1
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2025; 32:66-77. [PMID: 37828086 PMCID: PMC11748643 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Hegazy YA, Dhahri H, El Osmani N, George S, Chandler DP, Fondufe-Mittendorf YN. Histone variants: The bricks that fit differently. J Biol Chem 2025; 301:108048. [PMID: 39638247 PMCID: PMC11742582 DOI: 10.1016/j.jbc.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Histone proteins organize nuclear DNA in eukaryotic cells and play crucial roles in regulating chromatin structure and function. Histone variants are produced by distinct histone genes and are produced independently of their canonical counterparts throughout the cell cycle. Even though histone variants may differ by only one or a few amino acids relative to their canonical counterparts, these minor variations can profoundly alter chromatin structure, accessibility, dynamics, and gene expression. Histone variants often interact with dedicated chaperones and remodelers and can have unique post-translational modifications that shape unique gene expression landscapes. Histone variants also play essential roles in DNA replication, damage repair, and histone-protamine transition during spermatogenesis. Importantly, aberrant histone variant expression and DNA mutations in histone variants are linked to various human diseases, including cancer, developmental disorders, and neurodegenerative diseases. In this review, we explore how core histone variants impact nucleosome structure and DNA accessibility, the significance of variant-specific post-translational modifications, how variant-specific chaperones and remodelers contribute to a regulatory network governing chromatin behavior, and discuss current knowledge about the association of histone variants with human diseases.
Collapse
Affiliation(s)
- Youssef A Hegazy
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Hejer Dhahri
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Nour El Osmani
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Smitha George
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Darrell P Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | |
Collapse
|
3
|
Saintilnord WN, Hegazy YA, Chesnutt K, Eckstein M, Cassidy RN, Dhahri H, Bennett RL, Melters DP, Lopes E, Fu Z, Lau K, Chandler DP, Poirier MG, Dalal Y, Licht JD, Fondufe-Mittendorf Y. Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624207. [PMID: 39605447 PMCID: PMC11601509 DOI: 10.1101/2024.11.18.624207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin architecture governs DNA accessibility and gene expression. Thus, any perturbations to chromatin can significantly alter gene expression programs and promote disease. Prior studies demonstrate that every amino acid in a histone is functionally significant, and that even a single amino acid substitution can drive specific cancers. We previously observed that naturally occurring H2B variants are dysregulated during the epithelial to mesenchymal transition (EMT) in bronchial epithelial cells. Naturally occurring H2B variants differ from canonical H2B by only a few amino acids, yet single amino acid changes in other histone variants (e.g., H3.3) can drive cancer. We therefore hypothesized that H2B variants might function like oncohistones, and investigated how they modify chromatin architecture, dynamics, and function. We find that H2B variants are frequently dysregulated in many cancers, and correlate with patient prognosis. Despite high sequence similarity, mutations in each H2B variant tend to occur at specific "hotspots" in cancer. Some H2B variants cause tighter DNA wrapping around nucleosomes, leading to more compact chromatin structures and reduced transcription factor accessibility to nucleosomal DNA. They also altered genome-wide accessibility to oncogenic regulatory elements and genes, with concomitant changes in oncogenic gene expression programs. Although we did not observe changes in cell proliferation or migration in vitro , our Gene Ontology (GO) analyses of ATAC-seq peaks and RNA-seq data indicated significant changes in oncogenic pathways. These findings suggest that H2B variants may influence early-stage, cancer-associated regulatory mechanisms, potentially setting the stage for oncogenesis later on. Thus, H2B variant expression could serve as an early cancer biomarker, and H2B variants might be novel therapeutic targets.
Collapse
|
4
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
5
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
6
|
Dabin J, Giacomini G, Petit E, Polo SE. New facets in the chromatin-based regulation of genome maintenance. DNA Repair (Amst) 2024; 140:103702. [PMID: 38878564 DOI: 10.1016/j.dnarep.2024.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024]
Abstract
The maintenance of genome integrity by DNA damage response machineries is key to protect cells against pathological development. In cell nuclei, these genome maintenance machineries operate in the context of chromatin, where the DNA wraps around histone proteins. Here, we review recent findings illustrating how the chromatin substrate modulates genome maintenance mechanisms, focusing on the regulatory role of histone variants and post-translational modifications. In particular, we discuss how the pre-existing chromatin landscape impacts DNA damage formation and guides DNA repair pathway choice, and how DNA damage-induced chromatin alterations control DNA damage signaling and repair, and DNA damage segregation through cell divisions. We also highlight that pathological alterations of histone proteins may trigger genome instability by impairing chromosome segregation and DNA repair, thus defining new oncogenic mechanisms and opening up therapeutic options.
