1
|
Grieves LA, Gloor GB. Uropygial gland microbiota of nearctic-neotropical migrants vary with season and migration distance. Anim Microbiome 2025; 7:11. [PMID: 39885562 PMCID: PMC11780944 DOI: 10.1186/s42523-024-00367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
Symbiotic microbiota are important drivers of host behaviour, health, and fitness. While most studies focus on humans, model organisms, and domestic or economically important species, research investigating the role of host microbiota in wild populations is rapidly accumulating. Most studies focus on the gut microbiota; however, skin and other glandular microbiota also play an important role in shaping traits that may impact host fitness. The uropygial gland is an important source of chemical cues and harbours diverse microbes that could mediate chemical communication in birds, so determining the factors most important in shaping host microbiota should improve our understanding of microbially-mediated chemical communication. Hypothesizing that temporal, geographic, and taxonomic effects influence host microbiota, we evaluated the effects of season, migration distance, and taxonomy on the uropygial gland microbiota of 18 passerine species from 11 families. By sampling 473 birds at a single stopover location during spring and fall migration and using 16S rRNA sequencing, we demonstrate that season, followed by migration distance, had the strongest influence on uropygial gland microbial community composition. While statistically significant, taxonomic family and species had only weak effects on gland microbiota. Given that temporal effects on gland microbiota were nearly ubiquitous among the species we tested, determining the consequences of and mechanisms driving this seasonal variation are important next steps.
Collapse
Affiliation(s)
- Leanne A Grieves
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 3L8, Canada.
- Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA.
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5C1, Canada
| |
Collapse
|
2
|
Sewell TR, van Dorp L, Ghosh PN, Wierzbicki C, Caroe C, Lyakurwa JV, Tonelli E, Bowkett AE, Marsden S, Cunningham AA, Garner TWJ, Gilbert TP, Moyer D, Weldon C, Fisher MC. Archival mitogenomes identify invasion by the Batrachochytrium dendrobatidis CAPE lineage caused an African amphibian extinction in the wild. Proc Biol Sci 2024; 291:20241157. [PMID: 39081176 PMCID: PMC11289635 DOI: 10.1098/rspb.2024.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Outbreaks of emerging infectious diseases are influenced by local biotic and abiotic factors, with host declines occurring when conditions favour the pathogen. Deterioration in the population of the micro-endemic Tanzanian Kihansi spray toad (Nectophrynoides asperginis) occurred after the construction of a hydropower dam, implicating habitat modification in this species decline. Population recovery followed habitat augmentation; however, a subsequent outbreak of chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) led to the spray toad's extinction in the wild. We show using spatiotemporal surveillance and mitogenome assembly of Bd from archived toad mortalities that the outbreak was caused by invasion of the BdCAPE lineage and not the panzootic lineage BdGPL. Molecular dating reveals an emergence of BdCAPE across southern Africa overlapping with the timing of the spray toad's extinction. That our post-outbreak surveillance of co-occurring amphibian species in the Udzungwa Mountains shows widespread infection by BdCAPE yet no signs of ill-health or decline suggests these other species can tolerate Bd when environments are stable. We conclude that, despite transient success in mitigating the impact caused by dams' construction, invasion by BdCAPE caused the ultimate die-off that led to the extinction of the Kihansi spray toad.
Collapse
Affiliation(s)
- Thomas R. Sewell
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, White City, Imperial, LondonW12 0BZ, UK
| | - Lucy van Dorp
- Department of Genetics, Evolution & Environment, UCL Genetics Institute, University College London, LondonWC1E 6BT, UK
| | - Pria N. Ghosh
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, White City, Imperial, LondonW12 0BZ, UK
| | - Claudia Wierzbicki
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, White City, Imperial, LondonW12 0BZ, UK
- Institute of Zoology, Zoological Society of London, LondonNW1 4RY, UK
| | - Christian Caroe
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen1353, Denmark
| | - John V. Lyakurwa
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, P.O. Box 35064, Dar es Salaam, Tanzania
| | - Elena Tonelli
- Department of Natural Sciences, Manchester Metropolitan University, ManchesterM1 5GD, UK
| | | | - Stuart Marsden
- Department of Natural Sciences, Manchester Metropolitan University, ManchesterM1 5GD, UK
| | | | - Trenton W. J. Garner
- Institute of Zoology, Zoological Society of London, LondonNW1 4RY, UK
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom P. Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen1353, Denmark
| | - David Moyer
- Integrated Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Ché Weldon
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, White City, Imperial, LondonW12 0BZ, UK
| |
Collapse
|
3
|
Rolshausen G, Dal Grande F, Otte J, Schmitt I. Lichen holobionts show compositional structure along elevation. Mol Ecol 2023; 32:6619-6630. [PMID: 35398946 DOI: 10.1111/mec.16471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Holobionts are dynamic ecosystems that may respond to abiotic drivers with compositional changes. Uncovering elevational diversity patterns within these microecosystems can further our understanding of community-environment interactions. Here, we assess how the major components of lichen holobionts-fungal hosts, green algal symbionts, and the bacterial community-collectively respond to an elevational gradient. We analyse populations of two lichen symbioses, Umbilicaria pustulata and U. hispanica, along an elevational gradient spanning 2100 altitudinal metres and covering three major biomes. Our study shows (i) discontinuous genomic variation in fungal hosts with one abrupt genomic differentiation within each of the two host species, (ii) altitudinally structured bacterial communities with pronounced turnover within and between hosts, and (iii) altitude-specific presence of algal symbionts. Alpha diversity of bacterial communities decreased with increasing elevation. A marked turnover in holobiont diversity occurred across two altitudinal belts: at 11°C-13°C average annual temperature (here: 800-1200 m a.s.l.), and at 7°C-9°C average annual temperature (here: 1500-1800 m a.s.l.). The two observed zones mark a clustering of distribution limits and community shifts. The three ensuing altitudinal classes, that is, the most frequent combinations of species in holobionts, approximately correspond to the Mediterranean, cool-temperate, and alpine climate zones. We conclude that multitrophic microecosystems, such as lichen holobionts, respond with concerted compositional changes to climatic factors that also structure communities of macroorganisms, for example, vascular plants.
