1
|
Hannawi S, Abuquta A, Eldin LS, Hassan A, Alamadi A, Gao C, Baidoo AAH, Yang X, Su H, Zhang J, Xie L. Immunogenicity and Safety of Omicron-Containing Multivalent COVID-19 Vaccines in Unvaccinated and Previously Vaccinated Adults. Vaccines (Basel) 2024; 12:1109. [PMID: 39460276 PMCID: PMC11510771 DOI: 10.3390/vaccines12101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
The SARS-CoV-2 evolution trajectory remains uncertain, and the antigenic characteristics of future variants are highly unpredictable. We report the immunogenicity and safety of multivalent COVID-19 vaccines, SCTV01E and SCTV01E-1, against Omicron BA.5. This phase 2 trial randomized 400 adults into two cohorts, 160 unvaccinated (3 doses) and 240 previously vaccinated (2 doses) individuals to receive 30 µg SCTV01E-1 or 30 µg SCTV01E (1:1) between 4 November and 28 November 2022. Among the unvaccinated cohort, day 42 geometric mean fold rises (GMFRs) of neutralizing antibodies (nAb) against Omicron BA.5 were reported to be 12.8× and 20.5× over day 0 for SCTV01E-1 and SCTV01E, respectively. On day 178, both vaccines increased geometric mean titers (GMTs) of nAb against BA.5 following the booster dose compared to pre-booster levels on D150. Similar frequencies of solicited [6.2% (5/81) and 7.6% (6/79)] and unsolicited [11.1% (9/81) and 10.1% (8/79)] adverse events (AEs) were reported in SCTV01E-1 and SCTV01E groups, respectively. Grade 3 or more AEs were < 2% in both vaccine groups [SCTV01E-1: 1.2% (1/81), SCTV01E: 1.3% (1/79)]. In the previously vaccinated cohort, similar GMFRs were reported on day 28 (SCTV01E-1: 9.4× and SCTV01E: 8.7×) over baseline (D0). On day 148, both vaccines showed increased nAb levels with similar GMFRs over D120. Comparable incidences of solicited [13.2% (16/121) and 10.9% (13/119)] and unsolicited [17.4% (21/121) and 10.9% (13/119)] AEs were reported in SCTV01E-1 and SCTV01E groups, respectively. Numerically identical ≥ grade 3 AEs [SCTV01E-1: 1.7% (2/121) and SCTV01E: 1.7% (2/119)] were reported. This trial demonstrates the effectiveness of updated multivalent vaccines with acceptable safety profiles.
Collapse
Affiliation(s)
- Suad Hannawi
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates; (S.H.); (A.H.)
| | - Alaa Abuquta
- Accident and Emergency Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates;
| | - Linda Saf Eldin
- General Surgery Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates;
| | - Aala Hassan
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates; (S.H.); (A.H.)
| | - Ahmad Alamadi
- Ear, Nose and Throat Department (ENT), Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates;
| | - Cuige Gao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Adam Abdul Hakeem Baidoo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Xinjie Yang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Huo Su
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Jinxiu Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
Wang X, Zhang M, Wei K, Li C, Yang J, Jiang S, Zhao C, Zhao X, Qiao R, Cui Y, Chen Y, Li J, Cai G, Liu C, Yu J, Zhang W, Xie F, Wang P, Zhang Y. Longitudinal Analysis of Humoral and Cellular Immune Response up to 6 Months after SARS-CoV-2 BA.5/BF.7/XBB Breakthrough Infection and BA.5/BF.7-XBB Reinfection. Vaccines (Basel) 2024; 12:464. [PMID: 38793715 PMCID: PMC11125724 DOI: 10.3390/vaccines12050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation was conducted on 118 sera and 50 PBMC samples from 49 healthy individuals who experienced BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection. By studying antibody response, memory B cell, and IFN-γ secreting CD4+/CD8+ T cell response to several SARS-CoV-2 variants, we observed that each component of immune response exhibited distinct kinetics. Either BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection induces relatively high level of binding and neutralizing antibody titers against Omicron subvariants at an early time point, which rapidly decreases over time. Most of the individuals at 6 months post-breakthrough infection completely lost their neutralizing activities against BQ.1.1, CH.1.1, BA.2.86, JN.1 and XBB subvariants. Individuals with BA.5/BF.7-XBB reinfection exhibit immune imprinting shifting and recall pre-existing BA.5/BF.7 neutralization antibodies. In the BA.5 breakthrough infection group, the frequency of BA.5 and XBB.1.16-RBD specific memory B cells, resting memory B cells, and intermediate memory B cells gradually increased over time. On the other hand, the frequency of IFN-γ secreting CD4+/CD8+ T cells induced by WT/BA.5/XBB.1.16 spike trimer remains stable over time. Overall, our research indicates that individuals with breakthrough infection have rapidly declining antibody levels but have a relatively stable cellular immunity that can provide some degree of protection from future exposure to new antigens.