Collapse
Affiliation(s)
- Juliette Dabin
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Giulia Giacomini
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Eliane Petit
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Qin B, Lu G, Chen X, Zheng C, Lin H, Liu Q, Shang J, Feng G. H2B oncohistones cause homologous recombination defect and genomic instability through reducing H2B monoubiquitination in Schizosaccharomyces pombe. J Biol Chem 2024; 300:107345. [PMID: 38718864 PMCID: PMC11167522 DOI: 10.1016/j.jbc.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Canonical oncohistones are histone H3 mutations in the N-terminal tail associated with tumors and affect gene expression by altering H3 post-translational modifications (PTMs) and the epigenetic landscape. Noncanonical oncohistone mutations occur in both tails and globular domains of all four core histones and alter gene expression by perturbing chromatin remodeling. However, the effects and mechanisms of noncanonical oncohistones remain largely unknown. Here we characterized 16 noncanonical H2B oncohistones in the fission yeast Schizosaccharomyces pombe. We found that seven of them exhibited temperature sensitivities and 11 exhibited genotoxic sensitivities. A detailed study of two of these onco-mutants H2BG52D and H2BP102L revealed that they were defective in homologous recombination (HR) repair with compromised histone eviction and Rad51 recruitment. Interestingly, their genotoxic sensitivities and HR defects were rescued by the inactivation of the H2BK119 deubiquitination function of Ubp8 in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. The levels of H2BK119 monoubiquitination (H2Bub) in the H2BG52D and H2BP102L mutants are reduced in global genome and at local DNA break sites presumably due to enhanced recruitment of Ubp8 onto nucleosomes and are recovered upon loss of H2B deubiquitination function of the SAGA complex. Moreover, H2BG52D and H2BP102L heterozygotes exhibit genotoxic sensitivities and reduced H2Bub in cis. We therefore conclude that H2BG52D and H2BP102L oncohistones affect HR repair and genome stability via the reduction of H2Bub and propose that other noncanonical oncohistones may also affect histone PTMs to cause diseases.
Collapse
Affiliation(s)
- Bingxin Qin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guangchun Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuejin Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chenhua Zheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huanteng Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qi Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Espinoza Pereira KN, Shan J, Licht JD, Bennett RL. Histone mutations in cancer. Biochem Soc Trans 2023; 51:1749-1763. [PMID: 37721138 PMCID: PMC10657182 DOI: 10.1042/bst20210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Genes encoding histone proteins are recurrently mutated in tumor samples, and these mutations may impact nucleosome stability, histone post-translational modification, or chromatin dynamics. The prevalence of histone mutations across diverse cancer types suggest that normal chromatin structure is a barrier to tumorigenesis. Oncohistone mutations disrupt chromatin structure and gene regulatory mechanisms, resulting in aberrant gene expression and the development of cancer phenotypes. Examples of oncohistones include the histone H3 K27M mutation found in pediatric brain cancers that blocks post-translational modification of the H3 N-terminal tail and the histone H2B E76K mutation found in some solid tumors that disrupts nucleosome stability. Oncohistones may comprise a limited fraction of the total histone pool yet cause global effects on chromatin structure and drive cancer phenotypes. Here, we survey histone mutations in cancer and review their function and role in tumorigenesis.
