1
|
Kang TW, Lee YJ, Rigo B, Soltis I, Lee J, Kim H, Wang G, Zavanelli N, Ayesh E, Sohail W, Majditehran H, Kozin SH, Hammond FL, Yeo WH. Soft Nanomembrane Sensor-Enabled Wearable Multimodal Sensing and Feedback System for Upper-Limb Sensory Impairment Assistance. ACS NANO 2025; 19:5613-5628. [PMID: 39888714 PMCID: PMC11823636 DOI: 10.1021/acsnano.4c15530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/02/2025]
Abstract
Sensory rehabilitation in pediatric patients with traumatic spinal cord injury is challenging due to the ongoing development of their nervous systems. However, these sensory problems often result in nonuse of the impaired limb, which disturbs impaired limb rehabilitation and leads to overuse of the contralateral limb and other physical or psychological issues that may persist. Here, we introduce a soft nanomembrane sensor-enabled wearable glove system that wirelessly delivers a haptic sensation from the hand with tactile feedback responses for sensory impairment assistance. The smart glove system uses gold nanomembranes, copper-elastomer composites, and laser-induced graphene for the sensitive detection of pressure, temperature, and strain changes. The nanomaterial sensors are integrated with low-profile tactile actuators and wireless flexible electronics to offer real-time sensory feedback. The wearable system's thin-film sensors demonstrate 98% and 97% accuracy in detecting pressure and finger flexion, respectively, along with a detection coverage of real-life temperature changes as an effective rehabilitation tool. Collectively, the upper-limb sensory impairment assistance system embodies the latest in soft materials and wearable technology to incorporate soft sensors and miniaturized actuators and maximize its compatibility with human users, offering a promising solution for patient sensory rehabilitation.
Collapse
Affiliation(s)
- Tae Woog Kang
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yoon Jae Lee
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bruno Rigo
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ira Soltis
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jimin Lee
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hodam Kim
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gaorong Wang
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nathan Zavanelli
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Eyas Ayesh
- Adaptive
Robotic Manipulation Laboratory, George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wali Sohail
- Adaptive
Robotic Manipulation Laboratory, George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Houriyeh Majditehran
- Adaptive
Robotic Manipulation Laboratory, George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Scott H. Kozin
- Shriners
Hospital for Children, Philadelphia, Pennsylvania 19140, United States
| | - Frank L. Hammond
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Adaptive
Robotic Manipulation Laboratory, George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wallace H.
Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Woon-Hong Yeo
- Wearable
Intelligent Systems and Healthcare Center (WISH Center), Institute
for Matter and Systems, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wallace H.
Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Institute for
Robotics and Intelligent Machines, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Trbovich M, Wu Y, Koek W, Wecht J, Kellogg D. Elucidating mechanisms of attenuated skin vasodilation during passive heat stress in persons with spinal cord injury. J Spinal Cord Med 2024; 47:765-774. [PMID: 37158753 PMCID: PMC11378667 DOI: 10.1080/10790268.2023.2203535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE Persons with spinal cord injury (SCI) are unable to efficiently dissipate heat via thermoregulatory vasodilation as efficiently as able-bodied persons during whole body passive heat stress (PHS). Skin blood flow (SkBF) is controlled by dual sympathetic vasomotor systems: noradrenergic vasoconstrictor (VC) nerves and cholinergic vasodilator (VD) nerves. Thus, impaired vasodilation could result from inappropriate increases in noradrenergic VC tone that compete with cholinergic vasodilation or diminished cholinergic tone. To address this issue, we used bretylium (BR) which selectively blocks neural release of norepinephrine, thereby reducing noradrenergic VC tone. If impaired vasodilation during PHS is due to inappropriate increase in VC tone, BR treatment will improve SkBF responses during PHS. DESIGN Prospective interventional trial. SETTING laboratory. PARTICIPANTS 22 veterans with SCI. INTERVENTIONS Skin surface areas with previously defined intact vs. impaired thermoregulatory vasodilation were treated with BR iontophoresis with a nearby untreated site serving as control/CON. Participants underwent PHS until core temperature rose 1°C. OUTCOME MEASURES Laser doppler flowmeters measured SkBF over BR and CON sites in areas with impaired and intact thermoregulatory vasodilation. Cutaneous vascular conductance (CVC) was calculated for all sites. Peak-PHS CVC was normalized to baseline (BL): (CVC peak-PHS/CVC BL) to quantify SkBF change. RESULTS CVC rise in BR sites was significantly less than CON sites in areas with intact (P = 0.03) and impaired (P = 0.04) thermoregulatory vasodilation. CONCLUSION Cutaneous blockade of neural release of noradrenergic neurotransmitters affecting vasoconstriction did not enhance thermoregulatory vasodilation during PHS in persons with SCI; rather BR attenuated the response. Cutaneous blockade of neural release of noradrenergic neurotransmitters affecting vasoconstriction did not restore cutaneous active vasodilation during PHS in persons with SCI.
