1
|
Li P, Liu G, Zhang W, Li T. Prkci promotes colorectal cancer metastasis by phosphorylating and stabilizing Tgfbr1 to activate TGF-β signaling. Cell Commun Signal 2025; 23:230. [PMID: 40382656 DOI: 10.1186/s12964-025-02236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
Colorectal cancer is one of the most common malignancies worldwide, with metastasis being the leading cause of cancer-related mortality. However, the molecular mechanisms driving CRC metastasis remain poorly understood. In this study, we identified Prkci as a critical oncogenic driver in CRC metastasis. Prkci was significantly upregulated in metastatic CRC tissues. Mechanistically, Prkci phosphorylated and stabilized Tgfbr1, a key receptor in the Transforming Growth Factor Beta signaling pathway, preventing its proteasomal degradation and amplifying downstream signaling cascades. This stabilization promoted epithelial-to-mesenchymal transition, enhancing migratory and invasive capacities of CRC cells. In vivo, Prkci knockout significantly reduced liver and lung metastases and prolonged survival in mouse models, highlighting its therapeutic potential. These findings establish Prkci as a promising therapeutic target for suppressing CRC metastasis and improving outcomes for metastatic CRC patients.
Collapse
Affiliation(s)
- Peng Li
- Gastrointestinal Surgery department, People Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, Urumqi, 830000, China.
| | - Guangshi Liu
- Gastrointestinal Surgery department, People Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, Urumqi, 830000, China
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830001, China
| | - Tao Li
- Gastrointestinal Surgery department, People Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, Urumqi, 830000, China
| |
Collapse
|
2
|
Yuan CL, Yang XL, Sun L, Jiang YX, Zhang DD, Huang S. Isoliquiritigenin Suppresses Breast Tumor Development by Enhancing Host Antitumor Immunity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1819-1841. [PMID: 39343993 DOI: 10.1142/s0192415x2450071x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Isoliquiritigen (ISL), a constituent of licorice, has been shown to possess antitumorigenic effects in diverse cancer types. In this study, we observed that ISL suppressed breast tumor development significantly more effectively in immunocompetent mice than in immunocompromised ones. In exploring the cause of such a discrepancy, we detected robust tumor infiltration of CD8[Formula: see text] T lymphocytes in mice treated with ISL, not seen in tumors derived from vehicle-treated mice. Moreover, we found a dramatic reduction in PD-L1 in both experimental breast tumors and cultured breast cancer cells upon ISL treatment. In further experiments, we showed that ISL selectively elevated miR-200c in breast cancer and confirmed that PD-L1 mRNA is the target of miR-200c in both murine and human breast cancer cells. ISL suppression of PD-L1 was functionally linked to miR-200c/ZEB1/2 because (1) ISL diminished ZEB1/2; (2) knockdown of ZEB1/2 led to the disappearance of PD-L1; and (3) miR-200c antagomiR disabled ISL to reduce PD-L1. We found evidence that ISL reduced the level of PD-L1 by simultaneously intercepting the ERK and Src signaling pathways. In agreement with clinical finding that PD-L1 antibodies enhance efficacy of taxane-based therapy, we showed that ISL improved the tumoricidal effects of paclitaxel in an orthopedic murine breast tumor model. This study demonstrates that ISL-led tumor suppression acts through the augmentation of host antitumor immunity.
