1
|
Chang MS, Adeniyi B, Crandall DG. Spinal Cord Stimulators Adversely Affect Outcomes in Spinal Deformity Surgery. A Retrospective Case-Control Study. Global Spine J 2025:21925682251334987. [PMID: 40315348 PMCID: PMC12048398 DOI: 10.1177/21925682251334987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Study DesignRetrospective comparative analysis of prospective cohort.ObjectiveTo examine clinical outcomes of patients with preexisting SCS after adult spinal deformity surgery.MethodsA total of 94 patients with and without a previous history of spinal cord stimulator placement undergoing surgery for ASD with minimum 2-year follow-up. Thirty-three patients with SCS undergoing ASD surgery with minimum 2-year follow-up were compared with a matched cohort of 61 ASD patients without SCS.ResultsDespite similar baseline ODI (56 vs 50, P = .11) and back VAS (6.8 vs 6.6, P = .52), SCS patients did worse at all post-op time intervals. At 6 months, the SCS cohort had higher ODI (48 vs 31, P < .001) and VAS (4.8 vs 3.5, P = .01). This difference persisted at 1 year for ODI (46 vs 30, P < .001) but not for VAS (4.7 vs 4.0, P = .19). At 2 years, ODI remained significantly worse in the SCS cohort (49 vs 38, P = .004). Both cohorts had significant improvement at 2 years compared to baseline (SCS: -1.6 VAS, P < .001, -7 ODI, P = .03; Control: -2.5 VAS, P < .001, -13 ODI, P < .001). Radiographic parameters such as curve magnitude, curve correction, and balance were similar between the 2 groups.ConclusionDespite having substantial improvement after ASD surgery, patients with previous SCS placement did significantly worse in both back VAS and ODI postop compared with controls. They also did not experience a decrease in narcotic use at 2 years despite having similar overall radiographic results and complication rates.
Collapse
Affiliation(s)
- Michael S. Chang
- Sonoran Spine in Collaboration with HonorHealth, Tempe, AZ, USA
- Department of Orthopaedic Surgery, Mayo Clinic Phoenix, Phoenix, AZ, USA
- Department of Orthopaedic Surgery, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Biodun Adeniyi
- Sonoran Spine in Collaboration with HonorHealth, Tempe, AZ, USA
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Dennis G. Crandall
- Sonoran Spine in Collaboration with HonorHealth, Tempe, AZ, USA
- Department of Orthopaedic Surgery, Mayo Clinic Phoenix, Phoenix, AZ, USA
- Department of Orthopaedic Surgery, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| |
Collapse
|
2
|
Royds J. Management and Cost of Spinal Cord Stimulator Explants due to Infection. Neuromodulation 2025:S1094-7159(25)00133-3. [PMID: 40208133 DOI: 10.1016/j.neurom.2025.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVES Explants due to infected spinal cord stimulation (SCS) devices are a significant concern, leading to complex care needs and high costs. This study aimed to evaluate the cost of explant and subsequent management in patients in cases of device infection. MATERIALS AND METHODS This retrospective study analyzed data over eight years (2014-2022) at a UK neuromodulation center. Cases of explant due to infection were identified from a departmental data base. Data were collected from electronic clinical care records. Patient admission costs were retrieved from the accounting services using cost pool groups. Electrical neuromodulation equipment costs were obtained from National Health Service England data bases specific to each manufacturer. RESULTS Among 215 explants, 23 were attributed to infection, with 22 of 23 involving the implantable pulse generator. A total of 16 of 23 cases (70%) met the criteria for deep surgical site infection, whereas seven cases occurred after 90 days. Microbiological cultures confirmed infections in nine of 23 cases (39%). In five cases, explant was performed owing to pus observed around the hardware during revision surgery that grew no bacteria after culture. The median time to explant due to infection was 42 days [29-356]. The median cost of explant and follow-up care was £16,957 [£5,243-£26,823], with higher costs observed when reimplantation was attempted (£26,172 [£18,753-£37,427]). Reimplantation of the neuromodulation device was attempted in 13 of 23 patients (57%). Successful reimplant was limited and achieved in only eight of 13 cases (62%). The median time to reimplantation was 193 days [181-658] postexplant, and the reinfection rate in those who were reimplanted was 30%. Ultimately, a successful reimplant was achieved in 35% of patients (eight of 23) after explant due to suspected infection. CONCLUSION The findings emphasize the need for preventive strategies to mitigate infection risk and reduce costs. Improved understanding of infection management may ultimately help reduce the clinical and economic burden of SCS infections. Attempts to reestablish the therapy need careful consideration and counseling of patients.
Collapse
Affiliation(s)
- Jonathan Royds
- Pain Services, Guys and St Thomas National Health Service Foundation Trust, London, UK.
| |
Collapse
|
3
|
Samejima S, Malik RN, Ge J, Rempel L, Cao K, Desai S, Shackleton C, Kyani A, Sarikhani P, D'Amico JM, Krassioukov AV. Cardiovascular safety of transcutaneous spinal cord stimulation in cervical spinal cord injury. Neurotherapeutics 2025; 22:e00528. [PMID: 39893085 PMCID: PMC12014404 DOI: 10.1016/j.neurot.2025.e00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
This study evaluated whether cervical transcutaneous spinal cord stimulation (tSCS) in conjunction with rehabilitation on upper extremity function alters blood pressure regulation in individuals with cervical spinal cord injury. This study is a secondary analysis of the Up-LIFT trial, a prospective single-arm multicenter trial designed to evaluate the safety and efficacy of tSCS in conjunction with rehabilitation (tSCS + rehab) on upper extremity function in individuals with chronic cervical spinal cord injury. Utilizing this large data set obtained from 60 individuals across 14 international sites, we compared blood pressure and heart rate measurements obtained before, during and after each training session during both the wash-in Rehab alone period and the tSCS + rehab period of the trial. Blood pressure and heart rate were recorded during each session throughout the protocol in all participants. Sessions of tSCS + rehab did not cause significant changes in blood pressure or heart rate compared to Rehab alone (p > 0.05). Further, blood pressure medications did not have an effect on these cardiovascular responses to tSCS (p > 0.05). This study supports the safety profile of cervical tSCS paired with rehabilitation in individuals with cervical spinal cord injury. The lack of adverse effects on blood pressure and heart rate during the intervention, together with the previously reported clinically meaningful improvements in upper extremity strength and function strongly supports the utility of tSCS in this patient population. Further work is required to elucidate potential long-term effects of targeted tSCS on cardiovascular function in people with spinal cord injury.
Collapse
Affiliation(s)
- Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Raza N Malik
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Ge
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lucas Rempel
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kawami Cao
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sameer Desai
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Claire Shackleton
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Jessica M D'Amico
- ONWARD Medical, Lausanne, Switzerland; Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Canada; Department of Medicine, University of Alberta, Edmonton, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Singh G, Sharma P, Forrest G, Harkema S, Behrman A, Gerasimenko Y. Spinal Cord Transcutaneous Stimulation in Cervical Spinal Cord Injury: A Review Examining Upper Extremity Neuromotor Control, Recovery Mechanisms, and Future Directions. J Neurotrauma 2024; 41:2056-2074. [PMID: 38874496 PMCID: PMC11971538 DOI: 10.1089/neu.2023.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Cervical spinal cord injury (SCI) results in significant sensorimotor impairments below the injury level, notably in the upper extremities (UEs), impacting daily activities and quality of life. Regaining UE function remains the top priority for individuals post-cervical SCI. Recent advances in understanding adaptive plasticity within the sensorimotor system have led to the development of novel non-invasive neurostimulation strategies, such as spinal cord transcutaneous stimulation (scTS), to facilitate UE motor recovery after SCI. This comprehensive review investigates the neuromotor control of UE, the typical recovery trajectories following SCI, and the therapeutic potential of scTS to enhance UE motor function in individuals with cervical SCI. Although limited in number with smaller sample sizes, the included research articles consistently suggest that scTS, when combined with task-specific training, improves voluntary control of arm and hand function and sensation. Further, the reported improvements translate to the recovery of various UE functional tasks and positively impact the quality of life in individuals with cervical SCI. Several methodological limitations, including stimulation site selection and parameters, training strategies, and sensitive outcome measures, require further advancements to allow successful translation of scTS from research to clinical settings. This review also summarizes the current literature and proposes future directions to support establishing approaches for scTS as a viable neuro-rehabilitative tool.