Collapse
Affiliation(s)
- Michelle Trbovich
- Department of Rehabilitation Medicine, University of Texas Health Science Center, San Antonio
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
| | - Yubo Wu
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
| | - Wouker Koek
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, USA
| | - Jill Wecht
- James J Peters Department of Veteran's Affairs Medical Center, Bronx, New York, USA
| | - Dean Kellogg
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center and Dept of Medicine, University of Texas Health Science Center, San Antonio, USA
- Department of Medicine, University of TX Health Science Center, San Antonio, USA
| |
Collapse
|
3
|
Lôbo ILB, Wanner SP, Guerreiro RDC, Coelho BLP, Coimbra FEDS, Martins MEM, Duarte LCDA, Stieler E, de Mello MT, Silva A. Effects of two external cooling strategies on physiological and perceptual responses of athletes with tetraplegia during and after exercise in the heat. J Therm Biol 2024; 123:103896. [PMID: 38906048 DOI: 10.1016/j.jtherbio.2024.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Athletes with tetraplegia may experience marked hyperthermia while exercising under environmental heat stress due to their limited ability to dissipate heat through evaporative means. This study investigated the effectiveness of two external cooling strategies (i.e., spraying water onto the body surface or using a cooling vest) on physiological and perceptual variables in tetraplegic athletes during and after an aerobic exercise session in a hot environment. Nine male wheelchair rugby players performed an incremental test to determine their maximum aerobic power output. After that, they were subjected to three experimental trials in a counter-balanced order: control (CON, no body cooling), cooling vest (CV), and water spraying (WS). During these trials, they performed 30 min of a submaximal exercise (at 65% of their maximum aerobic power) inside an environmental chamber set to maintain the dry-bulb temperature at 32 °C. The following variables were recorded at regular intervals during the exercise and for an additional 30 min following the exertion (i.e., post-exercise recovery) with the participants also exposed to 32 °C: body core temperature (TCORE), skin temperature (TSKIN), heart rate (HR), rating of perceived exertion (RPE), thermal comfort (TC), and thermal sensation (TS). While exercising in CON conditions, the tetraplegic athletes had the expected increases in TCORE, TSKIN, HR, RPE, and TC and TS scores. HR, TC, and TS decreased gradually toward pre-exercise values after the exercise, whereas TCORE and TSKIN remained stable at higher values. Using a cooling vest decreased the temperature measured only on the chest and reduced the scores of RPE, TC, and TS during and after exercise but did not influence the other physiological responses of the tetraplegic athletes. In contrast, spraying water onto the athletes' body surface attenuated the exercise-induced increase in TSKIN, led to lower HR values during recovery, and was also associated with better perception during and after exercise. We conclude that water spraying is more effective than the cooling vest in attenuating physiological strain induced by exercise-heat stress. However, although both external cooling strategies do not influence exercise hyperthermia, they improve the athletes' thermal perception and reduce perceived exertion.
Collapse
Affiliation(s)
- Ingrid Ludimila Bastos Lôbo
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil; Departamento de Ciências do Movimento Humano of the Universidade do Estado de Minas Gerais (DCMH/UEMG), Ibirité, MG, Brazil.
| | - Samuel Penna Wanner
- Laboratório de Fisiologia do Exercício of the Universidade Federal de Minas Gerais (LAFISE/UFMG), Belo Horizonte, MG, Brazil.
| | - Renato de Carvalho Guerreiro
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Bruno Lourenço Pinto Coelho
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | | | - Maria Eduarda Machado Martins
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Larissa Cristina de Abreu Duarte
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Eduardo Stieler
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Marco Túlio de Mello
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Andressa Silva
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Bass DH, Ghamasaee P, Bigford GE, Wakefield M, Duthely LM, Samano D. Assessing Regional Weather's Impact on Spinal Cord Injury Survivors, Caregivers, and General Public in Miami, Florida. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:382. [PMID: 38673294 PMCID: PMC11050493 DOI: 10.3390/ijerph21040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024]
Abstract
(1) Background: Climate change is increasing the already frequent diverse extreme weather events (EWE) across geographic locations, directly and indirectly impacting human health. However, current ongoing research fails to address the magnitude of these indirect impacts, including healthcare access. Vulnerable populations such as persons with spinal cord injury (pSCI) face added physiologic burden such as thermoregulation or mobility challenges like closure of public transportation. Our exploratory research assessed commute and transport to healthcare facilities as well as the knowledge, attitudes and behaviors (KAB) of pSCI regarding EWE and climate change when compared to pSCI caregivers (CG) and the general public (GP). (2) Methods: A KAB survey was employed to conduct a cross-sectional assessment of pSCI, CG, and GP in Miami from October through November 2019 using snowball sampling. Descriptive and logistic regression statistical analyses were used. (3) Results: Of 65 eligible survey respondents, 27 (41.5%) were pSCI, 11 (17%) CG, and 27 (41.5%) GP. Overall, pSCI reported EWE, particularly flooding and heavy rain, affecting their daily activities including healthcare appointments, more frequently than CG or GP. The overall models for logistic regression looking at commute to and attendance of healthcare appointments were statistically significant. pSCI self-report being less vulnerable than others, and a large proportion of each group was not fully convinced climate change is happening. (4) Conclusions: This study provided insight to the KAB of 3 population subgroups in Miami, Florida. pSCI are significantly more vulnerable to the effects of regional weather events yet exhibit disproportionate self-perception of their vulnerability. Continued and more comprehensive research is needed to characterize the barriers that vulnerable populations face during weather events.