Collapse
Affiliation(s)
- Chun-Lu Yuan
- Institute of Interdisciplinary Integrative Medical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiao-Lu Yang
- Department of Pharmacy, Baoshan Hospital of Traditional Chinese and Western Medicine, Shanghai, P. R. China
| | - Lei Sun
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yi-Xin Jiang
- Institute of Interdisciplinary Integrative Medical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Dan-Dan Zhang
- Institute of Interdisciplinary Integrative Medical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Qu L, Xin Y, Feng J, Ren X, Li Z, Chen X, Miao G, Chen J, Sun C, Lu Y. Downregulation of PRKCI inhibits osteosarcoma cell growth by inactivating the Akt/mTOR signaling pathway. Front Oncol 2024; 14:1389136. [PMID: 39015499 PMCID: PMC11249533 DOI: 10.3389/fonc.2024.1389136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
PRKCI is abnormally expressed in various cancers, but its role in osteosarcoma is unknown. This study aimed to explore the biological function of PRKCI in osteosarcoma and its potential molecular mechanism. PRKCI expression was evaluated in osteosarcoma cell lines using Western blot analysis and reverse transcription PCR. The CCK-8 assay, colony formation assay, flow cytometry, Transwell assay, and wound-healing assay were used to detect the proliferation, colony-forming capacity, cell cycle, migration, and invasion of osteosarcoma cells when PRKCI was overexpressed or knocked down. The interaction between PRKCI and SQSTM1 was explored using immunoprecipitation. Finally, the protein molecule expression of the Akt/mTOR signaling pathway in osteosarcoma was detected when PRKCI was knocked down. Our study found that PRKCI was overexpressed in osteosarcoma cell lines. The overexpression of PRKCI promoted the proliferation and colony-forming capacity of osteosarcoma cells, while silencing PRKCI inhibited the proliferation, colony-forming capacity, migration, and invasion of osteosarcoma cells and arrested the cell cycle at the G2/M phase. Both PRKCI and SQSTM1 were overexpressed in osteosarcoma. The expression of PRKCI was only related to histological type, while that of SQSTM1 was not related to clinical characteristics. The expression of PRKCI and SQSTM1 in osteosarcoma was higher than that in chondrosarcoma. Knockdown of PRKCI inhibited the proliferation of osteosarcoma cells by inactivating the Akt/mTOR signaling pathway, suggesting that PRKCI was a potential target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Liujing Qu
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yu Xin
- Department of Medical Laboratory, Qingdao Sixth People’s Hospital, Qingdao, China
| | - Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolei Ren
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangyan Miao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jiankun Chen
- The Third Comprehensive Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Chengming Sun
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Tao H, Song SJ, Fan ZW, Li WT, Jin X, Jiang W, Bai J, Shi ZZ. PKCiota Inhibits the Ferroptosis of Esophageal Cancer Cells via Suppressing USP14-Mediated Autophagic Degradation of GPX4. Antioxidants (Basel) 2024; 13:114. [PMID: 38247539 PMCID: PMC10812620 DOI: 10.3390/antiox13010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignant tumors, and the mechanisms underlying the anti-ferroptosis of esophageal cancer cells are still largely unclear. This study aims to explore the roles of amplified protein kinase C iota (PKCiota) in the ferroptosis of ESCC cells. Cell viability, colony formation, MDA assay, Western blotting, co-IP, PLA, and RNA-seq technologies are used to reveal the roles and mechanisms underlying the PKCiota-induced resistance of ESCC cells to ferroptosis. We showed here that PKCiota was amplified and overexpressed in ESCC and decreased during RSL3-induced ferroptosis of ESCC cells. PKCiota interacted with GPX4 and the deubiquitinase USP14 and improved the protein stability of GPX4 by suppressing the USP14-mediated autophagy-lysosomal degradation pathway. PKCiota was negatively regulated by miR-145-5p, which decreased in esophageal cancer, and also regulated by USP14 and GPX4 by a positive feedback loop. PKCiota silencing and miR-145-5p overexpression suppressed tumor growth of ESCC cells in vivo, respectively; even a combination of silencing PKCiota and RSL3 treatment showed more vital suppressive roles on tumor growth than silencing PKCiota alone. Both PKCiota silencing and miR-145-5p overexpression sensitized ESCC cells to RSL3-induced ferroptosis. These results unveiled that amplified and overexpressed PKCiota induced the resistance of ESCC cells to ferroptosis by suppressing the USP14-mediated autophagic degradation of GPX4. Patients with PKCiota/USP14/GPX4 pathway activation might be sensitive to GPX4-targeted ferroptosis-based therapy.
