical oncohistones may also affect histone PTMs to cause diseases.
Collapse
Affiliation(s)
- Bingxin Qin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guangchun Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuejin Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chenhua Zheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huanteng Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qi Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Espinoza Pereira KN, Shan J, Licht JD, Bennett RL. Histone mutations in cancer. Biochem Soc Trans 2023; 51:1749-1763. [PMID: 37721138 PMCID: PMC10657182 DOI: 10.1042/bst20210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Genes encoding histone proteins are recurrently mutated in tumor samples, and these mutations may impact nucleosome stability, histone post-translational modification, or chromatin dynamics. The prevalence of histone mutations across diverse cancer types suggest that normal chromatin structure is a barrier to tumorigenesis. Oncohistone mutations disrupt chromatin structure and gene regulatory mechanisms, resulting in aberrant gene expression and the development of cancer phenotypes. Examples of oncohistones include the histone H3 K27M mutation found in pediatric brain cancers that blocks post-translational modification of the H3 N-terminal tail and the histone H2B E76K mutation found in some solid tumors that disrupts nucleosome stability. Oncohistones may comprise a limited fraction of the total histone pool yet cause global effects on chromatin structure and drive cancer phenotypes. Here, we survey histone mutations in cancer and review their function and role in tumorigenesis.
Collapse
Affiliation(s)
| | - Jixiu Shan
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Jonathan D. Licht
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Richard L. Bennett
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
5
|
Wu Y, Shang J, Ruan Q, Tan X. Integrated single-cell and bulk RNA sequencing in pancreatic cancer identifies disulfidptosis-associated molecular subtypes and prognostic signature. Sci Rep 2023; 13:17577. [PMID: 37845218 PMCID: PMC10579418 DOI: 10.1038/s41598-023-43036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
Pancreatic cancer (PC) is known for its high degree of heterogeneity and exceptionally adverse outcome. While disulfidptosis is the most recently identified form of cell death, the predictive and therapeutic value of disulfidptosis-related genes (DRGs) for PC remains unknown. RNA sequencing data with the follow-up information, were retrieved from the TCGA and ICGC databases. Consensus clustering analysis was conducted on patient data using R software. Subsequently, the LASSO regression analysis was conducted to create a prognostic signature for foreseeing the outcome of PC. Differences in relevant pathways, mutational landscape, and tumor immune microenvironment were compared between PC samples with different risk levels. Finally, we experimentally confirmed the impact of DSG3 on the invasion and migration abilities of PC cells. All twenty DRGs were found to be hyperexpressed in PC tissues, and fourteen of them significantly associated with PC survival. Using consensus clustering analysis based on these DRGs, four DRclusters were identified. Additionally, altogether 223 differential genes were evaluated between clusters, indicating potential biological differences between them. Four gene clusters (geneClusters) were recognized according to these genes, and a 10-gene prognostic signature was created. High-risk patients were found to be primarily enriched in signaling pathways related to the cell cycle and p53. Furthermore, the rate of mutations was markedly higher in high-risk patients, besides important variations were present in terms of immune microenvironment and chemotherapy sensitivity among patients with different risk levels. DSG3 could appreciably enhance the invasion and migration of PC cells. This work, based on disulfidoptosis-related genes (DRGs), holds the promise of classifying PC patients and predicting their prognosis, mutational landscape, immune microenvironment, and drug therapy. These insights could boost an improvement in a better comprehension of the role of DRGs in PC as well as provide new opportunities for prognostic prediction and more effective treatment strategies.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jin Shang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qiang Ruan
- Virology Lab, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
6
|
Yang J, Pei T, Su G, Duan P, Liu X. AnnexinA6: a potential therapeutic target gene for extracellular matrix mineralization. Front Cell Dev Biol 2023; 11:1201200. [PMID: 37727505 PMCID: PMC10506415 DOI: 10.3389/fcell.2023.1201200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