Collapse
Affiliation(s)
- Danielle Hildegard Bass
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.G.); (L.M.D.)
| | - Pardis Ghamasaee
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.G.); (L.M.D.)
| | - Gregory E. Bigford
- Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | | | - Lunthita M. Duthely
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.G.); (L.M.D.)
- Department of Obstetrics, Gynecology & Reproductive Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniel Samano
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.G.); (L.M.D.)
- Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
5
|
Pelletier C. Exercise prescription for persons with spinal cord injury: a review of physiological considerations and evidence-based guidelines. Appl Physiol Nutr Metab 2023; 48:882-895. [PMID: 37816259 DOI: 10.1139/apnm-2023-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Persons with spinal cord injury (SCI) experience gains in fitness, physical and mental health from regular participation in exercise and physical activity. Due to changes in physiological function of the cardiovascular, nervous, and muscular systems, general population physical activity guidelines and traditional exercise prescription methods are not appropriate for the SCI population. Exercise guidelines specific to persons with SCI recommend progressive training beginning at 20 min of moderate to vigorous intensity aerobic exercise twice per week transitioning to 30 min three times per week, with strength training of the major muscle groups two times per week. These population-specific guidelines were designed considering the substantial barriers to physical activity for persons with SCI and can be used to frame an individual exercise prescription. Rating of perceived exertion (i.e., perceptually regulated exercise) is a practical way to indicate moderate to vigorous intensity exercise in community settings. Adapted exercise modes include arm cycle ergometry, hybrid arm-leg cycling, and recumbent elliptical equipment. Body weight-supported treadmill training and other rehabilitation modalities may improve some aspects of health and fitness for people with SCI if completed at sufficient intensity. Disability-specific community programs offer beneficial opportunities for persons with SCI to experience quality exercise opportunities but are not universally available.
Collapse
Affiliation(s)
- Chelsea Pelletier
- School of Health Sciences, Faculty of Human and Health Sciences, University of Northern British Columbia, Prince George, BC, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Wecht JM, Weir JP, Peters CG, Weber E, Wylie GR, Chiaravalloti NC. Autonomic Cardiovascular Control, Psychological Well-Being, and Cognitive Performance in People With Spinal Cord Injury. J Neurotrauma 2023; 40:2610-2620. [PMID: 37212256 DOI: 10.1089/neu.2022.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
PURPOSE To examine associations between parameters of psychological well-being, injury characteristics, cardiovascular autonomic nervous system (ANS) control, and cognitive performance in persons with spinal cord injury (SCI) compared with age-matched uninjured controls. This is an observational, cross-sectional study including a total of 94 participants (52 with SCI and 42 uninjured controls: UIC). Cardiovascular ANS responses were continuously monitored at rest and during administration of the Paced Auditory Serial Addition Test (PASAT). Self-report scores on the SCI-Quality of Life questionnaires are reported for depression, anxiety, fatigue, resilience, and positive affect. Participants with SCI performed significantly more poorly on the PASAT compared with the uninjured controls. Although not statistically significant, participants with SCI tended to report more psychological distress and less well-being than the uninjured controls. In addition, when compared with uninjured controls, the cardiovascular ANS responses to testing were significantly altered in participants with SCI; however, these responses to testing did not predict PASAT performance. Self-reported levels of anxiety were significantly related to PASAT score in the SCI group, but there was no significant relationship between PASAT and the other indices of SCI-Quality of Life. Future investigations should more closely examine the relationship among cardiovascular ANS impairments, psychological disorders, and cognitive dysfunction to better elucidate the underpinnings of these deficits and to guide interventions aimed at improving physiological, psychological, and cognitive health after SCI. Tetraplegia, paraplegia, blood pressure variability, cognitive, mood.