Collapse
Affiliation(s)
- Hao Tao
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Sheng-Jie Song
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Ze-Wen Fan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Wen-Ting Li
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Xin Jin
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Wen Jiang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650000, China;
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| |
Collapse
|
5
|
Xia Q, Liang T, Zhou Y, Liu J, Tang Y, Liu F. Recent Advances in Biomedical Nanotechnology Related to Natural Products. Curr Pharm Biotechnol 2024; 25:944-961. [PMID: 37605408 DOI: 10.2174/1389201024666230821090222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023]
Abstract
Natural product processing via nanotechnology has opened the door to innovative and significant applications in medical fields. On one hand, plants-derived bioactive ingredients such as phenols, pentacyclic triterpenes and flavonoids exhibit significant pharmacological activities, on another hand, most of them are hydrophobic in nature, posing challenges to their use. To overcome this issue, nanoencapsulation technology is employed to encapsulate these lipophilic compounds and enhance their bioavailability. In this regard, various nano-sized vehicles, including degradable functional polymer organic compounds, mesoporous silicon or carbon materials, offer superior stability and retention for bioactive ingredients against decomposition and loss during delivery as well as sustained release. On the other hand, some naturally occurring polymers, lipids and even microorganisms, which constitute a significant portion of Earth's biomass, show promising potential for biomedical applications as well. Through nano-processing, these natural products can be developed into nano-delivery systems with desirable characteristics for encapsulation a wide range of bioactive components and therapeutic agents, facilitating in vivo drug transport. Beyond the presentation of the most recent nanoencapsulation and nano-processing advancements with formulations mainly based on natural products, this review emphasizes the importance of their physicochemical properties at the nanoscale and their potential in disease therapy.
Collapse
Affiliation(s)
- Qing Xia
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
6
|
Ara MG, Motalleb G, Velasco B, Rahdar A, Taboada P. Antineoplastic effect of paclitaxel-loaded polymeric nanocapsules on malignant human ovarian carcinoma cells (SKOV-3). J Mol Liq 2023; 384:122190. [DOI: 10.1016/j.molliq.2023.122190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
7
|
Talbot T, Lu H, Aboagye EO. Amplified therapeutic targets in high-grade serous ovarian carcinoma - a review of the literature with quantitative appraisal. Cancer Gene Ther 2023; 30:955-963. [PMID: 36804485 PMCID: PMC9940086 DOI: 10.1038/s41417-023-00589-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
High-grade serous ovarian carcinoma is a unique cancer characterised by universal TP53 mutations and widespread copy number alterations. These copy number alterations include deletion of tumour suppressors and amplification of driver oncogenes. Given their key oncogenic roles, amplified driver genes are often proposed as therapeutic targets. For example, development of anti-HER2 agents has been clinically successful in treatment of ERBB2-amplified tumours. A wide scope of preclinical work has since investigated numerous amplified genes as potential therapeutic targets in high-grade serous ovarian carcinoma. However, variable experimental procedures (e.g., choice of cell lines), ambiguous phenotypes or lack of validation hinders further clinical translation of many targets. In this review, we collate the genes proposed to be amplified therapeutic targets in high-grade serous ovarian carcinoma, and quantitatively appraise the evidence in support of each candidate gene. Forty-four genes are found to have evidence as amplified therapeutic targets; the five highest scoring genes are CCNE1, PAX8, URI1, PRKCI and FAL1. This review generates an up-to-date list of amplified therapeutic target candidates for further development and proposes comprehensive criteria to assist amplified therapeutic target discovery in the future.
Collapse
Affiliation(s)
- Thomas Talbot
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Haonan Lu
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Eric O Aboagye
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK.