Collapse
Affiliation(s)
- Goutam Singh
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Kosair for Kids School of Physical Therapy, Spalding University, Louisville, Kentucky, USA
| | - Pawan Sharma
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gail Forrest
- Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Foundation, Newark, New Jersey, USA
| | - Susan Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Andrea Behrman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Hodgkiss DD, Williams AMM, Shackleton CS, Samejima S, Balthazaar SJT, Lam T, Krassioukov AV, Nightingale TE. Ergogenic effects of spinal cord stimulation on exercise performance following spinal cord injury. Front Neurosci 2024; 18:1435716. [PMID: 39268039 PMCID: PMC11390595 DOI: 10.3389/fnins.2024.1435716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Cervical or upper-thoracic spinal cord injury (SCI, ≥T6) often leads to low resting blood pressure (BP) and impaired cardiovascular responses to acute exercise due to disrupted supraspinal sympathetic drive. Epidural spinal cord stimulation (invasive, ESCS) and transcutaneous spinal cord stimulation (non-invasive, TSCS) have previously been used to target dormant sympathetic circuits and modulate cardiovascular responses. This case series compared the effects of cardiovascular-optimised ESCS and TSCS versus sham ESCS and TSCS on modulating cardiovascular responses and improving submaximal upper-body exercise performance in individuals with SCI. Seven males with a chronic, motor-complete SCI between C6 and T4 underwent a mapping session to identify cardiovascular responses to spinal cord stimulation. Subsequently, four participants (two ESCS and two TSCS) completed submaximal exercise testing. Stimulation parameters (waveform, frequency, intensity, epidural electrode array configuration, and transcutaneous electrode locations in the lumbosacral region) were optimised to elevate cardiovascular responses (CV-SCS). A sham condition (SHAM-SCS) served as a comparison. Participants performed arm-crank exercise to exhaustion at a fixed workload corresponding to above ventilatory threshold, on separate days, with CV-SCS or SHAM-SCS. At rest, CV-SCS increased BP and predicted left ventricular cardiac contractility and total peripheral resistance. During exercise, CV-SCS increased time to exhaustion and peak oxygen pulse (a surrogate for stroke volume), relative to SHAM-SCS. Ratings of perceived exertion also tended to be lower with CV-SCS than SHAM-SCS. Comparable improvements in time to exhaustion with ESCS and TSCS suggest that both approaches could be promising ergogenic aids to support exercise performance or rehabilitation, along with reducing fatigue during activities of daily living in individuals with SCI.
Collapse
Affiliation(s)
- Daniel D Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alison M M Williams
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Claire S Shackleton
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Shane J T Balthazaar
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Cardiology, Department of Echocardiography, Vancouver General and St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Tania Lam
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Treffy RW, Morris J, Koshy R, Coss DJ, Pahapill PA. Spinal Cord Stimulation Trial Electrodes Rapidly Produce Epidural Scarring, Impeding Surgical Paddle Lead Placement. Neuromodulation 2024; 27:1090-1097. [PMID: 38456889 DOI: 10.1016/j.neurom.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/07/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES After a successful percutaneous cylindrical electrode five-to-seven-day trial of spinal cord stimulation, subsequent permanent surgical paddle lead (SPL) placement can be impeded by epidural scar induced by the trial leads (TLs). Our goal was to determine whether a delay between TL and subsequent SPL placement provokes enhanced epidural scarring with an increased need for laminotomy extension required for scar removal for optimal SPL placement. MATERIALS AND METHODS Using a prospectively maintained data base, a single-facility/surgeon retrospective study identified 261 patients with newly placed thoracolumbar SPLs from June 2013 to November 2023. Data were obtained from the patients' charts, including, but not limited to, timing between TL and SPL, operative time, and need for extension of laminotomy. RESULTS We found that the need for laminotomy extension due to TL epidural scarring and longer operative times was not required in our patients if the SPL was placed within ten days of placement of the TL (0/26), leading to shorter operative times in those with SPL placed after ten days (122.42 ± 10.72 minutes vs 140.75 ± 4.72 minutes; p = 0.005). We found no association with other medical comorbidities that may be confounding factors leading to epidural scarring/extension of laminotomy or association with level of SPL placement, size of the spinal canal, or indication for SPL placement. CONCLUSIONS TL placement leads to scarring in the epidural space that appears to mature after ten days of its placement. In approximately 34% of patients, this leads to prolonged operative time owing to the need for extension of laminotomy and subsequent clearing of epidural scar for optimal SPL placement.
Collapse
Affiliation(s)
- Randall W Treffy
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Justin Morris
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rahul Koshy
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dylan J Coss
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter A Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Malik RN, Samejima S, Shackleton C, Miller T, Pedrocchi ALG, Rabchevsky AG, Moritz CT, Darrow D, Field-Fote EC, Guanziroli E, Ambrosini E, Molteni F, Gad P, Mushahwar VK, Sachdeva R, Krassioukov AV. REPORT-SCS: minimum reporting standards for spinal cord stimulation studies in spinal cord injury. J Neural Eng 2024; 21:016019. [PMID: 38271712 DOI: 10.1088/1741-2552/ad2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective.Electrical spinal cord stimulation (SCS) has emerged as a promising therapy for recovery of motor and autonomic dysfunctions following spinal cord injury (SCI). Despite the rise in studies using SCS for SCI complications, there are no standard guidelines for reporting SCS parameters in research publications, making it challenging to compare, interpret or reproduce reported effects across experimental studies.Approach.To develop guidelines for minimum reporting standards for SCS parameters in pre-clinical and clinical SCI research, we gathered an international panel of expert clinicians and scientists. Using a Delphi approach, we developed guideline items and surveyed the panel on their level of agreement for each item.Main results.There was strong agreement on 26 of the 29 items identified for establishing minimum reporting standards for SCS studies. The guidelines encompass three major SCS categories: hardware, configuration and current parameters, and the intervention.Significance.Standardized reporting of stimulation parameters will ensure that SCS studies can be easily analyzed, replicated, and interpreted by the scientific community, thereby expanding the SCS knowledge base and fostering transparency in reporting.