Collapse
Affiliation(s)
- Jill M Wecht
- James J Peters VA Medical Center, Bronx, New York, USA
- Bronx Veterans Medical Research Foundation, Bronx, New York, USA
- Department of Medicine, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Joseph P Weir
- Department of Health, Sport, and Exercise Science, University of Kansas, Lawrence, Kansas, USA
| | - Caitlyn G Peters
- James J Peters VA Medical Center, Bronx, New York, USA
- Kessler Foundation, West Orange, New Jersey, USA
| | - Erica Weber
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| | - Glenn R Wylie
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| | - Nancy C Chiaravalloti
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| |
Collapse
|
7
|
Tsoutsoubi L, Ioannou LG, Alba BK, Cheung SS, Daanen HA, Mekjavic IB, Flouris AD. Central versus peripheral mechanisms of cold-induced vasodilation: a study in the fingers and toes of people with paraplegia. Eur J Appl Physiol 2023; 123:1709-1726. [PMID: 37005962 PMCID: PMC10363085 DOI: 10.1007/s00421-023-05175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE This study examined physiological and perceptual parameters related to cold-induced vasodilation (CIVD) in the fingers and toes of people with paraplegia and compared them with responses observed in able-bodied individuals. METHODS Seven participants with paraplegia and seven able-bodied individuals participated in a randomized matched-controlled study involving left-hand and -foot immersion in cold water (8 ± 1 °C) for 40 min during exposure to cool (16 ± 1 °C), thermoneutral (23 ± 1 °C), and hot (34 ± 1 °C) ambient conditions. RESULTS Similar CIVD occurrence was observed in the fingers in the two groups. In toes, three of the seven participants with paraplegia revealed CIVDs: one in cool, two in thermoneutral, and three in hot conditions. No able-bodied participants revealed CIVDs in cool and thermoneutral conditions, while four revealed CIVDs in hot conditions. The toe CIVDs of paraplegic participants were counterintuitive in several respects: they were more frequent in cool and thermoneutral conditions (compared to the able-bodied participants), emerged in these conditions despite lower core and skin temperatures of these participants, and were evident only in cases of thoracic level lesions (instead of lesions at lower spinal levels). CONCLUSION Our findings demonstrated considerable inter-individual variability in CIVD responses in both the paraplegic and able-bodied groups. While we observed vasodilatory responses in the toes of participants with paraplegia that technically fulfilled the criteria for CIVD, it is unlikely that they reflect the CIVD phenomenon observed in able-bodied individuals. Taken together, our findings favor the contribution of central over peripheral factors in relation to the origin and/or control of CIVD.
Collapse
Affiliation(s)
- Lydia Tsoutsoubi
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Leonidas G Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Billie K Alba
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, 01760, USA
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Hein A Daanen
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Józef Stefan Institute, 1000, Ljubljana, Slovenia
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece.
| |
Collapse
|
8
|
Sawczuk D, Gać P, Poręba R, Poręba M. The Prevalence of Cardiovascular Diseases in Paralympic Athletes. Healthcare (Basel) 2023; 11:1027. [PMID: 37046954 PMCID: PMC10094457 DOI: 10.3390/healthcare11071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Paralympic participants represent a special subset of athletes. Although sudden cardiac death in this group is a rare event, it should be underlined that, in particular, Paralympians with movement restrictions have a higher prevalence of coronary heart disease. Numerous reports have focused on comparing athletes with spinal cord injury (SCI) and the ones with non-spinal cord injury-NSCI. The first group is more prone to develop arrhythmias, arterial hypertension, hyperlipidaemia including atrial fibrillation and atrial flutter, and this group potentially may have a higher risk of cardiovascular mortality. In ECGs of the disabled athletes with SCI, we more often find changes typically established as consequences of exercise training, such as T-wave inversions. The potential differences in the cardiovascular status of disabled athletes may depend not only on the class of impairment, but also on the discipline of sport and environmental conditions, which makes the analysis relatively complex. The paper analyses up-to-date articles discussing the cardiovascular problems in disabled athletes, pointing to scarce data in several fields of interest. Previous studies on the frequency of abnormalities of the cardiovascular system in Paralympic athletes highlighted the need to intensify preventive cardiology care for this group of athletes, and some activities could be proposed for sportsmen and sportswomen in this group, including more frequent screening ECG, application of 24 h ECG Holter monitoring, echocardiography and cardiological care. Due to the relatively few data available and existing discrepancies in this area, further research is necessary.