Collapse
Affiliation(s)
- Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Center for Wildlife Genetics, Senckenberg Research Institute, Gelnhausen, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Departement of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Leonhardt F, Keller A, Arranz Aveces C, Ernst R. From Alien Species to Alien Communities: Host- and Habitat-Associated Microbiomes in an Alien Amphibian. MICROBIAL ECOLOGY 2023; 86:2373-2385. [PMID: 37233803 PMCID: PMC10640505 DOI: 10.1007/s00248-023-02227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Alien species can host diverse microbial communities. These associated microbiomes may be important in the invasion process and their analysis requires a holistic community-based approach. We analysed the skin and gut microbiome of Eleutherodactylus johnstonei from native range populations in St Lucia and exotic range populations in Guadeloupe, Colombia, and European greenhouses along with their respective environmental microbial reservoir through a 16S metabarcoding approach. We show that amphibian-associated and environmental microbial communities can be considered as meta-communities that interact in the assembly process. High proportions of bacteria can disperse between frogs and environment, while respective abundances are rather determined by niche effects driven by the microbial community source and spatial environmental properties. Environmental transmissions appeared to have higher relevance for skin than for gut microbiome composition and variation. We encourage further experimental studies to assess the implications of turnover in amphibian-associated microbial communities and potentially invasive microbiota in the context of invasion success and impacts. Within this novel framework of "nested invasions," (meta-)community ecology thinking can complement and widen the traditional perspective on biological invasions.
Collapse
Affiliation(s)
- Franziska Leonhardt
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| | - Alexander Keller
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Clara Arranz Aveces
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70173, Stuttgart, Germany
| | - Raffael Ernst
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| |
Collapse
|
5
|
Hartmann AM, McGrath-Blaser SE, Colón-Piñeiro Z, Longo AV. Ontogeny drives shifts in skin bacterial communities in facultatively paedomorphic salamanders. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001399. [PMID: 37815535 PMCID: PMC10634365 DOI: 10.1099/mic.0.001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Microbiomes are major determinants of host growth, development and survival. In amphibians, host-associated bacteria in the skin can inhibit pathogen infection, but many processes can influence the structure and composition of the community. Here we quantified the shifts in skin-associated bacteria across developmental stages in the striped newt (Notophthalmus perstriatus), a threatened salamander species with a complex life history and vulnerable to infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis and ranavirus. Our analyses show that pre-metamorphic larval and paedomorphic stages share similar bacterial compositions, and that the changes in the microbiome coincided with physiological restructuring during metamorphosis. Newts undergoing metamorphosis exhibited microbiome compositions that were intermediate between paedomorphic and post-metamorphic stages, further supporting the idea that metamorphosis is a major driver of host-associated microbes in amphibians. We did not find support for infection-related disruption of the microbiome, though infection replicates were small for each respective life stage.
Collapse
Affiliation(s)
- Arik M. Hartmann
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | | | | | - Ana V. Longo
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
King NG, Wilmes SB, Browett SS, Healey A, McDevitt AD, McKeown NJ, Roche R, Skujina I, Smale DA, Thorpe JM, Malham S. Seasonal development of a tidal mixing front drives shifts in community structure and diversity of bacterioplankton. Mol Ecol 2023; 32:5201-5210. [PMID: 37555658 DOI: 10.1111/mec.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Bacterioplankton underpin biogeochemical cycles and an improved understanding of the patterns and drivers of variability in their distribution is needed to determine their wider functioning and importance. Sharp environmental gradients and dispersal barriers associated with ocean fronts are emerging as key determinants of bacterioplankton biodiversity patterns. We examined how the development of the Celtic Sea Front (CF), a tidal mixing front on the Northwest European Shelf affects bacterioplankton communities. We performed 16S-rRNA metabarcoding on 60 seawater samples collected from three depths (surface, 20 m and seafloor), across two research cruises (May and September 2018), encompassing the intra-annual range of the CF intensity. Communities above the thermocline of stratified frontal waters were clearly differentiated and less diverse than those below the thermocline and communities in the well-mixed waters of the Irish Sea. This effect was much more pronounced in September, when the CF was at its peak intensity. The stratified zone likely represents a stressful environment for bacterioplankton due to a combination of high temperatures and low nutrients, which fewer taxa can tolerate. Much of the observed variation was driven by Synechococcus spp. (cyanobacteria), which were more abundant within the stratified zone and are known to thrive in warm oligotrophic waters. Synechococcus spp. are key contributors to global primary productivity and carbon cycling and, as such, variability driven by the CF is likely to influence regional biogeochemical processes. However, further studies are required to explicitly link shifts in community structure to function and quantify their wider importance to pelagic ecosystems.