Collapse
Affiliation(s)
- Raza N Malik
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alessandra Laura Giulia Pedrocchi
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alexander G Rabchevsky
- Spinal Cord & Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Chet T Moritz
- Departments of Electrical & Computer Engineering, Rehabilitation Medicine, and Physiology & Biophysics, and the Center for Neurotechnology, University of Washington, Seattle, WA, United States of America
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, United States of America
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Division of Physical Therapy, Atlanta, Georgia, United States of America
- Georgia Institute of Technology, School of Biological Sciences, Program in Applied Physiology, Atlanta, Georgia, United States of America
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Emilia Ambrosini
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Parag Gad
- SpineX Inc., Los Angeles, Los Angeles, CA, United States of America
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Spinal Cord Research Program, G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Yeung AM, Huang J, Nguyen KT, Xu NY, Hughes LT, Agrawal BK, Ejskjaer N, Klonoff DC. Spinal Cord Stimulation for Painful Diabetic Neuropathy. J Diabetes Sci Technol 2024; 18:168-192. [PMID: 36384312 PMCID: PMC10899837 DOI: 10.1177/19322968221133795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spinal cord stimulation (SCS) technology has been recently approved by the US Food and Drug Administration (FDA) for painful diabetic neuropathy (PDN). The treatment involves surgical implantation of electrodes and a power source that delivers electrical current to the spinal cord. This treatment decreases the perception of pain in many chronic pain conditions, such as PDN. The number of patients with PDN treated with SCS and the amount of data describing their outcomes is expected to increase given four factors: (1) the large number of patients with this diagnosis, (2) the poor results that have been obtained for pain relief with pharmacotherapy and noninvasive non-pharmacotherapy, (3) the results to date with investigational SCS technology, and (4) the recent FDA approval of systems that deliver this treatment. Whereas traditional SCS replaces pain with paresthesias, a new form of SCS, called high-frequency 10-kHz SCS, first used for pain in 2015, can relieve PDN pain without causing paresthesias, although not all patients experience pain relief by SCS. This article describes (1) an overview of SCS technology, (2) the use of SCS for diseases other than diabetes, (3) the use of SCS for PDN, (4) a comparison of high-frequency 10-kHz and traditional SCS for PDN, (5) other SCS technology for PDN, (6) deployment of SCS systems, (7) barriers to the use of SCS for PDN, (8) risks of SCS technology, (9) current recommendations for using SCS for PDN, and (10) future developments in SCS.
Collapse
Affiliation(s)
| | | | | | - Nicole Y. Xu
- Diabetes Technology Society, Burlingame, CA, USA
| | - Lorenzo T. Hughes
- Balance Health, San Francisco, CA, USA
- Mills-Peninsula Medical Center, Burlingame, CA, USA
| | | | - Niels Ejskjaer
- Steno Diabetes Center North Denmark and Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David C. Klonoff
- Diabetes Technology Society, Burlingame, CA, USA
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
9
|
Wang G, Zhou Y, Yu C, Yang Q, Chen L, Ling S, Chen P, Xing J, Wu H, Zhao Q. Intravital photoacoustic brain stimulation with high-precision. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11520. [PMID: 38333219 PMCID: PMC10851606 DOI: 10.1117/1.jbo.29.s1.s11520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Significance Neural regulation at high precision vitally contributes to propelling fundamental understanding in the field of neuroscience and providing innovative clinical treatment options. Recently, photoacoustic brain stimulation has emerged as a cutting-edge method for precise neuromodulation and shows great potential for clinical application. Aim The goal of this perspective is to outline the advancements in photoacoustic brain stimulation in recent years. And, we also provide an outlook delineating several prospective paths through which this burgeoning approach may be substantively refined for augmented capability and wider implementations. Approach First, the mechanisms of photoacoustic generation as well as the potential mechanisms of photoacoustic brain stimulation are provided and discussed. Then, the state-of-the-art achievements corresponding to this technology are reviewed. Finally, future directions for photoacoustic technology in neuromodulation are provided. Results Intensive research endeavors have prompted substantial advancements in photoacoustic brain stimulation, illuminating the unique advantages of this modality for noninvasive and high-precision neuromodulation via a nongenetic way. It is envisaged that further technology optimization and randomized prospective clinical trials will enable a wide acceptance of photoacoustic brain stimulation in clinical practice. Conclusions The innovative practice of photoacoustic technology serves as a multifaceted neuromodulation approach, possessing noninvasive, high-accuracy, and nongenetic characteristics. It has a great potential that could considerably enhance not only the fundamental underpinnings of neuroscience research but also its practical implementations in a clinical setting.
Collapse
Affiliation(s)
- Guangxing Wang
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Yuying Zhou
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Chunhui Yu
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Qiong Yang
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Lin Chen
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Shuting Ling
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Pengyu Chen
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Jiwei Xing
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Huiling Wu
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
| | - Qingliang Zhao
- Xiamen University, School of Public Health, Center for Molecular Imaging and Translational Medicine, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
- Xiamen University, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
10
|
Zannou AL, Khadka N, Bikson M. Bioheat Model of Spinal Column Heating During High-Density Spinal Cord Stimulation. Neuromodulation 2023; 26:1362-1370. [PMID: 36030146 PMCID: PMC9950282 DOI: 10.1016/j.neurom.2022.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION High-density (HD) spinal cord stimulation (SCS) delivers higher charge per time by increasing frequency and/or pulse duration, thus increasing stimulation energy. Previously, through phantom studies and computational modeling, we demonstrated that stimulation energy drives spinal tissue heating during kHz SCS. In this study, we predicted temperature increases in the spinal cord by HD SCS, the first step in considering the potential impact of heating on clinical outcomes. MATERIALS AND METHODS We adapted a high-resolution computer-aided design-derived spinal cord model, both with and without a lead encapsulation layer, and applied bioheat transfer finite element method multiphysics to predict temperature increases during SCS. We simulated HD SCS using a commercial SCS lead (eight contacts) with clinically relevant intensities (voltage-controlled: 0.5-7 Vrms) and electrode configuration (proximal bipolar, distal bipolar, guarded tripolar [+-+], and guarded quadripolar [+--+]). Results were compared with the conventional and 10-kHz SCS (current-controlled). RESULTS HD SCS waveform energy (reflecting charge per second) governs joule heating in the spinal tissues, increasing temperature supralinearly with stimulation root mean square. Electrode configuration and tissue properties (an encapsulation layer) influence peak tissue temperature increase-but in a manner distinct for voltage-controlled (HD SCS) compared with current-controlled (conventional/10-kHz SCS) stimulation. Therefore, depending on conditions, HD SCS could produce heating greater than that of 10-kHz SCS. For example, with an encapsulation layer, using guarded tripolar configuration (500-Hz, 250-μs pulse width, 5-Vpeak HD SCS), the peak temperature increases were 0.36 °C at the spinal cord and 1.78 °C in the epidural space. CONCLUSIONS As a direct consequence of the higher charge, HD SCS increases tissue heating; voltage-controlled stimulation introduces special dependencies on electrode configuration and lead encapsulation (reflected in impedance). If validated with an in vivo measurement as a possible mechanism of action of SCS, bioheat models of HD SCS serve as tools for programming optimization.
Collapse
Affiliation(s)
- Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Niranjan Khadka
- Department of Psychiatry, Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
11
|
Kuparinen X, Ahmed Haji Omar A, Vartiainen N, Marjamaa J, Gröndahl J, Kivisaari R, Resendiz-Nieves J. Explantation and Simultaneous Explantation-Reimplantation of Spinal Cord Stimulation Paddle Electrodes: Complication Rate and Predisposing Factors. NEUROSURGERY PRACTICE 2023; 4:e00055. [PMID: 39958793 PMCID: PMC11809990 DOI: 10.1227/neuprac.0000000000000055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/12/2023] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND OBJECTIVES Spinal cord stimulation (SCS) is an effective treatment for chronic pain that does not respond to conservative treatment. Nonetheless, up to 38% of all implanted SCS electrodes are explanted, and while the risks involved in the surgical implantation of SCS paddle electrodes are well documented, there is scarce information about SCS explantations and their associated complications. We aimed to document the complication rate and identify their predisposing factors in SCS paddle electrode explantations and simultaneous explantation-reimplantations. METHODS We retrospectively reviewed the outcomes and the characteristics of all patients who underwent explantation of surgically implanted SCS paddle electrodes at the Helsinki University Hospital Department of Neurosurgery between February 2005 and October 2020. RESULTS One hundred thirty-one explantations were performed on 106 patients. The complication rate was 18.3% (24 operations). Major complications occurred during 5 operations (3.8%). No permanent neurological deficits were recorded. Smoking predisposed patients to postoperative complications (P = .023). On average, patients who suffered complications required a day longer hospitalization (2.22 vs 2.92, P = .011). Patients who had repeated explantations (3 or more) suffered significantly more complications than patients who had only 1 or 2 operations (62.5% vs 15.4%, P = .005). CONCLUSION Our results suggest that the explantation of the SCS paddle electrode is a relatively safe surgical procedure. Although severe complications occurred, they were successfully managed. Repeated explantations should be treated cautiously as they seem to increase the complication rate considerably.