Collapse
Affiliation(s)
| | - Jixiu Shan
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Jonathan D. Licht
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Richard L. Bennett
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
9
|
Bonner ER, Dawood A, Gordish-Dressman H, Eze A, Bhattacharya S, Yadavilli S, Mueller S, Waszak SM, Nazarian J. Pan-cancer atlas of somatic core and linker histone mutations. NPJ Genom Med 2023; 8:23. [PMID: 37640703 PMCID: PMC10462747 DOI: 10.1038/s41525-023-00367-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Recent genomic data points to a growing role for somatic mutations altering core histone and linker histone-encoding genes in cancer. However, the prevalence and the clinical and biological implications of histone gene mutations in malignant tumors remain incompletely defined. To address these knowledge gaps, we analyzed somatic mutations in 88 linker and core histone genes across 12,743 tumors from pediatric, adolescent and young adult (AYA), and adult cancer patients. We established a pan-cancer histone mutation atlas contextualized by patient age, survival outcome, and tumor location. Overall, 11% of tumors harbored somatic histone mutations, with the highest rates observed among chondrosarcoma (67%), pediatric high-grade glioma (pHGG, >60%), and lymphoma (>30%). Previously unreported histone mutations were discovered in pHGG and other pediatric brain tumors, extending the spectrum of histone gene alterations associated with these cancers. Histone mutation status predicted patient survival outcome in tumor entities including adrenocortical carcinoma. Recurrent pan-cancer histone mutation hotspots were defined and shown to converge on evolutionarily conserved and functional residues. Moreover, we studied histone gene mutations in 1700 pan-cancer cell lines to validate the prevalence and spectrum of histone mutations seen in primary tumors and derived histone-associated drug response profiles, revealing candidate drugs targeting histone mutant cancer cells. This study presents the first-of-its-kind atlas of both core and linker histone mutations across pediatric, AYA, and adult cancers, providing a framework by which specific cancers may be redefined in the context of histone and chromatin alterations.
Collapse
Affiliation(s)
- Erin R Bonner
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Adam Dawood
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | | | - Augustine Eze
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Sridevi Yadavilli
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Sebastian M Waszak
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
10
|
Spangler CJ, Skrajna A, Foley CA, Nguyen A, Budziszewski GR, Azzam DN, Arteaga EC, Simmons HC, Smith CB, Wesley NA, Wilkerson EM, McPherson JME, Kireev D, James LI, Frye SV, Goldfarb D, McGinty RK. Structural basis of paralog-specific KDM2A/B nucleosome recognition. Nat Chem Biol 2023; 19:624-632. [PMID: 36797403 PMCID: PMC10159993 DOI: 10.1038/s41589-023-01256-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023]
Abstract
The nucleosome acidic patch is a major interaction hub for chromatin, providing a platform for enzymes to dock and orient for nucleosome-targeted activities. To define the molecular basis of acidic patch recognition proteome wide, we performed an amino acid resolution acidic patch interactome screen. We discovered that the histone H3 lysine 36 (H3K36) demethylase KDM2A, but not its closely related paralog, KDM2B, requires the acidic patch for nucleosome binding. Despite fundamental roles in transcriptional repression in health and disease, the molecular mechanisms governing nucleosome substrate specificity of KDM2A/B, or any related JumonjiC (JmjC) domain lysine demethylase, remain unclear. We used a covalent conjugate between H3K36 and a demethylase inhibitor to solve cryogenic electron microscopy structures of KDM2A and KDM2B trapped in action on a nucleosome substrate. Our structures show that KDM2-nucleosome binding is paralog specific and facilitated by dynamic nucleosomal DNA unwrapping and histone charge shielding that mobilize the H3K36 sequence for demethylation.