Collapse
Affiliation(s)
- Nathan G King
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, UK
| | - Sophie-B Wilmes
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, UK
| | - Samuel S Browett
- Environment and Ecosystem Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
- Molecular Ecology Research Group, Eco-Innovation Research Centre, School of Science and Computing, South East Technological University, Waterford, Ireland
| | - Amy Healey
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Allan D McDevitt
- Department of Natural Resources and Environment, Atlantic Technological University, Galway, Ireland
| | - Niall J McKeown
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Ronan Roche
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, UK
| | - Ilze Skujina
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
| | - Jamie M Thorpe
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, UK
| | - Shelagh Malham
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, UK
| |
Collapse
|
7
|
Vadillo Gonzalez S, Vranken S, Coleman MA, Wernberg T, Steinberg PD, Marzinelli EM. Host genotype and microbiome associations in co-occurring clonal and non-clonal kelp, Ecklonia radiata. Mol Ecol 2023; 32:4584-4598. [PMID: 37332135 DOI: 10.1111/mec.17056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.
Collapse
Affiliation(s)
- Sebastian Vadillo Gonzalez
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Sofie Vranken
- UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crowley, Western Australia, Australia
| | - Melinda A Coleman
- UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crowley, Western Australia, Australia
- New South Wales Fisheries, Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Thomas Wernberg
- UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crowley, Western Australia, Australia
- Institute of Marine Research, Floedevigen Research Station, His, Norway
| | - Peter D Steinberg
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ezequiel M Marzinelli
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
8
|
Shi Q, Li Y, Deng S, Zhang H, Jiang H, Shen L, Pan T, Hong P, Wu H, Shu Y. The succession of gut microbiota in the concave-eared torrent frog ( Odorrana tormota) throughout developmental history. Ecol Evol 2023; 13:e10094. [PMID: 37214611 PMCID: PMC10199338 DOI: 10.1002/ece3.10094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
The gut microbiota of amphibians plays a crucial role in maintaining health and adapting to various developmental stages. The composition of gut microbial community is influenced by the phylogeny, habitat, diet, and developmental stage of the host. The present study analyzed the microbiota in the intestine of O. tormota at 11 developmental stages (from the tadpole at Gosner stage 24 to the 3-year-old adult) using high-throughput 16S rRNA sequencing. Alpha diversity index analysis of the microbiota revealed that the index decreased from tadpole at Gosner stage 24 to adult frog stage, remained stable during the adult frog stages, but increased significantly at the early metamorphosis and hibernation preparation stages. The gut microbiota structure is similar in adult frogs but differs significantly in other developmental stages. Furthermore, the dominant phyla of gut microbiota in tadpoles were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, whereas those in adult frogs were Proteobacteria, Firmicutes, Bacteroidetes, and Verrucomicrobia. Host and environmental factors jointly affected the gut microbial diversity and community composition of O. tormota, but developmental stage, feeding habit, and habitat type had a more significant influence. The microbial community in the gut varies with the developmental stage of the host and constantly adapts to the survival requirements of the host. These findings advance our understanding of the evolutionary mechanism of amphibian gut microbiota in maintaining health homeostasis and adaptation.
Collapse
Affiliation(s)
- Qingkai Shi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Yue Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Shanghai Wildlife and Protected Natural Areas Research CenterShanghaiChina
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Liang Shen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Tao Pan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationSchool of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| |
Collapse
|
9
|
Monteiro FAC, Bezerra SGDS, Castro LGZD, Oliveira FADS, Normando LRO, Melo VMM, Hissa DC. Neotropical Frog Foam Nest’s Microbiomes. Microorganisms 2023; 11:microorganisms11040900. [PMID: 37110323 PMCID: PMC10146838 DOI: 10.3390/microorganisms11040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Amphibian foam nests are unique microenvironments that play a crucial role in the development of tadpoles. They contain high levels of proteins and carbohydrates, yet little is known about the impact of their microbiomes on tadpole health. This study provides a first characterization of the microbiome of foam nests from three species of Leptodactylids (Adenomera hylaedactyla, Leptodactylus vastus, and Physalaemus cuvieri) by investigating the DNA extracted from foam nests, adult tissues, soil, and water samples, analyzed via 16S rRNA gene amplicon sequencing to gain insight into the factors driving its composition. The results showed that the dominant phyla were proteobacteria, bacteroidetes, and firmicutes, with the most abundant genera being Pseudomonas, Sphingobacterium, and Paenibacillus. The foam nest microbiomes of A. hylaedactyla and P. cuvieri were more similar to each other than to that of L. vastus, despite their phylogenetic distance. The foam nests demonstrated a distinct microbiome that clustered together and separated from the microbiomes of the environment and adult tissue samples. This suggests that the peculiar foam nest composition shapes its microbiome, rather than vertical or horizontal transference forces. We expanded this knowledge into amphibian foam nest microbiomes, highlighting the importance of preserving healthy foam nests for amphibian conservation.