Collapse
Affiliation(s)
- Xenia Kuparinen
- Doctoral Programme in Clinical Research, University of Helsinki, Helsinki, Finland
| | | | - Nuutti Vartiainen
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Johan Marjamaa
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Joonatan Gröndahl
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | | |
Collapse
|
12
|
Mayorova L, Radutnaya M, Varyukhina M, Vorobyev A, Zhdanov V, Petrova M, Grechko A. Immediate Effects of Anti-Spastic Epidural Cervical Spinal Cord Stimulation on Functional Connectivity of the Central Motor System in Patients with Stroke- and Traumatic Brain Injury-Induced Spasticity: A Pilot Resting-State Functional Magnetic Resonance Imaging Study. Biomedicines 2023; 11:2266. [PMID: 37626762 PMCID: PMC10452074 DOI: 10.3390/biomedicines11082266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE Spinal cord stimulation (SCS) is one approach to the potential improvement of patients with post-stroke or post-traumatic spasticity. However, little is known about whether and how such interventions alter supraspinal neural systems involved in the pathogenesis of spasticity. This pilot study investigated whether epidural spinal cord stimulation at the level of the C3-C5 cervical segments, aimed at reducing spasticity, alters the patterns of functional connectivity of the brain. METHODS Eight patients with spasticity in the right limbs as a result of left cerebral hemisphere damage (due to hemorrhagic and ischemic stroke or traumatic and anoxic brain injury) were assessed with fMRI immediately before and immediately after short-term (1 to 6 days) test cervical epidural SCS therapy. Eight demographically and clinically comparable patients with spasticity in the right extremities due to a left hemisphere ischemic stroke and brain injury who received conventional therapy were examined as a control group. All patients also had paresis of one or two limbs and hyperreflexia. RESULTS After the SCS therapy, there were three main findings: (1) higher functional connectivity of the brainstem to the right premotor cortex and changes in functional connectivity between cortical motor areas, (2) increased functional connectivity between the right and left lateral nodes of the sensorimotor network, and (3) a positive correlation between decreased spasticity in the right leg and increased functional connectivity within the right hemisphere sensorimotor cortex. All these changes in functional connectivity occurred with a statistically significant decrease in spasticity, as assessed using the modified Ashworth scale. The control group showed no decrease in spasticity or increase in functional connectivity in any of the seeds of interest. On the contrary, a decrease in functional connectivity of the brainstem and right postcentral gyrus was observed in this group during the observation period. CONCLUSIONS We were thus able to detect intrinsic brain connectivity rearrangements that occurred during spasticity mitigation following short epidural SCS therapy. SIGNIFICANCE The clinical results obtained confirmed the efficacy of short-term anti-spastic SCS therapy. The obtained data on functional rearrangements of the central motor system may shed light on the mechanism of antispastic action of this procedure.
Collapse
Affiliation(s)
- Larisa Mayorova
- Laboratory of Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Margarita Radutnaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Maria Varyukhina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Alexey Vorobyev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Vasiliy Zhdanov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Marina Petrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
- Department of Anesthesiology and Resuscitation with Medical Rehabilitation Courses, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
- Department of Anesthesiology and Resuscitation with Medical Rehabilitation Courses, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
13
|
Li J, Wang P, Zhou T, Jiang W, Wu H, Zhang S, Deng L, Wang H. Neuroprotective effects of interleukin 10 in spinal cord injury. Front Mol Neurosci 2023; 16:1214294. [PMID: 37492521 PMCID: PMC10363608 DOI: 10.3389/fnmol.2023.1214294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Spinal cord injury (SCI) starts with a mechanical and/or bio-chemical insult, followed by a secondary phase, leading progressively to severe collapse of the nerve tissue. Compared to the peripheral nervous system, injured spinal cord is characterized by weak axonal regeneration, which leaves most patients impaired or paralyzed throughout lifetime. Therefore, confining, alleviating, or reducing the expansion of secondary injuries and promoting functional connections between rostral and caudal regions of lesion are the main goals of SCI therapy. Interleukin 10 (IL-10), as a pivotal anti-inflammatory and immunomodulatory cytokine, exerts a wide spectrum of positive effects in the treatment of SCI. The mechanisms underlying therapeutic effects mainly include anti-oxidative stress, limiting excessive inflammation, anti-apoptosis, antinociceptive effects, etc. Furthermore, IL-10 displays synergistic effects when combined with cell transplantation or neurotrophic factor, enhancing treatment outcomes. This review lists pleiotropic mechanisms underlying IL-10-mediated neuroprotection after SCI, which may offer fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Juan Li
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Pei Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Wenwen Jiang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Shengqi Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lingxiao Deng
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
14
|
Chandrasekaran S, Bhagat NA, Ramdeo R, Ebrahimi S, Sharma PD, Griffin DG, Stein A, Harkema SJ, Bouton CE. Targeted transcutaneous spinal cord stimulation promotes persistent recovery of upper limb strength and tactile sensation in spinal cord injury: a pilot study. Front Neurosci 2023; 17:1210328. [PMID: 37483349 PMCID: PMC10360050 DOI: 10.3389/fnins.2023.1210328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Long-term recovery of limb function is a significant unmet need in people with paralysis. Neuromodulation of the spinal cord through epidural stimulation, when paired with intense activity-based training, has shown promising results toward restoring volitional limb control in people with spinal cord injury. Non-invasive neuromodulation of the cervical spinal cord using transcutaneous spinal cord stimulation (tSCS) has shown similar improvements in upper-limb motor control rehabilitation. However, the motor and sensory rehabilitative effects of activating specific cervical spinal segments using tSCS have largely remained unexplored. We show in two individuals with motor-complete SCI that targeted stimulation of the cervical spinal cord resulted in up to a 1,136% increase in exerted force, with weekly activity-based training. Furthermore, this is the first study to document up to a 2-point improvement in clinical assessment of tactile sensation in SCI after receiving tSCS. Lastly, participant gains persisted after a one-month period void of stimulation, suggesting that targeted tSCS may lead to persistent recovery of motor and sensory function.
Collapse
Affiliation(s)
- Santosh Chandrasekaran
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nikunj A. Bhagat
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, United States
| | - Richard Ramdeo
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sadegh Ebrahimi
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Pawan D. Sharma
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Doug G. Griffin
- Northwell Health STARS Rehabilitation, East Meadow, NY, United States
| | - Adam Stein
- Department of Physical Medicine and Rehabilitation, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Chad E. Bouton
- Neural Bypass and Brain Computer Interface Laboratory, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
15
|
Lin IT, Lin YH, Lian WS, Wang FS, Wu RW. MicroRNA-29a Mitigates Laminectomy-Induced Spinal Epidural Fibrosis and Gait Dysregulation by Repressing TGF-β1 and IL-6. Int J Mol Sci 2023; 24:ijms24119158. [PMID: 37298111 DOI: 10.3390/ijms24119158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Spinal epidural fibrosis is one of the typical features attributable to failed back surgery syndrome, with excessive scar development in the dura and nerve roots. The microRNA-29 family (miR-29s) has been found to act as a fibrogenesis-inhibitory factor that reduces fibrotic matrix overproduction in various tissues. However, the mechanistic basis of miRNA-29a underlying the overabundant fibrotic matrix synthesis in spinal epidural scars post-laminectomy remained elusive. This study revealed that miR-29a attenuated lumbar laminectomy-induced fibrogenic activity, and epidural fibrotic matrix formation was significantly lessened in the transgenic mice (miR-29aTg) as compared with wild-type mice (WT). Moreover, miR-29aTg limits laminectomy-induced damage and has also been demonstrated to detect walking patterns, footprint distribution, and moving activity. Immunohistochemistry staining of epidural tissue showed that miR-29aTg was a remarkably weak signal of IL-6, TGF-β1, and DNA methyltransferase marker, Dnmt3b, compared to the wild-type mice. Taken together, these results have further strengthened the evidence that miR-29a epigenetic regulation reduces fibrotic matrix formation and spinal epidural fibrotic activity in surgery scars to preserve the integrity of the spinal cord core. This study elucidates and highlights the molecular mechanisms that reduce the incidence of spinal epidural fibrosis, eliminating the risk of gait abnormalities and pain associated with laminectomy.