Collapse
Affiliation(s)
- Diana Sawczuk
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Paweł Gać
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Małgorzata Poręba
- Department of Paralympic Sports, Wroclaw University of Health and Sport Sciences, Witelona 25a, 51-617 Wroclaw, Poland
| |
Collapse
|
9
|
Flett S, Garcia J, Cowley KC. Spinal electrical stimulation to improve sympathetic autonomic functions needed for movement and exercise after spinal cord injury: a scoping clinical review. J Neurophysiol 2022; 128:649-670. [PMID: 35894427 PMCID: PMC9668071 DOI: 10.1152/jn.00205.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in sensory, motor, and autonomic dysfunction. Obesity, cardiovascular disease, and metabolic disease are highly prevalent after SCI. Although inadequate voluntary activation of skeletal muscle contributes, it is absent or inadequate activation of thoracic spinal sympathetic neural circuitry and suboptimal activation of homeostatic (cardiovascular and temperature) and metabolic support systems that truly limits exercise capacity, particularly for those with cervical SCI. Thus, when electrical spinal cord stimulation (SCS) studies aimed at improving motor functions began mentioning effects on exercise-related autonomic functions, a potential new area of clinical application appeared. To survey this new area of potential benefit, we performed a systematic scoping review of clinical SCS studies involving these spinally mediated autonomic functions. Nineteen studies were included, 8 used transcutaneous and 11 used epidural SCS. Improvements in blood pressure regulation at rest or in response to orthostatic challenge were investigated most systematically, whereas reports of improved temperature regulation, whole body metabolism, and peak exercise performance were mainly anecdotal. Effective stimulation locations and parameters varied between studies, suggesting multiple stimulation parameters and rostrocaudal spinal locations may influence the same sympathetic function. Brainstem and spinal neural mechanisms providing excitatory drive to sympathetic neurons that activate homeostatic and metabolic tissues that provide support for movement and exercise and their integration with locomotor neural circuitry are discussed. A unifying conceptual framework for the integrated neural control of locomotor and sympathetic function is presented which may inform future research needed to take full advantage of SCS for improving these spinally mediated autonomic functions.
Collapse
Affiliation(s)
- Sarah Flett
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Juanita Garcia
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristine C Cowley
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Hosokawa Y, Adami PE, Stephenson BT, Blauwet C, Bermon S, Webborn N, Racinais S, Derman W, Goosey-Tolfrey VL. Prehospital management of exertional heat stroke at sports competitions for Paralympic athletes. Br J Sports Med 2022; 56:599-604. [PMID: 34620604 PMCID: PMC9120375 DOI: 10.1136/bjsports-2021-104786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To adapt key components of exertional heat stroke (EHS) prehospital management proposed by the Intenational Olympic Committee Adverse Weather Impact Expert Working Group for the Olympic Games Tokyo 2020 so that it is applicable for the Paralympic athletes. METHODS An expert working group representing members with research, clinical and lived sports experience from a Para sports perspective reviewed and revised the IOC consensus document of current best practice regarding the prehospital management of EHS. RESULTS Similar to Olympic competitions, Paralympic competitions are also scheduled under high environmental heat stress; thus, policies and procedures for EHS prehospital management should also be established and followed. For Olympic athletes, the basic principles of EHS prehospital care are: early recognition, early diagnosis, rapid, on-site cooling and advanced clinical care. Although these principles also apply for Paralympic athletes, slight differences related to athlete physiology (eg, autonomic dysfunction) and mechanisms for hands-on management (eg, transferring the collapsed athlete or techniques for whole-body cooling) may require adaptation for care of the Paralympic athlete. CONCLUSIONS Prehospital management of EHS in the Paralympic setting employs the same procedures as for Olympic athletes with some important alterations.
Collapse
Affiliation(s)
- Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Ben Thomas Stephenson
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- English Institute of Sport, Loughborough University, Loughborough, UK
| | - Cheri Blauwet
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation; Spaulding Hospital/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Medical Committee, International Paralympic Committee, Bonn, Germany
| | - Stephane Bermon
- Health and Science Department, World Athletics, Monaco
- LAHMESS, Universite Cote d'Azur, Nice, Provence-Alpes-Cote d'Azu, France
| | - Nick Webborn
- Medical Committee, International Paralympic Committee, Bonn, Germany
- Centre for Sport and Exercise Science and Medicine (SESAME), School of Sport and Service Management, University of Brighton, Brighton, UK
| | - Sebastien Racinais
- Research Education Centre, ASPETAR - Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Wayne Derman
- Institute of Sport and Exercise Medicine, Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- IOC Research Center, University of Stellenbosch, Cape Town, South Africa
| | - Victoria L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- IOC Research Center, The National Centre for Sports Exercise and Medicine, Loughborough University, Loughborough, UK
| |
Collapse
|
11
|
Fagher K, Baumgart JK, Solli GS, Holmberg HC, Lexell J, Sandbakk Ø. Preparing for snow-sport events at the Paralympic Games in Beijing in 2022: recommendations and remaining questions. BMJ Open Sport Exerc Med 2022; 8:e001294. [PMID: 35295372 PMCID: PMC8867376 DOI: 10.1136/bmjsem-2021-001294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
During the 2022 Winter Paralympic Games in Beijing, the Para snow-sport events will be held at high altitudes and in possibly cold conditions while also requiring adjustment to several time zones. Furthermore, the ongoing COVID-19 pandemic may lead to suboptimal preparations. Another concern is the high rate of injuries that have been reported in the Para alpine and snowboard events. In addition to these challenges, Para athletes various impairments may affect both sports-specific demands and athlete health. However, the group of Para snow-sport athletes is an understudied population. Accordingly, this perspective paper summarises current knowledge to consider when preparing for the Paralympic Games in Beijing and point out important unanswered questions. We here focus specifically on how sport-specific demands and impairment-related considerations are influenced by altitude acclimatisation, cold conditions, travel fatigue and jetlag, complications due to the COVID-19 pandemic, and injury prevention and sports safety considerations. As Para athletes with spinal cord injury, limb deficiency, cerebral palsy and visual impairment account for the majority of the Para snow-sport athletes, the focus is mainly on these impairment groups. In brief, we highlight the extra caution required to ensure athlete health, performance and sports safety among Para athletes participating in the snow-sport events in the 2022 Beijing Paralympic Games. Although there is an urgent need for more high-quality research focusing on Para winter athletes, we hope these non-consensus recommendations will help prepare for the 2022 Beijing Paralympic Winter Games.