The mineralization of the extracellular matrix (ECM) is an essential and crucial process for physiological bone formation and pathological calcification. The abnormal function of ECM mineralization contributes to the worldwide risk of developing mineralization-related diseases; for instance, vascular calcification is attributed to the hyperfunction of ECM mineralization, while osteoporosis is due to hypofunction. AnnexinA6 (AnxA6), a Ca2+-dependent phospholipid-binding protein, has been extensively reported as an essential target in mineralization-related diseases such as osteoporosis, osteoarthritis, atherosclerosis, osteosarcoma, and calcific aortic valve disease. To date, AnxA6, as the largest member of the Annexin family, has attracted much attention due to its significant contribution to matrix vesicles (MVs) production and release, MVs-ECM interaction, cytoplasmic Ca2+ influx, and maturation of hydroxyapatite, making it an essential target in ECM mineralization. In this review, we outlined the recent advancements in the role of AnxA6 in mineralization-related diseases and the potential mechanisms of AnxA6 under normal and mineralization-related pathological conditions. AnxA6 could promote ECM mineralization for bone regeneration in the manner described previously. Therefore, AnxA6 may be a potential osteogenic target for ECM mineralization.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Identification and Interaction Analysis of Molecular Markers in Pancreatic Ductal Adenocarcinoma by Bioinformatics and Next-Generation Sequencing Data Analysis. Bioinform Biol Insights 2023; 17:11779322231186719. [PMID: 37529485 PMCID: PMC10387711 DOI: 10.1177/11779322231186719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/18/2023] [Indexed: 08/03/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancers worldwide. Intense efforts have been made to elucidate the molecular pathogenesis, but the molecular mechanisms of PDAC are still not well understood. The purpose of this study is to further explore the molecular mechanism of PDAC through integrated bioinformatics analysis. Methods To identify the candidate genes in the carcinogenesis and progression of PDAC, next-generation sequencing (NGS) data set GSE133684 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and Gene Ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using Integrated Interactions Database (IID) interactome database and Cytoscape. Subsequently, miRNA-DEG regulatory network and TF-DEG regulatory network were constructed using miRNet database, NetworkAnalyst database, and Cytoscape software. The expression levels of hub genes were validated based on Kaplan-Meier analysis, expression analysis, stage analysis, mutation analysis, protein expression analysis, immune infiltration analysis, and receiver operating characteristic (ROC) curve analysis. Results A total of 463 DEGs were identified, consisting of 232 upregulated genes and 233 downregulated genes. The enriched GO terms and pathways of the DEGs include vesicle organization, secretory vesicle, protein dimerization activity, lymphocyte activation, cell surface, transferase activity, transferring phosphorus-containing groups, hemostasis, and adaptive immune system. Four hub genes (namely, cathepsin B [CCNB1], four-and-a-half LIM domains 2 (FHL2), major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) and tubulin beta 1 class VI (TUBB1)) were obtained via taking interaction of different analysis results. Conclusions On the whole, the findings of this investigation enhance our understanding of the potential molecular mechanisms of PDAC and provide potential targets for further investigation.
Collapse
Affiliation(s)
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Society’s College of Pharmacy, Gadag, India
| | - Rajeshwari Horakeri
- Department of Computer Science, Government First Grade College, Hubballi, India
| | | |
Collapse
|
8
|
Kawakubo K, Castillo CFD, Liss AS. Epigenetic regulation of pancreatic adenocarcinoma in the era of cancer immunotherapy. J Gastroenterol 2022; 57:819-826. [PMID: 36048239 PMCID: PMC9596544 DOI: 10.1007/s00535-022-01915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic adenocarcinoma is a lethal cancer with poor response to chemotherapy and immune checkpoint inhibitors. Recent studies suggest that epigenetic alterations contribute to its aggressive biology and the tumor microenvironment which render it unresponsive to immune checkpoint blockade. Here, we review our current understandings of epigenetic dysregulation in pancreatic adenocarcinoma, its effect on the tumor immune microenvironment, and the potential for epigenetic therapy to be combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Andrew Scott Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Mitchener MM, Muir TW. Oncohistones: Exposing the nuances and vulnerabilities of epigenetic regulation. Mol Cell 2022; 82:2925-2938. [PMID: 35985302 PMCID: PMC9482148 DOI: 10.1016/j.molcel.2022.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
Work over the last decade has uncovered a new layer of epigenetic dysregulation. It is now appreciated that somatic missense mutations in histones, the packaging agents of genomic DNA, are often associated with human pathologies, especially cancer. Although some of these "oncohistone" mutations are thought to be key drivers of cancer, the impacts of the majority of them on disease onset and progression remain to be elucidated. Here, we survey this rapidly expanding research field with particular emphasis on how histone mutants, even at low dosage, can corrupt chromatin states. This work is unveiling the remarkable intricacies of epigenetic control mechanisms. Throughout, we highlight how studies of oncohistones have leveraged, and in some cases fueled, the advances in our ability to manipulate and interrogate chromatin at the molecular level.