Collapse
Affiliation(s)
- I-Ting Lin
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yu-Han Lin
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
16
|
Shanthanna H, Eldabe S, Provenzano DA, Chang Y, Adams D, Kashir I, Goel A, Tian C, Couban RJ, Levit T, Hagedorn JM, Narouze S. Role of patient selection and trial stimulation for spinal cord stimulation therapy for chronic non-cancer pain: a comprehensive narrative review. Reg Anesth Pain Med 2023; 48:251-272. [PMID: 37001887 DOI: 10.1136/rapm-2022-103820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 04/03/2023]
Abstract
Background/importancePatient selection for spinal cord stimulation (SCS) therapy is crucial and is traditionally performed with clinical selection followed by a screening trial. The factors influencing patient selection and the importance of trialing have not been systematically evaluated.ObjectiveWe report a narrative review conducted to synthesize evidence regarding patient selection and the role of SCS trials.Evidence reviewMedline, EMBASE and Cochrane databases were searched for reports (any design) of SCS in adult patients, from their inception until March 30, 2022. Study selection and data extraction were carried out using DistillerSR. Data were organized into tables and narrative summaries, categorized by study design. Importance of patient variables and trialing was considered by looking at their influence on the long-term therapy success.FindingsAmong 7321 citations, 201 reports consisting of 60 systematic reviews, 36 randomized controlled trials (RCTs), 41 observational studies (OSs), 51 registry-based reports, and 13 case reports on complications during trialing were included. Based on RCTs and OSs, the median trial success rate was 72% and 82%, and therapy success was 65% and 61% at 12 months, respectively. Although several psychological and non-psychological determinants have been investigated, studies do not report a consistent approach to patient selection. Among psychological factors, untreated depression was associated with poor long-term outcomes, but the effect of others was inconsistent. Most RCTs except for chronic angina involved trialing and only one RCT compared patient selection with or without trial. The median (range) trial duration was 10 (0–30) and 7 (0–56) days among RCTs and OSs, respectively.ConclusionsDue to lack of a consistent approach to identify responders for SCS therapy, trialing complements patient selection to exclude patients who do not find the therapy helpful and/or intolerant of the SCS system. However, more rigorous and large studies are necessary to better evaluate its role.
Collapse
Affiliation(s)
| | - Sam Eldabe
- James Cook University Hospital, Middlesbrough, UK
| | | | - Yaping Chang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Daniel Adams
- Center for Pain Medicine, Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| | - Imad Kashir
- University of Waterloo, Waterloo, Ontario, Canada
| | - Akash Goel
- Anesthesiology & Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chenchen Tian
- Anesthesiology & Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Tal Levit
- Michael G DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan M Hagedorn
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Samer Narouze
- Center for Pain Medicine, Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
17
|
Boakye M, Ball T, Dietz N, Sharma M, Angeli C, Rejc E, Kirshblum S, Forrest G, Arnold FW, Harkema S. Spinal cord epidural stimulation for motor and autonomic function recovery after chronic spinal cord injury: A case series and technical note. Surg Neurol Int 2023; 14:87. [PMID: 37025529 PMCID: PMC10070319 DOI: 10.25259/sni_1074_2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Background:
Traumatic spinal cord injury (tSCI) is a debilitating condition, leading to chronic morbidity and mortality. In recent peer-reviewed studies, spinal cord epidural stimulation (scES) enabled voluntary movement and return of over-ground walking in a small number of patients with motor complete SCI. Using the most extensive case series (n = 25) for chronic SCI, the present report describes our motor and cardiovascular and functional outcomes, surgical and training complication rates, quality of life (QOL) improvements, and patient satisfaction results after scES.
Methods:
This prospective study occurred at the University of Louisville from 2009 to 2020. scES interventions began 2–3 weeks after surgical implantation of the scES device. Perioperative complications were recorded as well as long-term complications during training and device related events. QOL outcomes and patient satisfaction were evaluated using the impairment domains model and a global patient satisfaction scale, respectively.
Results:
Twenty-five patients (80% male, mean age of 30.9 ± 9.4 years) with chronic motor complete tSCI underwent scES using an epidural paddle electrode and internal pulse generator. The interval from SCI to scES implantation was 5.9 ± 3.4 years. Two participants (8%) developed infections, and three additional patients required washouts (12%). All participants achieved voluntary movement after implantation. A total of 17 research participants (85%) reported that the procedure either met (n = 9) or exceeded (n = 8) their expectations, and 100% would undergo the operation again.
Conclusion:
scES in this series was safe and achieved numerous benefits on motor and cardiovascular regulation and improved patient-reported QOL in multiple domains, with a high degree of patient satisfaction. The multiple previously unreported benefits beyond improvements in motor function render scES a promising option for improving QOL after motor complete SCI. Further studies may quantify these other benefits and clarify scES’s role in SCI patients.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Tyler Ball
- Department of Neurosurgery, Vanderbilt University, Nashville,
| | - Nicholas Dietz
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Mayur Sharma
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Claudia Angeli
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Enrico Rejc
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| | - Steven Kirshblum
- Department of Physical Medicine Rehabilitation, Rutgers, Newark, New Jersey,
| | - Gail Forrest
- Department of Physical Medicine Rehabilitation, Rutgers, Newark, New Jersey,
| | - Forest W. Arnold
- Department of Infectious Diseases, University of Louisville, Louisville, United States
| | - Susan Harkema
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky,
| |
Collapse
|
18
|
Spinal Cord Stimulation in Chronic Low Back Pain Syndrome: Mechanisms of Modulation, Technical Features and Clinical Application. Healthcare (Basel) 2022; 10:healthcare10101953. [PMID: 36292400 PMCID: PMC9601444 DOI: 10.3390/healthcare10101953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022] Open
Abstract
Chronic low-back pain (CLBP) is a common disease with several negative consequences on the quality of life, work and activity ability and increased costs to the health-care system. When pharmacological, psychological, physical and occupational therapies or surgery fail to reduce CLBP, patients may be a candidate for Spinal Cord Stimulation (SCS). SCS consists of the transcutaneous or surgical implantation of different types of electrodes in the epidural space; electrodes are then connected to an Implanted Pulse Generator (IPG) that generates stimulating currents. Through spinal and supraspinal mechanisms based on the “gate control theory for pain transmission”, SCS reduces symptoms of CLBP in the almost totality of well-selected patients and its effect lasts up to eight years in around 75% of patients. However, the evidence in favor of SCS still remains weak, mainly due to poor trial methodology and design. This narrative review is mainly addressed to those professionals that may encounter patients with CLBP failing conventional treatments. For this reason, we report the mechanisms of pain relief during SCS, the technical features and some clinical considerations about the application of SCS in patients with CLBP.