| |
Collapse
|
8
|
Li B, Ding Z, Calbay O, Li Y, Li T, Jin L, Huang S. FAP is critical for ovarian cancer cell survival by sustaining NF-κB activation through recruitment of PRKDC in lipid rafts. Cancer Gene Ther 2023; 30:608-621. [PMID: 36494579 PMCID: PMC10498436 DOI: 10.1038/s41417-022-00575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fibroblast activation protein (FAP) is tumor-specific and plays an important role in tumorigenecity. However, agents against its enzymatic activity or extracellular presence were unsuccessful in the clinic for undefined reasons. Here we show that FAP expression is higher in advanced ovarian cancer and is only detected in invasive ovarian cancer cells. Silencing FAP induces apoptosis and FAP's enzymatic activity is dispensable for cell survival. To elucidate the cause of apoptosis, we find that NF-κB activity is diminished when FAP is depleted and BIRC5 (survivin) acts downstream of FAP-NF-κB axis to promote cell survival. To uncover the link between FAP and NF-κB activation, we reveal that PRKDC (DNA-PK, DNA-dependent protein kinase) forms complex with FAP and is required for NF-κB activation and cell survival. Remarkably, FAP-PRKDC interaction occurs only in lipid rafts, and depleting FAP prevents lipid raft localization of PRKDC. Given the known ability of PRKDC to direct NF-κB activation, these results suggest that FAP recruits PRKDC in lipid rafts for NF-κB activation. FAP's non-enzymatic role and functioning from lipid rafts for cell survival also offer an explanation on the failure of past FAP-targeted therapies. Finally, we demonstrate that EpCAM aptamer-delivered FAP siRNA impeded intraperitoneal xenograft development of ovary tumors.
Collapse
Affiliation(s)
- Bin Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Zuo Ding
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Ozlem Calbay
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Yue Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Lingtao Jin
- Deparment of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
He S, Du Y, Tao H, Duan H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int J Biol Macromol 2023; 238:124173. [PMID: 36965552 DOI: 10.1016/j.ijbiomac.2023.124173] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Aptamers with high affinity and specificity for certain targets have rapidly become a novel class of targeted ligands applicated in drug delivery. Based on the excellent characteristics of aptamers, different aptamer-mediated drug delivery systems have been developed, including aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalized nanoparticle systems for the effective treatment of cancer, which can reduce potential toxicity and improve therapeutic efficacy. In this review, we summarize the recent progress of aptamer-mediated delivery systems in cancer therapy, and discuss the application prospects and existing problems of innovative approaches based on aptamer therapy. Overall, this review aims to better understand the current aptamer-based targeted delivery applications through in-depth analysis to improve efficacy and develop new therapeutic methods which can ultimately improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
11
|
Wang S, Liu C, Li Y, Qiao J, Chen X, Bao J, Li R, Xing Y. LINC00665 affects the malignant biological behavior of ovarian cancer via the miR-148b-3p/KLF5. Syst Biol Reprod Med 2022; 68:370-383. [PMID: 36016468 DOI: 10.1080/19396368.2022.2101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
This study investigated the expression and clinical significance of long intergenic noncoding RNA 00665 (LINC00665) in ovarian cancer (OC), as well as its effect on the malignant biological behavior of OC cells. The expression of LINC00665, miR-148b-3p, and Krüppel-like factor 5 (KLF5) in OC tissues and cells were determined by RT-qPCR. Western blot was used to detect the protein expression of KLF5. The expression patterns of LINC00665 in nuclear and cytoplasm fractions were undertaken using RT-qPCR. In addition, CCK-8 assay, clone formation assay, transwell, scratch test, and flow cytometry were respectively used to detect the cell activity, proliferation, invasiveness, healing of cells, and apoptosis rate of OC cells. Furthermore, the interactions between LINC00665 and miR-148b-3p and between miR-148b-3p and KLF5 were verified by the luciferase reporter assay, and the correlations among these three genes were analyzed. LINC00665 expression was upregulated both in OC cell lines and tissues. Si-LINC00665 inhibited cell proliferation, invasion, and migration and induced apoptosis to a certain extent. The subcellular fraction assay revealed LINC00665 to be located mainly in the cytoplasm. miR-148b-3p was a target of LINC00665, and KLF5 was directly targeted by miR-148b-3p. Si-LINC00665 inhibited KLF5 expression, miR-148b-3p inhibitor promoted KLF5 expression, and si-KLF5 inhibited LINC00665 expression. Interestingly, the expression of LINC00665 was reversely associated with miR-148b-3p expression but positively correlated with KLF5. Furthermore, miR-148b-3p expression was negatively correlated with KLF5. In addition, si-KLF5 inhibited the malignant biological behavior of OC cells, whereas miR-148b-3p inhibitor had the opposite effect. Most importantly, the si-LINC00665 could reverse the promotion effect of the miR-148b-3p inhibitor on the malignant biological behavior of OC cells. LINC00665 can be used as an effective prognostic indicator of OC, which has the potential to be a new therapeutic target.