Collapse
|
10
|
Ghose SL, Yap TA, Byrne AQ, Sulaeman H, Rosenblum EB, Chan-Alvarado A, Chaukulkar S, Greenbaum E, Koo MS, Kouete MT, Lutz K, McAloose D, Moyer AJ, Parra E, Portik DM, Rockney H, Zink AG, Blackburn DC, Vredenburg VT. Continent-wide recent emergence of a global pathogen in African amphibians. FRONTIERS IN CONSERVATION SCIENCE 2023. [DOI: 10.3389/fcosc.2023.1069490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
IntroductionEmerging infectious diseases are increasingly recognized as a global threat to wildlife. Pandemics in amphibians, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), have resulted in biodiversity loss at a global scale. Genomic data suggest a complex evolutionary history of Bd lineages that vary in pathogenicity. Africa harbors a significant proportion of global amphibian biodiversity, and multiple Bd lineages are known to occur there; yet, despite the decline of many host species, there are currently no described Bd-epizootics. Here, we describe the historical and recent biogeographical spread of Bd and assess its risk to amphibians across the continent of Africa.MethodsWe provide a 165-year view of host-pathogen interactions by (i) employing a Bd assay to test 4,623 specimens (collected 1908–2013); (ii) compiling 12,297 published Bd records (collected 1852–2017); (iii) comparing the frequency of Bd-infected amphibians through time by both country and region; (iv) genotyping Bd lineages; (v) histologically identifying evidence of chytridiomycosis, and (vi) using a habitat suitability model to assess future Bd risk.ResultsWe found a pattern of Bd emergence beginning largely at the turn of the century. From 1852–1999, we found low Bd prevalence (3.2% overall) and limited geographic spread, but after 2000 we documented a sharp increase in prevalence (18.7% overall), wider geographic spread, and multiple Bd lineages that may be responsible for emergence in different regions. We found that Bd risk to amphibians was highest in much of eastern, central, and western Africa.DiscussionOur study documents a largely overlooked yet significant increase in a fungal pathogen that could pose a threat to amphibians across an entire continent. We emphasize the need to bridge historical and contemporary datasets to better describe and predict host-pathogen dynamics over larger temporal scales.
Collapse
|
11
|
Bates KA, Friesen J, Loyau A, Butler H, Vredenburg VT, Laufer J, Chatzinotas A, Schmeller DS. Environmental and Anthropogenic Factors Shape the Skin Bacterial Communities of a Semi-Arid Amphibian Species. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02130-5. [PMID: 36445401 DOI: 10.1007/s00248-022-02130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The amphibian skin microbiome is important in maintaining host health, but is vulnerable to perturbation from changes in biotic and abiotic conditions. Anthropogenic habitat disturbance and emerging infectious diseases are both potential disrupters of the skin microbiome, in addition to being major drivers of amphibian decline globally. We investigated how host environment (hydrology, habitat disturbance), pathogen presence, and host biology (life stage) impact the skin microbiome of wild Dhofar toads (Duttaphrynus dhufarensis) in Oman. We detected ranavirus (but not Batrachochytrium dendrobatidis) across all sampling sites, constituting the first report of this pathogen in Oman, with reduced prevalence in disturbed sites. We show that skin microbiome beta diversity is driven by host life stage, water source, and habitat disturbance, but not ranavirus infection. Finally, although trends in bacterial diversity and differential abundance were evident in disturbed versus undisturbed sites, bacterial co-occurrence patterns determined through network analyses revealed high site specificity. Our results therefore provide support for amphibian skin microbiome diversity and taxa abundance being associated with habitat disturbance, with bacterial co-occurrence (and likely broader aspects of microbial community ecology) being largely site specific.
Collapse
Affiliation(s)
- K A Bates
- Department of Zoology, University of Oxford, Oxford, UK.
| | - J Friesen
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - A Loyau
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - H Butler
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - V T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - J Laufer
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - A Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - D S Schmeller
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| |
Collapse
|
12
|
Abstract
Temporal changes and transmission patterns in host-associated microbial communities have important implications for host health. The diversity of amphibian skin microbial communities is associated with disease outcome in amphibians exposed to the fungal pathogen Batrachochytrium dendrobatidis (Bd). To successfully develop conservation strategies against Bd, we need a comprehensive understanding of how skin microbes are maintained and transmitted over time within populations. We used 16S rRNA sequence analysis to compare Epipedobates anthonyi frogs housed with one conspecific to frogs housed singly at four time points over the course of 1 year. We found that both α and β diversity of frog skin bacterial communities changed significantly over the course of the experiment. Specifically, we found that bacterial communities of cohabitating frogs became more similar over time. We also observed that some bacterial taxa were differentially abundant between frogs housed singly and frogs housed with a conspecific. These results suggest that conspecific contact may play a role in mediating amphibian skin microbial diversity and that turnover of skin microbial communities can occur across time. Our findings provide rationale for future studies exploring horizontal transmission as a potential mechanism of host-associated microbial maintenance in amphibians.
Collapse
Affiliation(s)
- Ariel Kruger
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Spencer Roth
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
13
|
Basanta MD, Rebollar EA, García-Castillo MG, Parra Olea G. Comparative Analysis of Skin Bacterial Diversity and Its Potential Antifungal Function Between Desert and Pine Forest Populations of Boreal Toads Anaxyrus boreas. MICROBIAL ECOLOGY 2022; 84:257-266. [PMID: 34427721 DOI: 10.1007/s00248-021-01845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The skin microbiome in amphibians has gained a lot of attention as some of its members play a protective role against pathogens such as the fungus Batrachochytrium dendrobatidis (Bd). The composition of skin bacterial communities has been suggested as one of the factors explaining differences in susceptibility to Bd among amphibian species and populations. The boreal toad Anaxyrus boreas is known to be susceptible to Bd, and severe population declines in its southeastern range have been documented. However, throughout A. boreas distribution, populations present differences in susceptibility to Bd infections which may be associated with differences in skin microbial diversity. This study compared the skin bacterial diversity and Bd infection levels of A. boreas in one desert population and one pine forest population from Baja California, Mexico. We found that desert and pine forest toad populations exhibit differences in skin bacterial community structure but show similar Bd infection levels. Using a predictive method, we found that the abundance of bacteria with potential Bd-inhibitory properties differed between uninfected and infected individuals but not between populations. Our data suggest that several bacteria in the skin community may be offering protection from Bd infections in these A. boreas populations. This study provides foundational evidence for future studies seeking to understand the skin-microbial variation among boreal toads' populations and its relation with Bd susceptibility.