Collapse
|
19
|
Brill S, Defrin R, Aryeh IG, Zusman AM, Benyamini Y. Short- and long-term effects of conventional spinal cord stimulation on chronic pain and health perceptions: A longitudinal controlled trial. Eur J Pain 2022; 26:1849-1862. [PMID: 35761769 PMCID: PMC9543320 DOI: 10.1002/ejp.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/03/2022] [Accepted: 06/25/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND The effectiveness and long-term outcomes of spinal cord stimulation (SCS) are not fully established, especially considering that data from patients who withdrew from the trial are rarely analysed, which may lead to overestimation of SCS efficacy. We evaluated short- and long-term effects of SCS on chronic pain and perceived health, beyond natural variability in these outcomes. METHODS In a prospective design, 176 chronic pain patients referred to SCS were evaluated five times (baseline; retest ~6 weeks later; post-SCS trial; 8 and 28 weeks post-permanent implantation). Patients whose SCS trial failed (Temp group) were followed up and compared to those who underwent permanent SCS (Perm group). RESULTS Analyses revealed a non-linear (U-shaped) trend significantly different between the two groups. In the Perm group, a significant improvement occurred post-SCS implantation in pain severity, pain interference, health-related quality of life and self-rated health, which was followed by gradual worsening and return to baseline values at end of follow-up. In the Temp group, only minor changes occurred in these outcomes over time. On average, baseline and end of follow-up values in the Perm and Temp groups were similar: ~40% in each group exhibited an increase in pain severity over time and 38% and 33%, respectively, exhibited reductions in pain severity over time. CONCLUSIONS Since the greatest improvement in the outcome measures occurred from baseline to post-SCS trial (T1-T3) followed by a gradual decline in the effect, it appears that SCS may not be effective for the majority of chronic pain patients. SIGNIFICANCE This longitudinal study evaluated short and long term effects of spinal cord stimulation (SCS) on chronic pain outcome measures, beyond their natural variation in time. Despite significant short term improvements, by the end of the seven months' follow-up, the outcomes in the treatment group (people who received the permanent implantation) were similar to those of the control group (people whose SCS trial failed and did not continue to permanent implantation) suggesting SCS may not be cost-effective for chronic pain patients.
Collapse
Affiliation(s)
- Silviu Brill
- Department of Anesthesia and Critical Care Medicine, Institute of Pain MedicineTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Ruth Defrin
- Department of Physical Therapy, Sagol School of Neuroscience, School of Health Professions, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Itay Goor Aryeh
- Pain Medicine Institute, Sheba Medical CenterTel HashomerRamat GanIsrael
| | | | - Yael Benyamini
- Bob Shapell School of Social WorkTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
20
|
Mansour NM, Peña Pino I, Freeman D, Carrabre K, Venkatesh S, Darrow D, Samadani U, Parr AM. Advances in Epidural Spinal Cord Stimulation to Restore Function after Spinal Cord Injury: History and Systematic Review. J Neurotrauma 2022; 39:1015-1029. [PMID: 35403432 DOI: 10.1089/neu.2022.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidural spinal cord stimulation (eSCS) has been recently recognized as a potential therapy for chronic spinal cord injury (SCI). eSCS has been shown to uncover residual pathways within the damaged spinal cord. The purpose of this review is to summarize the key findings to date regarding the use of eSCS in SCI. Searches were carried out using MEDLINE, EMBASE, and Web of Science database and reference lists of the included articles. A combination of medical subject heading terms and keywords was used to find studies investigating the use of eSCS in SCI patients to facilitate volitional movement and to restore autonomic function. The risk of bias was assessed using Risk Of Bias In Non-Randomized Studies of Interventions tool for nonrandomized studies. We were able to include 40 articles that met our eligibility criteria. The studies included a total of 184 patient experiences with incomplete or complete SCI. The majority of the studies used the Medtronic 16 paddle lead. Around half of the studies reported lead placement between T11- L1. We included studies that assessed motor (n = 28), autonomic (n = 13), and other outcomes (n = 10). The majority of the studies reported improvement in outcomes assessed. The wide range of included outcomes demonstrates the effectiveness of eSCS in treating a diverse SCI population. However, the current studies cannot definitively conclude which patients benefit the most from this intervention. Further study in this area is needed to allow improvement of the eSCS technology and allow it to be more widely available for chronic SCI patients.
Collapse
Affiliation(s)
- Nadine M Mansour
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Freeman
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kailey Carrabre
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shivani Venkatesh
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, VA Healthcare System, Minneapolis, Minnesota, USA
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Kapural L, Jameson J, Johnson C, Kloster D, Calodney A, Kosek P, Pilitsis J, Bendel M, Petersen E, Wu C, Cherry T, Lad SP, Yu C, Sayed D, Goree J, Lyons MK, Sack A, Bruce D, Rubenstein F, Province-Azalde R, Caraway D, Patel NP. Treatment of nonsurgical refractory back pain with high-frequency spinal cord stimulation at 10 kHz: 12-month results of a pragmatic, multicenter, randomized controlled trial. J Neurosurg Spine 2022; 37:188-199. [PMID: 35148512 DOI: 10.3171/2021.12.spine211301] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) at 10 kHz (10-kHz SCS) is a safe and effective therapy for treatment of chronic low-back pain. However, it is unclear from existing evidence whether these findings can be generalized to patients with chronic back pain that is refractory to conventional medical management (CMM) and who have no history of spine surgery and are not acceptable candidates for spine surgery. The authors have termed this condition "nonsurgical refractory back pain" (NSRBP) and conducted a multicenter, randomized controlled trial to compare CMM with and without 10-kHz SCS in this population. METHODS Patients with NSRBP, as defined above and with a spine surgeon consultation required for confirmation, were randomized 1:1 to patients undergoing CMM with and without 10-kHz SCS. CMM included nonsurgical treatment for back pain, according to physicians' best practices and clinical guidelines. Primary and secondary endpoints included the responder rate (≥ 50% pain relief), disability (Oswestry Disability Index [ODI]), global impression of change, quality of life (EQ-5D-5L), and change in daily opioid use and were analyzed 3 and 6 months after randomization. The protocol allowed for an optional crossover at 6 months for both arms, with observational follow-up over 12 months. RESULTS In total, 159 patients were randomized; 76 received CMM, and 69 (83.1%) of the 83 patients who were assigned to the 10-kHz SCS group received a permanent implant. At the 3-month follow-up, 80.9% of patients who received stimulation and 1.3% of those who received CMM were found to be study responders (primary outcome, ≥ 50% pain relief; p < 0.001). There was also a significant difference between the treatment groups in all secondary outcomes at 6 months (p < 0.001). In the 10-kHz SCS arm, outcomes were sustained, including a mean 10-cm visual analog scale score of 2.1 ± 2.3 and 2.1 ± 2.2 and mean ODI score of 24.1 ± 16.1 and 24.0 ± 17.0 at 6 and 12 months, respectively (p = 0.9). In the CMM arm, 74.7% (56/75) of patients met the criteria for crossover and received an implant. The crossover arm obtained a 78.2% responder rate 6 months postimplantation. Five serious adverse events occurred (procedure-related, of 125 total permanent implants), all of which resolved without sequelae. CONCLUSIONS The study results, which included follow-up over 12 months, provide important insights into the durability of 10-kHz SCS therapy with respect to chronic refractory back pain, physical function, quality of life, and opioid use, informing the current clinical practice for pain management in patients with NSRBP.