Collapse
Affiliation(s)
- Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Meng Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Kaifeng Wei
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jinghui Yang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Changyi Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jizhen Yu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200437, China;
| | - Faren Xie
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| |
Collapse
|
3
|
Wang X, Jiang S, Ma W, Li X, Wei K, Xie F, Zhao C, Zhao X, Wang S, Li C, Qiao R, Cui Y, Chen Y, Li J, Cai G, Liu C, Yu J, Li J, Hu Z, Zhang W, Jiang S, Li M, Zhang Y, Wang P. Enhanced neutralization of SARS-CoV-2 variant BA.2.86 and XBB sub-lineages by a tetravalent COVID-19 vaccine booster. Cell Host Microbe 2024; 32:25-34.e5. [PMID: 38029742 DOI: 10.1016/j.chom.2023.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Emerging SARS-CoV-2 sub-lineages like XBB.1.5, XBB.1.16, EG.5, HK.3 (FLip), and XBB.2.3 and the variant BA.2.86 have recently been identified. Understanding the efficacy of current vaccines on these emerging variants is critical. We evaluate the serum neutralization activities of participants who received COVID-19 inactivated vaccine (CoronaVac), those who received the recently approved tetravalent protein vaccine (SCTV01E), or those who had contracted a breakthrough infection with BA.5/BF.7/XBB virus. Neutralization profiles against a broad panel of 30 sub-lineages reveal that BQ.1.1, CH.1.1, and all the XBB sub-lineages exhibit heightened resistance to neutralization compared to previous variants. However, despite their extra mutations, BA.2.86 and the emerging XBB sub-lineages do not demonstrate significantly increased resistance to neutralization over XBB.1.5. Encouragingly, the SCTV01E booster consistently induces higher neutralizing titers against all these variants than breakthrough infection does. Cellular immunity assays also show that the SCTV01E booster elicits a higher frequency of virus-specific memory B cells. Our findings support the development of multivalent vaccines to combat future variants.
Collapse
Affiliation(s)
- Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiangnan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Kaifeng Wei
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Faren Xie
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shidi Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Changyi Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jizhen Yu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zixin Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Deliyannis G, Gherardin NA, Wong CY, Grimley SL, Cooney JP, Redmond SJ, Ellenberg P, Davidson KC, Mordant FL, Smith T, Gillard M, Lopez E, McAuley J, Tan CW, Wang JJ, Zeng W, Littlejohn M, Zhou R, Fuk-Woo Chan J, Chen ZW, Hartwig AE, Bowen R, Mackenzie JM, Vincan E, Torresi J, Kedzierska K, Pouton CW, Gordon TP, Wang LF, Kent SJ, Wheatley AK, Lewin SR, Subbarao K, Chung AW, Pellegrini M, Munro T, Nolan T, Rockman S, Jackson DC, Purcell DFJ, Godfrey DI. Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine. EBioMedicine 2023; 92:104574. [PMID: 37148585 PMCID: PMC10159263 DOI: 10.1016/j.ebiom.2023.104574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/02/2023] [Accepted: 04/01/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.