Collapse
Affiliation(s)
- M Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, México
- Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Universidad Veracruzana, Amatlán de Los Reyes, Veracruz, México
| | - Gabriela Parra Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
14
|
Martins RA, Greenspan SE, Medina D, Buttimer S, Marshall VM, Neely WJ, Siomko S, Lyra ML, Haddad CFB, São-Pedro V, Becker CG. Signatures of functional bacteriome structure in a tropical direct-developing amphibian species. Anim Microbiome 2022; 4:40. [PMID: 35672870 PMCID: PMC9172097 DOI: 10.1186/s42523-022-00188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Host microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbe Batrachochytrium dendrobatidis (Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species.
Results
Intensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence in Ischnocnema henselii but no Bd detections in Haddadus binotatus. Haddadus binotatus carried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization.
Conclusions
Our findings suggest that community structure of the bacteriome might drive Bd resistance in H. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses.
Collapse
|
15
|
Bornbusch SL, Greene LK, Rahobilalaina S, Calkins S, Rothman RS, Clarke TA, LaFleur M, Drea CM. Gut microbiota of ring-tailed lemurs (Lemur catta) vary across natural and captive populations and correlate with environmental microbiota. Anim Microbiome 2022; 4:29. [PMID: 35484581 PMCID: PMC9052671 DOI: 10.1186/s42523-022-00176-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Inter-population variation in host-associated microbiota reflects differences in the hosts' environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes-an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia. RESULTS The diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal 'signal of captivity' that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota. CONCLUSIONS As one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple 'captive vs. wild' dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes.
Collapse
Affiliation(s)
- Sally L. Bornbusch
- Department of Evolutionary Anthropology, Duke University, Durham, NC USA
| | | | | | - Samantha Calkins
- Department of Psychology, Program in Animal Behavior and Conservation, Hunter College, New York, NY USA
| | - Ryan S. Rothman
- Institute for the Conservation of Tropical Environments, Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY USA
| | - Tara A. Clarke
- Department of Sociology and Anthropology, North Carolina State University, Raleigh, NC USA
| | - Marni LaFleur
- Department of Anthropology, University of San Diego, 5998 Alcala Park, San Diego, CA USA
| | - Christine M. Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC USA
| |
Collapse
|
16
|
Taubenheim J, Miklós M, Tökölyi J, Fraune S. Population Differences and Host Species Predict Variation in the Diversity of Host-Associated Microbes in Hydra. Front Microbiol 2022; 13:799333. [PMID: 35308397 PMCID: PMC8927533 DOI: 10.3389/fmicb.2022.799333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most animals co-exist with diverse host-associated microbial organisms that often form complex communities varying between individuals, habitats, species and higher taxonomic levels. Factors driving variation in the diversity of host-associated microbes are complex and still poorly understood. Here, we describe the bacterial composition of field-collected Hydra, a freshwater cnidarian that forms stable associations with microbial species in the laboratory and displays complex interactions with components of the microbiota. We sampled Hydra polyps from 21 Central European water bodies and identified bacterial taxa through 16S rRNA sequencing. We asked whether diversity and taxonomic composition of host-associated bacteria depends on sampling location, habitat type, host species or host reproductive mode (sexual vs. asexual). Bacterial diversity was most strongly explained by sampling location, suggesting that the source environment plays an important role in the assembly of bacterial communities associated with Hydra polyps. We also found significant differences between host species in their bacterial composition that partly mirrored variations observed in lab strains. Furthermore, we detected a minor effect of host reproductive mode on bacterial diversity. Overall, our results suggest that extrinsic (habitat identity) factors predict the diversity of host-associated bacterial communities more strongly than intrinsic (species identity) factors, however, only a combination of both factors determines microbiota composition in Hydra.
Collapse
Affiliation(s)
- Jan Taubenheim
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Medical Systems Biology, University Hospital Kiel, Kiel, Germany
- Institut für Zoologie und Organismische Interaktionen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Máté Miklós
- MTA-DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Jácint Tökölyi
- MTA-DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Sebastian Fraune
- Institut für Zoologie und Organismische Interaktionen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Couch CE, Epps CW. Host, microbiome, and complex space: applying population and landscape genetic approaches to gut microbiome research in wild populations. J Hered 2022; 113:221-234. [PMID: 34983061 DOI: 10.1093/jhered/esab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/03/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, emerging sequencing technologies and computational tools have driven a tidal wave of research on host-associated microbiomes, particularly the gut microbiome. These studies demonstrate numerous connections between the gut microbiome and vital host functions, primarily in humans, model organisms, and domestic animals. As the adaptive importance of the gut microbiome becomes clearer, interest in studying the gut microbiomes of wild populations has increased, in part due to the potential for discovering conservation applications. The study of wildlife gut microbiomes holds many new challenges and opportunities due to the complex genetic, spatial, and environmental structure of wild host populations, and the potential for these factors to interact with the microbiome. The emerging picture of adaptive coevolution in host-microbiome relationships highlights the importance of understanding microbiome variation in the context of host population genetics and landscape heterogeneity across a wide range of host populations. We propose a conceptual framework for understanding wildlife gut microbiomes in relation to landscape variables and host population genetics, including the potential of approaches derived from landscape genetics. We use this framework to review current research, synthesize important trends, highlight implications for conservation, and recommend future directions for research. Specifically, we focus on how spatial structure and environmental variation interact with host population genetics and microbiome variation in natural populations, and what we can learn from how these patterns of covariation differ depending on host ecological and evolutionary traits.