Collapse
Affiliation(s)
- Cathy J Spangler
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Aleksandra Skrajna
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline A Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anh Nguyen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabrielle R Budziszewski
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dalal N Azzam
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eyla C Arteaga
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Holly C Simmons
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charlotte B Smith
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel A Wesley
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily M Wilkerson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeanne-Marie E McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert K McGinty
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Wang D, Fan X, Li M, Liu T, Lu P, Wang G, Li Y, Han J, Zhao J. Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR J 2022; 5:746-768. [PMID: 36512351 DOI: 10.1089/crispr.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recently established prime editor (PE) system is regarded as next-generation gene-editing technology. This methodology can install any base-to-base change as well as insertions and deletions without the requirement for double-stranded break formation or donor DNA templates; thus, it offers more targeting flexibility and greater editing precision than conventional CRISPR-Cas systems or base editors. In this study, we introduce the basic principles of PE and then review its most recent progress in terms of editing versatility, specificity, and efficiency in mammals. Next, we summarize key considerations regarding the selection of PE variants, prime editing guide RNA (pegRNA) design rules, and the efficiency and accuracy evaluation of PE. Finally, we highlight and discuss how PE can assist in a wide range of biological studies and how it can be applied to make precise genomic corrections in animal models, which paves the way for curing human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianbo Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangxin Wang
- Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JunMing Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, China; Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China; and Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Kawakubo K, Castillo CFD, Liss AS. Epigenetic regulation of pancreatic adenocarcinoma in the era of cancer immunotherapy. J Gastroenterol 2022; 57:819-826. [PMID: 36048239 PMCID: PMC9596544 DOI: 10.1007/s00535-022-01915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic adenocarcinoma is a lethal cancer with poor response to chemotherapy and immune checkpoint inhibitors. Recent studies suggest that epigenetic alterations contribute to its aggressive biology and the tumor microenvironment which render it unresponsive to immune checkpoint blockade. Here, we review our current understandings of epigenetic dysregulation in pancreatic adenocarcinoma, its effect on the tumor immune microenvironment, and the potential for epigenetic therapy to be combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Andrew Scott Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Mitchener MM, Muir TW. Oncohistones: Exposing the nuances and vulnerabilities of epigenetic regulation. Mol Cell 2022; 82:2925-2938. [PMID: 35985302 PMCID: PMC9482148 DOI: 10.1016/j.molcel.2022.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
Work over the last decade has uncovered a new layer of epigenetic dysregulation. It is now appreciated that somatic missense mutations in histones, the packaging agents of genomic DNA, are often associated with human pathologies, especially cancer. Although some of these "oncohistone" mutations are thought to be key drivers of cancer, the impacts of the majority of them on disease onset and progression remain to be elucidated. Here, we survey this rapidly expanding research field with particular emphasis on how histone mutants, even at low dosage, can corrupt chromatin states. This work is unveiling the remarkable intricacies of epigenetic control mechanisms. Throughout, we highlight how studies of oncohistones have leveraged, and in some cases fueled, the advances in our ability to manipulate and interrogate chromatin at the molecular level.
Collapse
Affiliation(s)
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Abstract
Chromatin dysfunction has been implicated in a growing number of cancers especially in children and young adults. In addition to chromatin modifying and remodeling enzymes, mutations in histone genes are linked to human cancers. Since the first reports of hotspot missense mutations affecting key residues at histone H3 tail, studies have revealed how these so-called "oncohistones" dominantly (H3K27M and H3K36M) or locally (H3.3G34R/W) inhibit corresponding histone methyltransferases and misregulate epigenome and transcriptome to promote tumorigenesis. More recently, widespread mutations in all four core histones are identified in diverse cancer types. Furthermore, an "oncohistone-like" protein EZHIP has been implicated in driving childhood ependymomas through a mechanism highly reminiscent of H3K27M mutation. We will review recent progresses on understanding the biochemical, molecular and biological mechanisms underlying the canonical and novel histone mutations. Importantly, these mechanistic insights have identified therapeutic opportunities for oncohistone-driven tumors.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author: Chao Lu:
| |
Collapse
|
15
|
Histone H2B Mutations in Cancer. Biomedicines 2021; 9:biomedicines9060694. [PMID: 34205231 PMCID: PMC8235166 DOI: 10.3390/biomedicines9060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/27/2023] Open
Abstract
Oncohistones have emerged as a new area in cancer epigenetics research. Recent efforts to catalogue histone mutations in cancer patients have revealed thousands of histone mutations across different types of cancer. In contrast to previously identified oncohistones (H3K27M, H3G34V/R, and H3K36M), where the mutations occur on the tail domain and affect histone post-translational modifications, the majority of the newly identified mutations are located within the histone fold domain and affect gene expression via distinct mechanisms. The recent characterization of the selected H2B has revealed previously unappreciated roles of oncohistones in nucleosome stability, chromatin accessibility, and chromatin remodeling. This review summarizes recent advances in the study of H2B oncohistones and other emerging oncohistones occurring on other types of histones, particularly those occurring on the histone fold domain.