Collapse
Affiliation(s)
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Histone H2B Mutations in Cancer. Biomedicines 2021; 9:biomedicines9060694. [PMID: 34205231 PMCID: PMC8235166 DOI: 10.3390/biomedicines9060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/27/2023] Open
Abstract
Oncohistones have emerged as a new area in cancer epigenetics research. Recent efforts to catalogue histone mutations in cancer patients have revealed thousands of histone mutations across different types of cancer. In contrast to previously identified oncohistones (H3K27M, H3G34V/R, and H3K36M), where the mutations occur on the tail domain and affect histone post-translational modifications, the majority of the newly identified mutations are located within the histone fold domain and affect gene expression via distinct mechanisms. The recent characterization of the selected H2B has revealed previously unappreciated roles of oncohistones in nucleosome stability, chromatin accessibility, and chromatin remodeling. This review summarizes recent advances in the study of H2B oncohistones and other emerging oncohistones occurring on other types of histones, particularly those occurring on the histone fold domain.
Collapse
|
11
|
Kang TZE, Zhu L, Yang D, Ding D, Zhu X, Wan YCE, Liu J, Ramakrishnan S, Chan LL, Chan SY, Wang X, Gan H, Han J, Ishibashi T, Li Q, Chan KM. The elevated transcription of ADAM19 by the oncohistone H2BE76K contributes to oncogenic properties in breast cancer. J Biol Chem 2021; 296:100374. [PMID: 33548228 PMCID: PMC7949156 DOI: 10.1016/j.jbc.2021.100374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023] Open
Abstract
The recent discovery of the cancer-associated E76K mutation in histone H2B (H2BE76-to-K) in several types of cancers revealed a new class of oncohistone. H2BE76K weakens the stability of histone octamers, alters gene expression, and promotes colony formation. However, the mechanism linking the H2BE76K mutation to cancer development remains largely unknown. In this study, we knock in the H2BE76K mutation in MDA-MB-231 breast cancer cells using CRISPR/Cas9 and show that the E76K mutant histone H2B preferentially localizes to genic regions. Interestingly, genes upregulated in the H2BE76K mutant cells are enriched for the E76K mutant H2B and are involved in cell adhesion and proliferation pathways. We focused on one H2BE76K target gene, ADAM19 (a disintegrin and metalloproteinase-domain-containing protein 19), a gene highly expressed in various human cancers including breast invasive carcinoma, and demonstrate that H2BE76K directly promotes ADAM19 transcription by facilitating efficient transcription along the gene body. ADAM19 depletion reduced the colony formation ability of the H2BE76K mutant cells, whereas wild-type MDA-MB-231 cells overexpressing ADAM19 mimics the colony formation phenotype of the H2BE76K mutant cells. Collectively, our data demonstrate the mechanism by which H2BE76K deregulates the expression of genes that control oncogenic properties through a combined effect of its specific genomic localization and nucleosome destabilization effect.
Collapse
Affiliation(s)
- Tze Zhen Evangeline Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Lina Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Du Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Peking, China
| | - Dongbo Ding
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoxuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Jiaxian Liu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Saravanan Ramakrishnan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Landon Long Chan
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | - Toyotaka Ishibashi
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Peking, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|