Collapse
Affiliation(s)
| | | | | | | | - Aaron Calodney
- 5Interventional Spine, Texas Spine and Joint Hospital, Tyler, Texas
| | - Peter Kosek
- 6Pain Management, Oregon Neurosurgery Specialists, Springfield, Oregon
| | | | | | - Erika Petersen
- 9Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Chengyuan Wu
- 10Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Taissa Cherry
- 11Department of Neurosurgery and Neuroscience, Kaiser Permanente, Redwood City, California
| | - Shivanand P Lad
- 12Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Cong Yu
- 13Pain Research, Swedish Health Services, Seattle, Washington
| | - Dawood Sayed
- 14Anesthesiology and Pain Medicine, University of Kansas Hospital, Kansas City, Kansas
| | - Johnathan Goree
- 9Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark K Lyons
- 16Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Andrew Sack
- 14Anesthesiology and Pain Medicine, University of Kansas Hospital, Kansas City, Kansas
| | - Diana Bruce
- 11Department of Neurosurgery and Neuroscience, Kaiser Permanente, Redwood City, California
| | | | | | | | | |
Collapse
|
22
|
Steele AG, Manson GA, Horner PJ, Sayenko DG, Contreras-Vidal JL. Effects of transcutaneous spinal stimulation on spatiotemporal cortical activation patterns: A proof-of-concept EEG study. J Neural Eng 2022; 19. [PMID: 35732141 DOI: 10.1088/1741-2552/ac7b4b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Transcutaneous spinal cord stimulation (TSS) has been shown to be a promising non-invasive alternative to epidural spinal cord stimulation (ESS) for improving outcomes of people with spinal cord injury (SCI). However, studies on the effects of TSS on cortical activation are limited. Our objectives were to evaluate the spatiotemporal effects of TSS on brain activity, and determine changes in functional connectivity under several different stimulation conditions. As a control, we also assessed the effects of functional electrical stimulation (FES) on cortical activity. APPROACH Non-invasive scalp electroencephalography (EEG) was recorded during TSS or FES while five neurologically intact participants performed one of three lower-limb tasks while in the supine position: (1) A no contraction control task, (2) a rhythmic contraction task, or (3) a tonic contraction task. After EEG denoising and segmentation, independent components were clustered across subjects to characterize sensorimotor networks in the time and frequency domains. Independent components of the event related potentials (ERPs) were calculated for each cluster and condition. Next, a Generalized Partial Directed Coherence (gPDC) analysis was performed on each cluster to compare the functional connectivity between conditions and tasks. RESULTS Independent Component analysis of EEG during TSS resulted in three clusters identified at Brodmann areas (BA) 9, BA 6, and BA 4, which are areas associated with working memory, planning, and movement control. Lastly, we found significant (p < 0.05, adjusted for multiple comparisons) increases and decreases in functional connectivity of clusters during TSS, but not during FES when compared to the no stimulation conditions. SIGNIFICANCE The findings from this study provide evidence of how TSS recruits cortical networks during tonic and rhythmic lower limb movements. These results have implications for the development of spinal cord-based computer interfaces, and the design of neural stimulation devices for the treatment of pain and sensorimotor deficit.
Collapse
Affiliation(s)
- Alexander G Steele
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas, 77030-2707, UNITED STATES
| | - Gerome A Manson
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas, 77030-2707, UNITED STATES
| | - Philip J Horner
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas, 77030-2707, UNITED STATES
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas, 77030-2707, UNITED STATES
| | - Jose L Contreras-Vidal
- Electrical and Computer Engineering, University of Houston, N308 Engineering Building I, Houston, Texas, 77204-4005, UNITED STATES
| |
Collapse
|
23
|
Samejima S, Caskey CD, Inanici F, Shrivastav SR, Brighton LN, Pradarelli J, Martinez V, Steele KM, Saigal R, Moritz CT. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design. Phys Ther 2022; 102:6514473. [PMID: 35076067 PMCID: PMC8788019 DOI: 10.1093/ptj/pzab228] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study investigated the effect of cervical and lumbar transcutaneous spinal cord stimulation (tSCS) combined with intensive training to improve walking and autonomic function after chronic spinal cord injury (SCI). METHODS Two 64-year-old men with chronic motor incomplete cervical SCI participated in this single-subject design study. They each underwent 2 months of intensive locomotor training and 2 months of multisite cervical and lumbosacral tSCS paired with intensive locomotor training. RESULTS The improvement in 6-Minute Walk Test distance after 2 months of tSCS with intensive training was threefold greater than after locomotor training alone. Both participants improved balance ability measured by the Berg Balance Scale and increased their ability to engage in daily home exercises. Gait analysis demonstrated increased step length for each individual. Both participants experienced improved sensation and bowel function, and 1 participant eliminated the need for intermittent catheterization after the stimulation phase of the study. CONCLUSION These results suggest that noninvasive spinal cord stimulation might promote recovery of locomotor and autonomic functions beyond traditional gait training in people with chronic incomplete cervical SCI. IMPACT Multisite transcutaneous spinal stimulation may induce neuroplasticity of the spinal networks and confer functional benefits following chronic cervical SCI.
Collapse
Affiliation(s)
- Soshi Samejima
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Charlotte D Caskey
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Fatma Inanici
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Siddhi R Shrivastav
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Lorie N Brighton
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Jared Pradarelli
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Vincente Martinez
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA,Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA,Address all correspondence to Dr Moritz at:
| |
Collapse
|
24
|
Flores Á, López-Santos D, García-Alías G. When Spinal Neuromodulation Meets Sensorimotor Rehabilitation: Lessons Learned From Animal Models to Regain Manual Dexterity After a Spinal Cord Injury. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:755963. [PMID: 36188826 PMCID: PMC9397786 DOI: 10.3389/fresc.2021.755963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Electrical neuromodulation has strongly hit the foundations of spinal cord injury and repair. Clinical and experimental studies have demonstrated the ability to neuromodulate and engage spinal cord circuits to recover volitional motor functions lost after the injury. Although the science and technology behind electrical neuromodulation has attracted much of the attention, it cannot be obviated that electrical stimulation must be applied concomitantly to sensorimotor rehabilitation, and one would be very difficult to understand without the other, as both need to be finely tuned to efficiently execute movements. The present review explores the difficulties faced by experimental and clinical neuroscientists when attempting to neuromodulate and rehabilitate manual dexterity in spinal cord injured subjects. From a translational point of view, we will describe the major rehabilitation interventions employed in animal research to promote recovery of forelimb motor function. On the other hand, we will outline some of the state-of-the-art findings when applying electrical neuromodulation to the spinal cord in animal models and human patients, highlighting how evidences from lumbar stimulation are paving the path to cervical neuromodulation.