Collapse
|
16
|
Amatori S, Tavolaro S, Gambardella S, Fanelli M. The dark side of histones: genomic organization and role of oncohistones in cancer. Clin Epigenetics 2021; 13:71. [PMID: 33827674 PMCID: PMC8025322 DOI: 10.1186/s13148-021-01057-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background The oncogenic role of histone mutations is one of the most relevant discovery in cancer epigenetics. Recurrent mutations targeting histone genes have been described in pediatric brain tumors, chondroblastoma, giant cell tumor of bone and other tumor types. The demonstration that mutant histones can be oncogenic and drive the tumorigenesis in pediatric tumors, led to the coining of the term “oncohistones.” The first identified histone mutations were localized at or near residues normally targeted by post-translational modifications (PTMs) in the histone N-terminal tails and suggested a possible interference with histone PTMs regulation and reading. Main body In this review, we describe the peculiar organization of the multiple genes that encode histone proteins, and the latter advances in both the identification and the biological role of histone mutations in cancer. Recent works show that recurrent somatic mutations target both N-terminal tails and globular histone fold domain in diverse tumor types. Oncohistones are often dominant-negative and occur at higher frequencies in tumors affecting children and adolescents. Notably, in many cases the mutations target selectively only some of the genes coding the same histone protein and are frequently associated with specific tumor types or, as documented for histone variant H3.3 in pediatric glioma, with peculiar tumors arising from specific anatomic locations. Conclusion The overview of the most recent advances suggests that the oncogenic potential of histone mutations can be exerted, together with the alteration of histone PTMs, through the destabilization of nucleosome and DNA–nucleosome interactions, as well as through the disruption of higher-order chromatin structure. However, further studies are necessary to fully elucidate the mechanism of action of oncohistones, as well as to evaluate their possible application to cancer classification, prognosis and to the identification of new therapies.
Collapse
Affiliation(s)
- Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| | - Simona Tavolaro
- Fredis Associazione, Via Edoardo Jenner 30, 00151, Rome, Italy
| | - Stefano Gambardella
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.,IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Via Arco d'Augusto 2, 61032, Fano, PU, Italy.
| |
Collapse
|
17
|
Espiritu D, Gribkova AK, Gupta S, Shaytan AK, Panchenko AR. Molecular Mechanisms of Oncogenesis through the Lens of Nucleosomes and Histones. J Phys Chem B 2021; 125:3963-3976. [PMID: 33769808 DOI: 10.1021/acs.jpcb.1c00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the cellular level, cancer is the disease of both the genome and the epigenome, and the interplay between genetic mutations and epigenetic states may occur at the level of elementary chromatin units, the nucleosomes. They are formed by a segment of DNA wrapped around an octamer of histone proteins. In this review, we survey various mechanisms of cancer etiology and progression mediated by histones and nucleosomes. In particular, we discuss the effects of mutations in histones, changes in their expression and slicing on epigenetic dysregulation and carcinogenesis. The links between cancer phenotypes and differential expression of histone variants and isoforms are summarized. Finally, we discourse the geometric and steric effects of DNA compaction in nucleosomes on DNA mutation rate, interactions with transcription factors, including pioneer transcription factors, and prospects of cancer cells' genome and epigenome editing.
Collapse
Affiliation(s)
- Daniel Espiritu
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Anna K Gribkova
- Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia.,Sirius University of Science and Technology, 1 Olympic Avenue, Sochi, 354340, Russia
| | - Shubhangi Gupta
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alexey K Shaytan
- Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia.,Sirius University of Science and Technology, 1 Olympic Avenue, Sochi, 354340, Russia.,Bioinformatics Lab, Faculty of Computer Science, HSE University, 11 Pokrovsky Boulevard, Moscow, 109028, Russia
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nat Chem Biol 2021; 17:403-411. [PMID: 33649601 PMCID: PMC8174649 DOI: 10.1038/s41589-021-00738-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
Whole genome sequencing data mining efforts have revealed numerous histone mutations in a wide range of cancer types. These occur in all four core histones in both the tail and globular domains and remain largely uncharacterized. Here we used two high-throughput approaches, a DNA-barcoded mononucleosome library and a humanized yeast library, to profile the biochemical and cellular effects of these mutations. We identified cancer-associated mutations in the histone globular domains that enhance fundamental chromatin remodeling processes, histone exchange and nucleosome sliding, and are lethal in yeast. In mammalian cells, these mutations upregulate cancer-associated gene pathways and inhibit cellular differentiation by altering expression of lineage-specific transcription factors. This work represents a comprehensive functional analysis of the histone mutational landscape in human cancers and leads to a model in which histone mutations that perturb nucleosome remodeling may contribute to disease development and/or progression.