Collapse
Affiliation(s)
- Claire E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
18
|
Basanta MD, Rebollar EA, García-Castillo MG, Rosenblum EB, Byrne AQ, Piovia-Scott J, Parra-Olea G. Genetic variation of Batrachochytrium dendrobatidis is linked to skin bacterial diversity in the Pacific treefrog Hyliola regilla (hypochondriaca). Environ Microbiol 2021; 24:494-506. [PMID: 34959256 DOI: 10.1111/1462-2920.15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.
Collapse
Affiliation(s)
- María Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, AP 70-153, C.P. 04510, Mexico.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, Mexico.,Universidad Veracruzana, Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Amatlán de los Reyes, Veracruz, Mexico
| | - Erica Bree Rosenblum
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Allison Q Byrne
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | | |
Collapse
|
19
|
Price DC, Brennan JR, Wagner NE, Egizi AM. Comparative hologenomics of two Ixodes scapularis tick populations in New Jersey. PeerJ 2021; 9:e12313. [PMID: 34820166 PMCID: PMC8588856 DOI: 10.7717/peerj.12313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Tick-borne diseases, such as those transmitted by the blacklegged tick Ixodes scapularis, are a significant and growing public health problem in the US. There is mounting evidence that co-occurring non-pathogenic microbes can also impact tick-borne disease transmission. Shotgun metagenome sequencing enables sampling of the complete tick hologenome—the collective genomes of the tick and all of the microbial species contained therein, whether pathogenic, commensal or symbiotic. This approach simultaneously uncovers taxonomic composition and allows the detection of intraspecific genetic variation, making it a useful tool to compare spatial differences across tick populations. We evaluated this approach by comparing hologenome data from two tick samples (N = 6 ticks per location) collected at a relatively fine spatial scale, approximately 23 km apart, within a single US county. Several intriguing variants in the data between the two sites were detected, including polymorphisms in both in the tick’s own mitochondrial DNA and that of a rickettsial endosymbiont. The two samples were broadly similar in terms of the microbial species present, including multiple known tick-borne pathogens (Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum), filarial nematodes, and Wolbachia and Babesia species. We assembled the complete genome of the rickettsial endosymbiont (most likely Rickettsia buchneri) from both populations. Our results provide further evidence for the use of shotgun metagenome sequencing as a tool to compare tick hologenomes and differentiate tick populations across localized spatial scales.
Collapse
Affiliation(s)
- Dana C Price
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Julia R Brennan
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Nicole E Wagner
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Andrea M Egizi
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America.,Tick-Borne Disease Laboratory, Monmouth County Mosquito Control Division, Tinton Falls, NJ, United States of America
| |
Collapse
|
20
|
Harrison XA, McDevitt AD, Dunn JC, Griffiths SM, Benvenuto C, Birtles R, Boubli JP, Bown K, Bridson C, Brooks DR, Browett SS, Carden RF, Chantrey J, Clever F, Coscia I, Edwards KL, Ferry N, Goodhead I, Highlands A, Hopper J, Jackson J, Jehle R, da Cruz Kaizer M, King T, Lea JMD, Lenka JL, McCubbin A, McKenzie J, de Moraes BLC, O'Meara DB, Pescod P, Preziosi RF, Rowntree JK, Shultz S, Silk MJ, Stockdale JE, Symondson WOC, de la Pena MV, Walker SL, Wood MD, Antwis RE. Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. Proc Biol Sci 2021; 288:20210552. [PMID: 34403636 PMCID: PMC8370808 DOI: 10.1098/rspb.2021.0552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.