Collapse
Affiliation(s)
- Shenglan Wang
- Department of Pathophysiology, Medical College of Qinghai University, Qinghai, P.R. China
| | - Chuanchuan Liu
- Key Laboratory of Hydatidosis Research, Qinghai University Affiliated Hospital, Qinghai, P.R. China
| | - Yongchuan Li
- Department of Gynaecology, Qinghai Red Cross Hospital, Qinghai, P.R. China
| | - Jinwan Qiao
- Department of Scientific Research and Teaching, the Fifth People's Hospital of Qinghai Province, Qinghai, P.R. China
| | - Xinling Chen
- Basic Medical Sciences, Qinghai University, Qinghai, P.R. China
| | - Jin Bao
- Basic Medical Sciences, Qinghai University, Qinghai, P.R. China
| | - Ran Li
- Basic Medical Sciences, Qinghai University, Qinghai, P.R. China
| | - Yanxia Xing
- Department of Gynaecology, the Fifth People's Hospital of Qinghai Province, Qinghai, P.R. China
| |
Collapse
|
12
|
Li H, Zheng X, Gao J, Leung KS, Wong MH, Yang S, Liu Y, Dong M, Bai H, Ye X, Cheng L. Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer. Comput Biol Med 2022; 148:105881. [DOI: 10.1016/j.compbiomed.2022.105881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
|
13
|
Liang X, Song F, Fang W, Zhang Y, Feng Z, Chen Z, Han L, Chen Z. CLEC1B is a Promising Prognostic Biomarker and Correlated with Immune Infiltration in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:5661-5672. [PMID: 35734199 PMCID: PMC9208739 DOI: 10.2147/ijgm.s363050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose C-type lectin domain family 1 member B (CLEC1B) is a protein-coding gene involved in various processes, such as platelet activation, tumor cell metastasis and separation of blood/lymphatic vessels. However, how CLEC1B plays its role in hepatocellular carcinoma (HCC) has not been well studied. The purpose of this study was to investigate the clinical significance and biological function of CLEC1B in HCC. Patients and Methods Based on (The Cancer Genome Atlas) TCGA database, CLEC1B expression matrix and corresponding clinical information were extracted. ROC curves and Kaplan–Meier method were generated to evaluate the value of CLEC1B as a diagnostic and prognostic biomarker. Moreover, single-gene difference analysis constructed by DESeq2 method and then the related genes were used to predict CLEC1B-related signaling pathways. The ssGSEA algorithm was conducted for studies related to immune infiltration. CLEC1B protein expression was evaluated and immunohistochemistry in HCC tissues through tissue microarray. Finally, the relationship between CLEC1B expression and T cell infiltration was assessed according to tissue microarray. Results The mRNA and protein levels of CLEC1B were significantly down-regulated in HCC compared to paired normal tissues, which were further verified in clinical tissue samples. ROC curves and Kaplan–Meier survival analysis suggested the significant diagnostic and clinical prognostic value of CLEC1B. Meanwhile, downregulation of CLEC1B was significantly associated with clinical parameters such as clinical tumor vascular invasion and distant metastasis. Moreover, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment (GSEA) analysis indicated that CLEC1B has significant association with immune function. Finally, immune infiltration analysis indicated that CLEC1B was significantly associated with immune cell subsets and affected the efficacy of immunotherapy in cancer patient. Conclusion Collectively, our findings suggested that CLEC1B could be a promising prognostic biomarker in HCC and its expression was related to immune cell infiltration.