Collapse
Affiliation(s)
- Georgia Deliyannis
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Chinn Yi Wong
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Samantha L Grimley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - James P Cooney
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Paula Ellenberg
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Kathryn C Davidson
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Francesca L Mordant
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tim Smith
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ester Lopez
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Julie McAuley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Chee Wah Tan
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Jing J Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Weiguang Zeng
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Mason Littlejohn
- Doherty Directorate, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Runhong Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Zhi-Wei Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Airn E Hartwig
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Richard Bowen
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jason M Mackenzie
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory (VIDRL) at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Joseph Torresi
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Lin-Fa Wang
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Stephen J Kent
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, 3010 Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Amy W Chung
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Terry Nolan
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Vaccine and Immunisation Research Group (VIRGo), Department of Infectious Disease, Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Murdoch Children's Research Institute, Victoria 3010, Australia
| | - Steven Rockman
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Seqirus, Vaccine Innovation Unit, Parkville, Victoria, 3052, Australia
| | - David C Jackson
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Damian F J Purcell
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
5
|
Luo Y, Liu S, Xue J, Yang Y, Zhao J, Sun Y, Wang B, Yin S, Li J, Xia Y, Ge F, Dong J, Guo L, Ye B, Huang W, Wang Y, Xi JJ. High-throughput screening of spike variants uncovers the key residues that alter the affinity and antigenicity of SARS-CoV-2. Cell Discov 2023; 9:40. [PMID: 37041132 PMCID: PMC10088716 DOI: 10.1038/s41421-023-00534-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/03/2023] [Indexed: 04/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has elicited a worldwide pandemic since late 2019. There has been ~675 million confirmed coronavirus disease 2019 (COVID-19) cases, leading to more than 6.8 million deaths as of March 1, 2023. Five SARS-CoV-2 variants of concern (VOCs) were tracked as they emerged and were subsequently characterized. However, it is still difficult to predict the next dominant variant due to the rapid evolution of its spike (S) glycoprotein, which affects the binding activity between cellular receptor angiotensin-converting enzyme 2 (ACE2) and blocks the presenting epitope from humoral monoclonal antibody (mAb) recognition. Here, we established a robust mammalian cell-surface-display platform to study the interactions of S-ACE2 and S-mAb on a large scale. A lentivirus library of S variants was generated via in silico chip synthesis followed by site-directed saturation mutagenesis, after which the enriched candidates were acquired through single-cell fluorescence sorting and analyzed by third-generation DNA sequencing technologies. The mutational landscape provides a blueprint for understanding the key residues of the S protein binding affinity to ACE2 and mAb evasion. It was found that S205F, Y453F, Q493A, Q493M, Q498H, Q498Y, N501F, and N501T showed a 3-12-fold increase in infectivity, of which Y453F, Q493A, and Q498Y exhibited at least a 10-fold resistance to mAbs REGN10933, LY-CoV555, and REGN10987, respectively. These methods for mammalian cells may assist in the precise control of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Yufeng Luo
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Shuo Liu
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jiguo Xue
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Ye Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Junxuan Zhao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Ying Sun
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bolun Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Shenyi Yin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Juan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yuchao Xia
- GeneX Health Co. Ltd, Beijing, China
- College of Science, Beijing Information Science and Technology University, Beijing, China
| | - Feixiang Ge
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | | | - Lvze Guo
- GeneX Health Co. Ltd, Beijing, China
| | - Buqing Ye
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Youchun Wang
- Graduate School of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
| |
Collapse
|
6
|
Molecular Characterization and Selection of Indigenous SARS-CoV-2 Delta Variant for the Development of the First Inactivated SARS-CoV-2 Vaccine of Pakistan. Vaccines (Basel) 2023; 11:vaccines11030607. [PMID: 36992191 DOI: 10.3390/vaccines11030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Vaccines are one of the efficient means available so far for preventing and controlling the infection rate of COVID-19. Several researchers have focused on the whole virus’s (SARS-CoV-2) inactivated vaccines which are economically efficient to produce. In Pakistan, multiple variants of SARS-CoV-2 have been reported since the start of the pandemic in February 2020. Due to the continuous evolution of the virus and economic recessions, the present study was designed to develop an indigenous inactivated SARS-CoV-2 vaccine that might help not only to prevent the COVID-19 in Pakistan, it will also save the country’s economic resources. The SARS-CoV-2 were isolated and characterized using the Vero-E6 cell culture system. The seed selection was carried out using cross-neutralization assay and phylogenetic analysis. The selected isolate of SARS-CoV-2 (hCoV-19/Pakistan/UHSPK3-UVAS268/2021) was inactivated using beta-propiolactone followed by vaccine formulation using Alum adjuvant, keeping the S protein concentration as 5 μg/dose. The vaccine efficacy was evaluated by in vivo immunogenicity testing in laboratory animals and in in vitro microneutralization test. The phylogenetic analysis revealed that all the SARS-CoV-2 isolates reported from Pakistan nested into different clades, representing multiple introductions of the virus into Pakistan. The antisera raised against various isolates from different waves in Pakistan showed a varied level of neutralization titers. However, the antisera produced against a variant (hCoV-19/Pakistan/UHSPK3-UVAS268/2021; fourth wave) efficiently neutralized (1:64–1:512) all the tested SARS-CoV-2 isolates. The inactivated whole virus vaccine of SARS-CoV-2 was safe and it also elicited a protective immune response in rabbits and rhesus macaques on the 35th-day post-vaccination. The activity of neutralizing antibodies of vaccinated animals was found at 1:256–1:1024 at 35 days post-vaccination, indicating the effectiveness of the double-dose regime of the indigenous SARS-CoV-2 vaccine.
Collapse
|