Collapse
Affiliation(s)
- K Fagher
- Department of Health Sciences, Lund University, Lund, Sweden
- The Swedish Paralympic Committee, Stockholm, Sweden
| | - J K Baumgart
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - G S Solli
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sports Science and Physical Education, Nord University, Bodo, Norway
| | - H C Holmberg
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - J Lexell
- Department of Health Sciences, Lund University, Lund, Sweden
- The Medical Committee, The International Paralympic Committee, Bonn, Germany
| | - Ø Sandbakk
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Trbovich M, Ford A, Wu Y, Koek W, Wecht J, Kellogg D. Correlation of neurological level and sweating level of injury in persons with spinal cord injury. J Spinal Cord Med 2021; 44:902-909. [PMID: 32315262 PMCID: PMC8725691 DOI: 10.1080/10790268.2020.1751489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Objective: Thermoregulatory dysfunction after spinal cord injury (SCI) impairs quality of life and predisposes persons to life-threatening sequela of heat-related illness (HRI) in conditions of high ambient temperature. SCI clinicians currently have no objective way to predict which persons are at greatest risk of HRI. Evaporative cooling via sweating is the body's most efficient mechanism of heat dissipation. The relationship between the neurological level of injury (NLOI) and the degree of sudomotor dysfunction is not well defined. This study examines the relationship between the NLOI and sweating level of injury (SwLOI). This information can assist SCI clinicians in identifying individuals with SCI who have most impaired sudomotor function and thus highest risk of HRI.Design: Observational.Setting: Human physiology laboratory.Participants: 10 persons with tetraplegia (TP), 14 with paraplegia (PP) and 10 able-bodied (AB).Intervention: Passive heat stress (1°C rise in core temperature) with sweat responses (SR) quantified with the starch iodine test.Outcome measures: The most caudal dermatomal level in which sweating was visualized was recorded as the SwLOI, which was compared to the NLOI. Minimum, maximum and median differences between NLOI and SwLOI were calculated.Results: Persons with tetraplegia demonstrated no SR. Persons with paraplegia demonstrated SR at a median of 1 level below NLOI. Able-bodied controls demonstrated sweating on all skin surface areas.Conclusions: Persons with motor complete tetraplegia lack evaporative cooling capacity through SR during passive heat stress predisposing them to HRI. Meanwhile, persons with paraplegia sweat on average 1 dermatomal level below their NLOI.
Collapse
Affiliation(s)
- Michelle Trbovich
- Department of Rehabilitation Medicine, University of Texas Health Science Center, San Antonio, Texas, USA,South Texas Veteran’s Health Care System, San Antonio, Texas, USA,Correspondence to: Michelle Trbovich, 7703 Floyd Curl Drive, San Antonio, Texas78229, USA.