Collapse
Affiliation(s)
- Xiaoliang Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Fei Song
- Department of General Surgery, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224002, People's Republic of China
| | - Wanzhi Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Zihan Feng
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Zeyin Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Lu Han
- Department of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224005, People's Republic of China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| |
Collapse
|
14
|
Theodoulidis V, Prodromidou A, Stamatakis E, Alexakis N, Rodolakis A, Haidopoulos D. Application of J‑Plasma in the excision of diaphragmatic lesions as part of complete cytoreduction in patients with advanced ovarian cancer. Mol Clin Oncol 2022; 17:113. [DOI: 10.3892/mco.2022.2546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/15/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Vasilios Theodoulidis
- First Department of Obstetrics and Gynecology, Gynecological Oncology Unit, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Anastasia Prodromidou
- First Department of Obstetrics and Gynecology, Gynecological Oncology Unit, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Emmanouil Stamatakis
- Department of Anesthesiology and Pain Management, ‘Alexandra’ General Hospital, 11528 Athens, Greece
| | - Nicholas Alexakis
- First Department of Propaedeutic Surgery, Hippocratio Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros Rodolakis
- First Department of Obstetrics and Gynecology, Gynecological Oncology Unit, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios Haidopoulos
- First Department of Obstetrics and Gynecology, Gynecological Oncology Unit, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
15
|
Zhao J, Tan W, Zheng J, Su Y, Cui M. Aptamer Nanomaterials for Ovarian Cancer Target Theranostics. Front Bioeng Biotechnol 2022; 10:884405. [PMID: 35419352 PMCID: PMC8996158 DOI: 10.3389/fbioe.2022.884405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 12/05/2022] Open
Abstract
Ovarian cancer is among the leading causes of gynecological cancer-related mortality worldwide. Early and accurate diagnosis and an effective treatment strategy are the two primary means of improving the prognosis of patients with ovarian cancer. The development of targeted nanomaterials provides a potentially efficient strategy for ovarian cancer theranostics. Aptamer nanomaterials have emerged as promising nanoplatforms for accurate ovarian cancer diagnosis by recognizing relevant biomarkers in the serum and/or on the surface of tumor cells, as well as for effective ovarian cancer inhibition via target protein blockade on tumor cells and targeted delivery of various therapeutic agents. In this review, we summarize recent advances in aptamer nanomaterials as targeted theranostic platforms for ovarian cancer and discusses the challenges and opportunities for their clinical application. The information presented in this review represents a valuable reference for creation of a new generation of aptamer nanomaterials for use in the precise detection and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, China
| | - Wenxi Tan
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, China
| | - Jingying Zheng
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, China
| | - Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Manhua Cui
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, China,*Correspondence: Manhua Cui,
| |
Collapse
|
16
|
Ruan L, Li X. Applications of Aptamers in the Diagnosis and Treatment of Ovarian Cancer: Progress From 2016 to 2020. Front Genet 2021; 12:683542. [PMID: 34589111 PMCID: PMC8473910 DOI: 10.3389/fgene.2021.683542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides selected from a random single-stranded nucleic acid library using systematic evolution of ligands by exponential enrichment technology. To allow them to bind to molecular targets with the same specificity and precision as that of antibodies, aptamers are folded into secondary or tertiary structures. However, compared to antibodies, aptamers are not immunogenic and are easier to synthesize. Furthermore, they are chemically modified, which protects them from degradation by nucleases. Hence, due to their stability and favorable targeting ability, aptamers are promising for the diagnosis and treatment of diseases. Ovarian cancer has the worst prognosis among all gynecological diseases and is usually diagnosed at the medium and advanced stages due to its nonspecific symptoms. Relapse is common, even if patients receive a standard therapeutic regimen including surgery and chemotherapy; simultaneously, drug resistance and adverse effects are reported in a several patients. Therefore, the safer and more efficient diagnostic and treatment method for ovarian cancer is imperative. Scientists have been trying to utilize aptamer technology for the early diagnosis and accurate treatment of ovarian cancer and some progress has been made in this field. This review discusses the screening of nucleic acid aptamers by targeting ovarian cancer cells and the application of aptamers in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Luoshan Ruan
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Li
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021; 11:682129. [PMID: 34532286 PMCID: PMC8438301 DOI: 10.3389/fonc.2021.682129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - George A Calin
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
18
|
Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: A short review. Talanta 2021; 229:122274. [PMID: 33838776 DOI: 10.1016/j.talanta.2021.122274] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
The emerging aptamer, developed through the systematic evolution of ligands by exponential enrichment (SELEX) process, has revolutionized and facilitated the discoveries in basic research. Among all SELEX technology, Capture-SELEX is a variant of the in vitro selection process, which is suitable for isolating aptamers against small molecules. Capture-SELEX library was developed to enable the immobilization of the oligonucleotides instead of the target molecules during the aptamer selection process. The review provides an update on the recent-advances in this new screening method with particular emphasis on key points of capture protocol and its applications. The limitations and the prospects of the Capture-SELEX are also discussed. We hope that present review will inspire more researchers to understand the selection problems from the perspective of Capture-SELEX. Moreover, it will open new pave to improve the efficiency and success of screening to meet the growing demand for aptasensor discovery in small molecules.