Collapse
Affiliation(s)
- África Flores
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Diego López-Santos
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Guillermo García-Alías
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
- Institut Guttmann de Neurorehabilitació, Badalona, Spain
- *Correspondence: Guillermo García-Alías
| |
Collapse
|
25
|
Noga BR, Guest JD. Combined neuromodulatory approaches in the central nervous system for treatment of spinal cord injury. Curr Opin Neurol 2021; 34:804-811. [PMID: 34593718 PMCID: PMC8595808 DOI: 10.1097/wco.0000000000000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To report progress in neuromodulation following spinal cord injury (SCI) using combined brain and spinal neuromodulation.Neuromodulation refers to alterations in neuronal activity for therapeutic purposes. Beneficial effects are established in disease states such as Parkinson's Disease (PD), chronic pain, epilepsy, and SCI. The repertoire of neuromodulation and bioelectric medicine is rapidly expanding. After SCI, cohort studies have reported the benefits of epidural stimulation (ES) combined with training. Recently, we have explored combining ES with deep brain stimulation (DBS) to increase activation of descending motor systems to address limitations of ES in severe SCI. In this review, we describe the types of applied neuromodulation that could be combined in SCI to amplify efficacy to enable movement. These include ES, mesencephalic locomotor region (MLR) - DBS, noninvasive transcutaneous stimulation, transcranial magnetic stimulation, paired-pulse paradigms, and neuromodulatory drugs. We examine immediate and longer-term effects and what is known about: (1) induced neuroplastic changes, (2) potential safety concerns; (3) relevant outcome measures; (4) optimization of stimulation; (5) therapeutic limitations and prospects to overcome these. RECENT FINDINGS DBS of the mesencephalic locomotor region is emerging as a potential clinical target to amplify supraspinal command circuits for locomotion. SUMMARY Combinations of neuromodulatory methods may have additive value for restoration of function after spinal cord injury.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
26
|
Torlakcik H, Sarica C, Bayer P, Yamamoto K, Iorio-Morin C, Hodaie M, Kalia SK, Neimat JS, Hernesniemi J, Bhatia A, Nelson BJ, Pané S, Lozano AM, Zemmar A. Magnetically Guided Catheters, Micro- and Nanorobots for Spinal Cord Stimulation. Front Neurorobot 2021; 15:749024. [PMID: 34744678 PMCID: PMC8565609 DOI: 10.3389/fnbot.2021.749024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Spinal cord stimulation (SCS) is an established treatment for refractory pain syndromes and has recently been applied to improve locomotion. Several technical challenges are faced by surgeons during SCS lead implantation, particularly in the confined dorsal epidural spaces in patients with spinal degenerative disease, scarring and while targeting challenging structures such as the dorsal root ganglion. Magnetic navigation systems (MNS) represent a novel technology that uses externally placed magnets to precisely steer tethered and untethered devices. This innovation offers several benefits for SCS electrode placement, including enhanced navigation control during tip placement, and the ability to position and reposition the lead in an outpatient setting. Here, we describe the challenges of SCS implant surgery and how MNS can be used to overcome these hurdles. In addition to tethered electrode steering, we discuss the navigation of untethered micro- and nanorobots for wireless and remote neuromodulation. The use of these small-scale devices can potentially change the current standard of practice by omitting the need for electrode and pulse generator implantation or replacement. Open questions include whether small-scale robots can generate an electrical field sufficient to activate neuronal tissue, as well as testing precise navigation, placement, anchoring, and biodegradation of micro- and nanorobots in the in vivo environment.
Collapse
Affiliation(s)
- Harun Torlakcik
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Henan University School of Medicine, Zhengzhou, China.,Multi-Scale Robotics Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Patrick Bayer
- Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Joseph S Neimat
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Juha Hernesniemi
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Henan University School of Medicine, Zhengzhou, China
| | - Anuj Bhatia
- Department of Anesthesia and Pain Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bradley J Nelson
- Multi-Scale Robotics Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Henan University School of Medicine, Zhengzhou, China.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
27
|
Zhang H, Liu Y, Zhou K, Wei W, Liu Y. Restoring Sensorimotor Function Through Neuromodulation After Spinal Cord Injury: Progress and Remaining Challenges. Front Neurosci 2021; 15:749465. [PMID: 34720867 PMCID: PMC8551759 DOI: 10.3389/fnins.2021.749465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) is a major disability that results in motor and sensory impairment and extensive complications for the affected individuals which not only affect the quality of life of the patients but also result in a heavy burden for their families and the health care system. Although there are few clinically effective treatments for SCI, research over the past few decades has resulted in several novel treatment strategies which are related to neuromodulation. Neuromodulation-the use of neuromodulators, electrical stimulation or optogenetics to modulate neuronal activity-can substantially promote the recovery of sensorimotor function after SCI. Recent studies have shown that neuromodulation, in combination with other technologies, can allow paralyzed patients to carry out intentional, controlled movement, and promote sensory recovery. Although such treatments hold promise for completely overcoming SCI, the mechanisms by which neuromodulation has this effect have been difficult to determine. Here we review recent progress relative to electrical neuromodulation and optogenetics neuromodulation. We also examine potential mechanisms by which these methods may restore sensorimotor function. We then highlight the strengths of these approaches and remaining challenges with respect to its application.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaping Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Guérout N. Plasticity of the Injured Spinal Cord. Cells 2021; 10:cells10081886. [PMID: 34440655 PMCID: PMC8395000 DOI: 10.3390/cells10081886] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Complete spinal cord injury (SCI) leads to permanent motor, sensitive and sensory deficits. In humans, there is currently no therapy to promote recovery and the only available treatments include surgical intervention to prevent further damage and symptomatic relief of pain and infections in the acute and chronic phases, respectively. Basically, the spinal cord is classically viewed as a nonregenerative tissue with limited plasticity. Thereby the establishment of the “glial” scar which appears within the SCI is mainly described as a hermetic barrier for axon regeneration. However, recent discoveries have shed new light on the intrinsic functional plasticity and endogenous recovery potential of the spinal cord. In this review, we will address the different aspects that the spinal cord plasticity can take on. Indeed, different experimental paradigms have demonstrated that axonal regrowth can occur even after complete SCI. Moreover, recent articles have demonstrated too that the “glial” scar is in fact composed of several cellular populations and that each of them exerts specific roles after SCI. These recent discoveries underline the underestimation of the plasticity of the spinal cord at cellular and molecular levels. Finally, we will address the modulation of this endogenous spinal cord plasticity and the perspectives of future therapeutic opportunities which can be offered by modulating the injured spinal cord microenvironment.
Collapse
Affiliation(s)
- Nicolas Guérout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France
| |
Collapse
|
29
|
Boakye M, Ugiliweneza B, Madrigal F, Mesbah S, Ovechkin A, Angeli C, Bloom O, Wecht JW, Ditterline B, Harel NY, Kirshblum S, Forrest G, Wu S, Harkema S, Guest J. Clinical Trial Designs for Neuromodulation in Chronic Spinal Cord Injury Using Epidural Stimulation. Neuromodulation 2021; 24:405-415. [PMID: 33794042 DOI: 10.1111/ner.13381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
STUDY DESIGN This is a narrative review focused on specific challenges related to adequate controls that arise in neuromodulation clinical trials involving perceptible stimulation and physiological effects of stimulation activation. OBJECTIVES 1) To present the strengths and limitations of available clinical trial research designs for the testing of epidural stimulation to improve recovery after spinal cord injury. 2) To describe how studies can control for the placebo effects that arise due to surgical implantation, the physical presence of the battery, generator, control interfaces, and rehabilitative activity aimed to promote use-dependent plasticity. 3) To mitigate Hawthorne effects that may occur in clinical trials with intensive supervised participation, including rehabilitation. MATERIALS AND METHODS Focused literature review of neuromodulation clinical trials with integration to the specific context of epidural stimulation for persons with chronic spinal cord injury. CONCLUSIONS Standard of care control groups fail to control for the multiple effects of knowledge of having undergone surgical procedures, having implanted stimulation systems, and being observed in a clinical trial. The irreducible effects that have been identified as "placebo" require sham controls or comparison groups in which both are implanted with potentially active devices and undergo similar rehabilitative training.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Health Management and Systems Sciences, University of Louisville, Louisville, KY, USA
| | - Fabian Madrigal
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Samineh Mesbah
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Alexander Ovechkin
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Claudia Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Bioengineering, University of Louisville, Louisville, KY, USA.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA
| | - Ona Bloom
- Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA.,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA.,James J Peters VA Medical Center, Bronx, NY, USA
| | - Jill W Wecht
- James J Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bonnie Ditterline
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Noam Y Harel
- James J Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NY, USA.,Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA
| | - Gail Forrest
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samuel Wu
- Department of Biostatistics, CTSI Data Coordinating Center, University of Florida, Gainesville, FL, USA
| | - Susan Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA
| | - James Guest
- Neurological Surgery, and the Miami Project to Cure Paralysis, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|