| | - Ashley Ford
- Department of Rehabilitation Medicine, University of Texas Health Science Center, San Antonio, Texas, USA,South Texas Veteran’s Health Care System, San Antonio, Texas, USA
| | - Yubo Wu
- South Texas Veteran’s Health Care System, San Antonio, Texas, USA,Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Wouter Koek
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jill Wecht
- The National Center of Excellence, James J. Peters VA Medical Center, Bronx, New York, USA,Department of Rehabilitation Medicine Icahn School of Medicine, Mount Sinai Hospital, New York, New York, USA
| | - Dean Kellogg
- South Texas Veteran’s Health Care System, San Antonio, Texas, USA,Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
13
|
Maloney PL, Pumpa KL, Miller J, Thompson KG, Jay O. Extended post-exercise hyperthermia in athletes with a spinal cord injury. J Sci Med Sport 2021; 24:831-836. [DOI: 10.1016/j.jsams.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022]
|
14
|
Krassioukov A, Linsenmeyer TA, Beck LA, Elliott S, Gorman P, Kirshblum S, Vogel L, Wecht J, Clay S. Evaluation and Management of Autonomic Dysreflexia and Other Autonomic Dysfunctions: Preventing the Highs and Lows. J Spinal Cord Med 2021; 44:631-683. [PMID: 34270391 PMCID: PMC8288133 DOI: 10.1080/10790268.2021.1925058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Andrei Krassioukov
- University of British Columbia, Vancouver, British Columbia, BC
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, BC, Canada
| | - Todd A Linsenmeyer
- Kessler Institute for Rehabilitation, West Orange, NJ
- Rutgers University Medical School, Newark, NJ
| | | | - Stacy Elliott
- University of British Columbia, Vancouver, British Columbia, BC
| | | | - Steven Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ
- Rutgers University Medical School, Newark, NJ
| | | | - Jill Wecht
- Icahn School of Medicine at Mt Sinai, New York, NY
| | - Sarah Clay
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
15
|
Krassioukov A, Linsenmeyer TA, Beck LA, Elliott S, Gorman P, Kirshblum S, Vogel L, Wecht J, Clay S. Evaluation and Management of Autonomic Dysreflexia and Other Autonomic Dysfunctions: Preventing the Highs and Lows: Management of Blood Pressure, Sweating, and Temperature Dysfunction. Top Spinal Cord Inj Rehabil 2021; 27:225-290. [PMID: 34108837 PMCID: PMC8152175 DOI: 10.46292/sci2702-225] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Stacy Elliott
- University of British Columbia, Vancouver, British Columbia, CA
| | | | | | | | - Jill Wecht
- Icahn School of Medicine at Mt Sinai, New York, NY
| | - Sarah Clay
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
16
|
Sacino A, Rosenblatt K. Critical Care Management of Acute Spinal Cord Injury-Part II: Intensive Care to Rehabilitation. JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2019; 6:222-235. [PMID: 33907704 DOI: 10.1055/s-0039-1694686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Spinal cord injury is devastating to those affected due to the loss of motor and sensory function, and, in some cases, cardiovascular collapse, ventilatory failure, and bowel and bladder dysfunction. Primary trauma to the spinal cord is exacerbated by secondary insult from the inflammatory response to injury. Specialized intensive care of patients with acute spinal cord injury involves the management of multiple systems and incorporates evidence-based practices to reduce secondary injury to the spinal cord. Patients greatly benefit from early multidisciplinary rehabilitation for neurologic and functional recovery. Treatment of acute spinal cord injury may soon incorporate novel molecular agents currently undergoing clinical investigation to assist in neuroprotection and neuroregeneration.
Collapse
Affiliation(s)
- Amanda Sacino
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kathryn Rosenblatt
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Trbovich MB, Handrakis JP, Kumar NS, Price MJ. Impact of passive heat stress on persons with spinal cord injury: Implications for Olympic spectators. Temperature (Austin) 2019; 7:114-128. [PMID: 33015240 PMCID: PMC7518736 DOI: 10.1080/23328940.2019.1631730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023] Open
Abstract
Environmental heat stress can negatively impact health, work capacity, and athletic performance and potentially to lead to life-threatening consequences if not mitigated. With the upcoming Toyko Olympic games to be held during anticipated warm ambient temperatures (up to 29°C), and with spectators potentially spending long durations of time outdoors, certain populations of persons with impaired thermoregulatory capacity will be at higher risk of heat-related illness from passive heat stress. Persons with spinal cord injury (SCI) are one of these groups as a result of a decentralized sympathetic nervous system, which leaves them with impairment in convective and evaporative cooling via vasodilation and sweating, respectively. This review summarizes (1) thermoregulatory physiological responses of persons with SCI under passive heat stress: the effect of level and completeness of injury; (2) the impact of passive heat stress on quality of life (QOL), outdoor participation, behavioral thermoregulation, and cognition; (3) recommendations and education for clinicians providing health care for persons with SCI; and (4) suggestions of future directions for exploring the gaps in the literature on passive heat stress in persons with SCI. This article aims to equip consumers with SCI and health-care professionals with the most up-to-date knowledge on passive heat stress responses in persons with SCI, so that their attendance at the Olympic games can be done with maximal safety and enjoyment.