Collapse
Affiliation(s)
- Chen Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, China.
| |
Collapse
|
19
|
Khella CA, Mehta GA, Mehta RN, Gatza ML. Recent Advances in Integrative Multi-Omics Research in Breast and Ovarian Cancer. J Pers Med 2021; 11:149. [PMID: 33669749 PMCID: PMC7922242 DOI: 10.3390/jpm11020149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
The underlying molecular heterogeneity of cancer is responsible for the dynamic clinical landscape of this disease. The combination of genomic and proteomic alterations, including both inherited and acquired mutations, promotes tumor diversity and accounts for variable disease progression, therapeutic response, and clinical outcome. Recent advances in high-throughput proteogenomic profiling of tumor samples have resulted in the identification of novel oncogenic drivers, tumor suppressors, and signaling networks; biomarkers for the prediction of drug sensitivity and disease progression; and have contributed to the development of novel and more effective treatment strategies. In this review, we will focus on the impact of historical and recent advances in single platform and integrative proteogenomic studies in breast and ovarian cancer, which constitute two of the most lethal forms of cancer for women, and discuss the molecular similarities of these diseases, the impact of these findings on our understanding of tumor biology as well as the clinical applicability of these discoveries.
Collapse
Affiliation(s)
- Christen A Khella
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Rushabh N Mehta
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
20
|
Noé V, Aubets E, Félix AJ, Ciudad CJ. Nucleic acids therapeutics using PolyPurine Reverse Hoogsteen hairpins. Biochem Pharmacol 2020; 189:114371. [PMID: 33338475 DOI: 10.1016/j.bcp.2020.114371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
PolyPurine Reverse Hoogsteen hairpins (PPRHs) are DNA hairpins formed by intramolecular reverse Hoogsteen bonds which can bind to polypyrimidine stretches in dsDNA by Watson:Crick bonds, thus forming a triplex and displacing the fourth strand of the DNA complex. PPRHs were first described as a gene silencing tool in vitro for DHFR, telomerase and survivin genes. Then, the effect of PPRHs directed against the survivin gene was also determined in vivo using a xenograft model of prostate cancer cells (PC3). Since then, the ability of PPRHs to inhibit gene expression has been explored in other genes involved in cancer (BCL-2, mTOR, topoisomerase, C-MYC and MDM2), in immunotherapy (SIRPα/CD47 and PD-1/PD-L1 tandem) or in replication stress (WEE1 and CHK1). Furthermore, PPRHs have the ability to target the complementary strand of a G-quadruplex motif as a regulatory element of the TYMS gene. PPRHs have also the potential to correct point mutations in the DNA as shown in two collections of CHO cell lines bearing mutations in either the dhfr or aprt loci. Finally, based on the capability of PPRHs to form triplexes, they have been incorporated as probes in biosensors for the determination of the DNA methylation status of PAX-5 in cancer and the detection of mtLSU rRNA for the diagnosis of Pneumocystis jirovecii. Of note, PPRHs have high stability and do not present immunogenicity, hepatotoxicity or nephrotoxicity in vitro. Overall, PPRHs constitute a new economical biotechnological tool with multiple biomedical applications.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Alex J Félix
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|