Collapse
Affiliation(s)
| | - Allan D. McDevitt
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jenny C. Dunn
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, UK
| | - Sarah M. Griffiths
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Chiara Benvenuto
- School of Science, Engineering and Environment, University of Salford, UK
| | - Richard Birtles
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jean P. Boubli
- School of Science, Engineering and Environment, University of Salford, UK
| | - Kevin Bown
- School of Science, Engineering and Environment, University of Salford, UK
| | - Calum Bridson
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | - Darren R. Brooks
- School of Science, Engineering and Environment, University of Salford, UK
| | - Samuel S. Browett
- School of Science, Engineering and Environment, University of Salford, UK
| | - Ruth F. Carden
- School of Archaeology, University College Dublin, Ireland
- Wildlife Ecological and Osteological Consultancy, Wicklow, Ireland
| | - Julian Chantrey
- Institute of Veterinary Science, University of Liverpool, UK
| | - Friederike Clever
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
- Smithsonian Tropical Research Institute, Ancon, Republic of Panama
| | - Ilaria Coscia
- School of Science, Engineering and Environment, University of Salford, UK
| | - Katie L. Edwards
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, UK
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, UK
| | - Ian Goodhead
- School of Science, Engineering and Environment, University of Salford, UK
| | - Andrew Highlands
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jane Hopper
- The Aspinall Foundation, Port Lympne Reserve, Hythe, Kent, UK
| | - Joseph Jackson
- School of Science, Engineering and Environment, University of Salford, UK
| | - Robert Jehle
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Tony King
- The Aspinall Foundation, Port Lympne Reserve, Hythe, Kent, UK
- School of Anthropology and Conservation, University of Kent, UK
| | - Jessica M. D. Lea
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | - Jessica L. Lenka
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Jack McKenzie
- School of Science, Engineering and Environment, University of Salford, UK
| | | | - Denise B. O'Meara
- School of Science and Computing, Waterford Institute of Technology, Ireland
| | - Poppy Pescod
- School of Science, Engineering and Environment, University of Salford, UK
| | - Richard F. Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Jennifer K. Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | | | - Jennifer E. Stockdale
- School of Biosciences, University of Cardiff, UK
- School of Life Sciences, University of Nottingham, UK
| | | | | | - Susan L. Walker
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, UK
| | - Michael D. Wood
- School of Science, Engineering and Environment, University of Salford, UK
| | - Rachael E. Antwis
- School of Science, Engineering and Environment, University of Salford, UK
| |
Collapse
|
21
|
Belasen AM, Riolo MA, Bletz MC, Lyra ML, Toledo LF, James TY. Geography, Host Genetics, and Cross-Domain Microbial Networks Structure the Skin Microbiota of Fragmented Brazilian Atlantic Forest Frog Populations. Ecol Evol 2021; 11:9293-9307. [PMID: 34306622 PMCID: PMC8293785 DOI: 10.1002/ece3.7594] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/31/2020] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
The host-associated microbiome plays a significant role in health. However, the roles of factors such as host genetics and microbial interactions in determining microbiome diversity remain unclear. We examined these factors using amplicon-based sequencing of 175 Thoropa taophora frog skin swabs collected from a naturally fragmented landscape in southeastern Brazil. Specifically, we examined (1) the effects of geography and host genetics on microbiome diversity and structure; (2) the structure of microbial eukaryotic and bacterial co-occurrence networks; and (3) co-occurrence between microeukaryotes with bacterial OTUs known to affect growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). While bacterial alpha diversity varied by both site type and host MHC IIB genotype, microeukaryotic alpha diversity varied only by site type. However, bacteria and microeukaryote composition showed variation according to both site type and host MHC IIB genotype. Our network analysis showed the highest connectivity when both eukaryotes and bacteria were included, implying that ecological interactions may occur among domains. Lastly, anti-Bd bacteria were not broadly negatively co-associated with the fungal microbiome and were positively associated with potential amphibian parasites. Our findings emphasize the importance of considering both domains in microbiome research and suggest that for effective probiotic strategies for amphibian disease management, considering potential interactions among all members of the microbiome is crucial.
Collapse
Affiliation(s)
- Anat M. Belasen
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Maria A. Riolo
- Center for Complex SystemsUniversity of MichiganAnn ArborMIUSA
| | - Molly C. Bletz
- Department of BiologyUniversity of Massachusetts BostonBostonMAUSA
| | - Mariana L. Lyra
- Instituto de BiociênciasUniversidade Estadual PaulistaRio ClaroBrazil
| | - L. Felipe Toledo
- Laboratório de História Natural de Anfíbios BrasileirosDepartamento de Biologia AnimalInstituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
| | - Timothy Y. James
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
22
|
Antwis RE, Beresford NA, Jackson JA, Fawkes R, Barnett CL, Potter E, Walker L, Gaschak S, Wood MD. Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone. J Anim Ecol 2021; 90:2172-2187. [PMID: 33901301 DOI: 10.1111/1365-2656.13507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/11/2021] [Indexed: 12/19/2022]
Abstract
Environmental impacts of the 1986 Chernobyl Nuclear Power Plant accident are much debated, but the effects of radiation on host microbiomes have received little attention to date. We present the first analysis of small mammal gut microbiomes from the Chernobyl Exclusion Zone in relation to total absorbed dose rate, including both caecum and faeces samples. We provide novel evidence that host species determines fungal community composition, and that associations between microbiome (both bacterial and fungal) communities and radiation exposure vary between host species. Using ambient versus total weighted absorbed dose rates in analyses produced different results, with the latter more robust for interpreting microbiome changes at the individual level. We found considerable variation between results for faecal and gut samples of bank voles, suggesting faecal samples are not an accurate indicator of gut composition. Associations between radiation exposure and microbiome composition of gut samples were not robust against geographical variation, although we identified families of bacteria (Lachnospiraceae and Muribaculaceae) and fungi (Steccherinaceae and Strophariaceae) in the guts of bank voles that may serve as biomarkers of radiation exposure. Further studies considering a range of small mammal species are needed to establish the robustness of these potential biomarkers.