Collapse
|
19
|
Kang TZE, Zhu L, Yang D, Ding D, Zhu X, Wan YCE, Liu J, Ramakrishnan S, Chan LL, Chan SY, Wang X, Gan H, Han J, Ishibashi T, Li Q, Chan KM. The elevated transcription of ADAM19 by the oncohistone H2BE76K contributes to oncogenic properties in breast cancer. J Biol Chem 2021; 296:100374. [PMID: 33548228 PMCID: PMC7949156 DOI: 10.1016/j.jbc.2021.100374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023] Open
Abstract
The recent discovery of the cancer-associated E76K mutation in histone H2B (H2BE76-to-K) in several types of cancers revealed a new class of oncohistone. H2BE76K weakens the stability of histone octamers, alters gene expression, and promotes colony formation. However, the mechanism linking the H2BE76K mutation to cancer development remains largely unknown. In this study, we knock in the H2BE76K mutation in MDA-MB-231 breast cancer cells using CRISPR/Cas9 and show that the E76K mutant histone H2B preferentially localizes to genic regions. Interestingly, genes upregulated in the H2BE76K mutant cells are enriched for the E76K mutant H2B and are involved in cell adhesion and proliferation pathways. We focused on one H2BE76K target gene, ADAM19 (a disintegrin and metalloproteinase-domain-containing protein 19), a gene highly expressed in various human cancers including breast invasive carcinoma, and demonstrate that H2BE76K directly promotes ADAM19 transcription by facilitating efficient transcription along the gene body. ADAM19 depletion reduced the colony formation ability of the H2BE76K mutant cells, whereas wild-type MDA-MB-231 cells overexpressing ADAM19 mimics the colony formation phenotype of the H2BE76K mutant cells. Collectively, our data demonstrate the mechanism by which H2BE76K deregulates the expression of genes that control oncogenic properties through a combined effect of its specific genomic localization and nucleosome destabilization effect.
Collapse
Affiliation(s)
- Tze Zhen Evangeline Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Lina Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Du Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Peking, China
| | - Dongbo Ding
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoxuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Jiaxian Liu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Saravanan Ramakrishnan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Landon Long Chan
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | - Toyotaka Ishibashi
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Peking, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
20
|
Kurumizaka H, Kujirai T, Takizawa Y. Contributions of Histone Variants in Nucleosome Structure and Function. J Mol Biol 2020; 433:166678. [PMID: 33065110 DOI: 10.1016/j.jmb.2020.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022]
Abstract
Chromatin compacts genomic DNA in eukaryotes. The primary chromatin unit is the nucleosome core particle, composed of four pairs of the core histones, H2A, H2B, H3, and H4, and 145-147 base pairs of DNA. Since replication, recombination, repair, and transcription take place in chromatin, the structure and dynamics of the nucleosome must be versatile. These nucleosome characteristics underlie the epigenetic regulation of genomic DNA. In higher eukaryotes, many histone variants have been identified as non-allelic isoforms, which confer nucleosome diversity. In this article, we review the manifold types of nucleosomes produced by histone variants, which play important roles in the epigenetic regulation of chromatin.
Collapse
Affiliation(s)
- Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
21
|
The H2BG53D oncohistone directly upregulates ANXA3 transcription and enhances cell migration in pancreatic ductal adenocarcinoma. Signal Transduct Target Ther 2020; 5:106. [PMID: 32606294 PMCID: PMC7326972 DOI: 10.1038/s41392-020-00219-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/25/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023] Open
|