Collapse
Affiliation(s)
- Michelle B. Trbovich
- Department of Rehabilitation Medicine, UT Health Science Center at San Antonio, San Antonio, TX, USA
- Spinal cord injury center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - John P. Handrakis
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY, USA
- New York Institute of Technology, Department of Physical Therapy, School of Health Professions, Old Westbury, NY, USA
| | - Nina S. Kumar
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY, USA
| | - Mike J. Price
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
18
|
Trbovich M, Koek W, Ortega C. Efficacy of water spray for evaporative cooling in athletes with spinal cord injury. Spinal Cord Ser Cases 2019; 5:51. [PMID: 31632709 PMCID: PMC6786376 DOI: 10.1038/s41394-019-0194-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
Study design Interventional crossover study. Objective Spinal cord injury (SCI) disrupts afferent input to the hypothalamus and impairs efferent vaso- and sudomotor output, especially in lesions above the sympathetic chain (T1-L2). In consequence, persons with SCI under heat stress experience impairment in the ability to dissipate heat proportional to the lesion level. Thermoregulatory dysfunction places an individual at high risk of hyperthermia, which can be life threatening, especially for athletes with SCI during exercise. Current evidence on therapeutic cooling techniques in athletes with SCI is limited, but basic physiologic and research data suggest water spray (WS) might be efficacious, particularly in athletes with tetraplegia (TP), who are most impaired in thermoregulation. The aim of this study was to evaluate the effect of WS on core temperature (Tc) during exercise in athletes with SCI. Setting Texas, USA. Methods Eleven individuals with SCI: seven with TP, four with paraplegia (PP); and sixteen able-bodied (AB) controls underwent a wheelchair intermittent sprint exercise for 90 min under two conditions: (1) WS application every 15 min and (2) control (C), without WS. Tc was measured every 15 min and was analyzed for the effect of group (TP, PP, and AB) and time. Change in Tc (ΔTc) was also compared between groups. Results ΔTc was significantly higher in TP vs. PP (p < 0.0001) and TP vs. AB (p < 0.0001) groups under C treatment. WS significantly attenuated ΔTc in TP (p = 0.001), but did not change ΔTc in PP or AB. Conclusion WS effectively attenuated Tc elevation during exercise in athletes with TP. Sponsorship Texas chapter of the Paralyzed Veterans of America.
Collapse
Affiliation(s)
- Michelle Trbovich
- Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Wouter Koek
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Catherine Ortega
- School of Health Professions, Physical Therapy Department, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| |
Collapse
|
19
|
Tomoda Y, Kagawa S, Kurata S, Tanaka K. Hyperthermia due to heat retention in chronic spinal cord injury: A case report. J Gen Fam Med 2019; 20:111-113. [PMID: 31065476 PMCID: PMC6498100 DOI: 10.1002/jgf2.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/06/2018] [Accepted: 12/18/2018] [Indexed: 11/28/2022] Open
Abstract
An 80-year-old male with past history of cervical spinal cord injury visited our hospital owing to perforation in the digestive tract. Upon admission to the general ward, he presented with a sustained fever that was unresponsive to acetaminophen and antibiotics. Based on the dry skin and underlying disease, he was diagnosed with hyperthermia due to heat retention. After controlling the room temperature to cool his body and performing evaporative and convective cooling, his symptoms completely resolved. This case highlights that primary physicians should be aware of thermoregulatory dysfunction in patients with cervical spinal cord injury.
Collapse
Affiliation(s)
- Yoshitaka Tomoda
- Department of General MedicineSaiseikai Fukuoka General HospitalFukuokaJapan
| | - Satoshi Kagawa
- Department of General MedicineSaiseikai Fukuoka General HospitalFukuokaJapan
| | - Satoshi Kurata
- Department of General MedicineSaiseikai Fukuoka General HospitalFukuokaJapan
| | - Kazutoyo Tanaka
- Department of General MedicineSaiseikai Fukuoka General HospitalFukuokaJapan
| |
Collapse
|
20
|
Trbovich M. Efficacy of Various Cooling Techniques During Exercise in Persons With Spinal Cord Injury: A Pilot Crossover Intervention Study. Top Spinal Cord Inj Rehabil 2019; 25:74-82. [PMID: 30774291 PMCID: PMC6368108 DOI: 10.1310/sci2501-74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Decentralization of the sympathetic nervous system in persons with spinal cord injury (SCI) results in impaired vasomotor and sudomotor activity and, subsequently, impaired thermoregulatory capacity during exercise in the heat. Hyperthermia can be life-threatening and, as such, cooling interventions are needed to prevent this sequela. Objectives: To measure change in core temperature (ΔTC) over time during exercise in normothermic and high ambient heat conditions to compare thermoregulatory capacity in persons with varying degrees of intact vasomotor and sudomotor activity and to determine the efficacy of three cooling interventions in mitigating TC rise. Methods: Three persons participated: a 51-year-old with complete (AIS A) tetraplegia (TP), a 32-year-old with AIS A paraplegia (PP), and a 40-year-old without SCI (AB). Each exercised for 30 minutes on a wheelchair treadmill propelled at 30 revolutions per minute under five different conditions: (1) cool (C) = 75°F without cooling, (2) hot (H) = 90°F without cooling, (3) 90°F with cooling vest (CV), (4) 90°F with water spray (WS), and (5) 90°F with ice slurry ingestion (IS). ΔTC was compared for all conditions in all participants. Results: ΔTC in the C and H conditions was proportional to the neurological level of injury, with Tc rising highest in the TP followed by the PP then AB. WS was most efficacious at mitigating rise in TC followed by IS and CV in TP and PP. None of the cooling interventions provided an added TC cooling effect in AB. Conclusion: WS was most efficacious at mitigating rise in TC in TP>PP during exercise in the heat and should be studied in a larger SCI population.
Collapse
|