Collapse
Affiliation(s)
- Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Nicholas A Beresford
- School of Science, Engineering and Environment, University of Salford, Salford, UK.,UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Joseph A Jackson
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Ross Fawkes
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Catherine L Barnett
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Elaine Potter
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Lee Walker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Sergey Gaschak
- Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, Slavutych, Ukraine
| | - Michael D Wood
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| |
Collapse
|
23
|
Ruuskanen MO, Sommeria-Klein G, Havulinna AS, Niiranen TJ, Lahti L. Modelling spatial patterns in host-associated microbial communities. Environ Microbiol 2021; 23:2374-2388. [PMID: 33734553 DOI: 10.1111/1462-2920.15462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Microbial communities exhibit spatial structure at different scales, due to constant interactions with their environment and dispersal limitation. While this spatial structure is often considered in studies focusing on free-living environmental communities, it has received less attention in the context of host-associated microbial communities or microbiota. The wider adoption of methods accounting for spatial variation in these communities will help to address open questions in basic microbial ecology as well as realize the full potential of microbiome-aided medicine. Here, we first overview known factors affecting the composition of microbiota across diverse host types and at different scales, with a focus on the human gut as one of the most actively studied microbiota. We outline a number of topical open questions in the field related to spatial variation and patterns. We then review the existing methodology for the spatial modelling of microbiota. We suggest that methodology from related fields, such as systems biology and macro-organismal ecology, could be adapted to obtain more accurate models of spatial structure. We further posit that methodological developments in the spatial modelling and analysis of microbiota could in turn broadly benefit theoretical and applied ecology and contribute to the development of novel industrial and clinical applications.
Collapse
Affiliation(s)
- Matti O Ruuskanen
- Department of Internal Medicine, University of Turku, Turku, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Aki S Havulinna
- Finnish Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Teemu J Niiranen
- Department of Internal Medicine, University of Turku, Turku, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
24
|
Bosch J, Elvira S, Sausor C, Bielby J, González-Fernández I, Alonso R, Bermejo-Bermejo V. Increased tropospheric ozone levels enhance pathogen infection levels of amphibians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143461. [PMID: 33199009 DOI: 10.1016/j.scitotenv.2020.143461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
As a result of anthropogenic activities, changes to the chemistry of Earth's atmosphere pose a threat to ecosystem health and biodiversity. One such change is the increase in tropospheric ozone (O3), which is particularly severe in the Mediterranean basin area, where the levels of this pollutant are chronically high during spring and summer time. Within this region, Mediterranean mountain ecosystems are hot spots for biodiversity which may be especially vulnerable to changes in O3 levels. Declines in montane amphibian populations have been recorded worldwide, including the Mediterranean basin. A significant driver of these declines is the emerging infection disease, chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd). Chytridiomycosis has negatively affected populations of several amphibian species in the Spanish Central Range, including in the Sierra Guadarrama, and interactions with other biotic and abiotic factors are an important part of these declines. However, there is little evidence or knowledge of whether tropospheric O3 levels may be another factor in the outbreaks of this disease. To test the hypothesis that O3 levels are another interactive driver of Bd infection dynamics, two different approaches were followed: 1) an experimental study in open top chambers was used to quantify the aspects of how Bd infection progressed throughout the metamorphic process under four different O3 levels; and 2) a field epidemiological study was used to analyse the relationship between the Bd infection load in the Sierra de Guadarrama and tropospheric O3 levels during a 9 year period. Our results suggest that high O3 levels significantly delayed the rate of development of tadpoles and increased Bd infection, providing empirical evidence of two new separate ways that may explain population declines of montane amphibians.
Collapse
Affiliation(s)
- Jaime Bosch
- Research Unit of Biodiversity - CSIC/UO/PA, Universidad de Oviedo, Edificio de Investigación, 5ª planta, 33600 Mieres, Spain; Museo Nacional de Ciencias Naturales CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain; Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, 28740 Rascafría, Spain.
| | - Susana Elvira
- CIEMAT, Ecotoxicology of Air Pollution, Envionmental Dept., Avda. Complutense 40, 28040 Madrid, Spain
| | - Cristina Sausor
- Museo Nacional de Ciencias Naturales CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jon Bielby
- Liverpool John Moores University, School of Natural Sciences and Psychology, James Parsons Building, Byrom Street, Liverpool L3 3AF, United Kingdom
| | | | - Rocío Alonso
- CIEMAT, Ecotoxicology of Air Pollution, Envionmental Dept., Avda. Complutense 40, 28040 Madrid, Spain
| | - Victoria Bermejo-Bermejo
- CIEMAT, Ecotoxicology of Air Pollution, Envionmental Dept., Avda. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
25
|
Fleischer R, Risely A, Hoeck PEA, Keller LF, Sommer S. Mechanisms governing avian phylosymbiosis: Genetic dissimilarity based on neutral and MHC regions exhibits little relationship with gut microbiome distributions of Galápagos mockingbirds. Ecol Evol 2020; 10:13345-13354. [PMID: 33304542 PMCID: PMC7713960 DOI: 10.1002/ece3.6934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023] Open
Abstract
The gut microbiome of animals, which serves important functions but can also contain potential pathogens, is to varying degrees under host genetic control. This can generate signals of phylosymbiosis, whereby gut microbiome composition matches host phylogenetic structure. However, the genetic mechanisms that generate phylosymbiosis and the scale at which they act remain unclear. Two non-mutually exclusive hypotheses are that phylosymbiosis is driven by immunogenetic regions such as the major histocompatibility complex (MHC) controlling microbial composition, or by spatial structuring of neutral host genetic diversity via founder effects, genetic drift, or isolation by distance. Alternatively, associations between microbes and host phylogeny may be generated by their spatial autocorrelation across landscapes, rather than the direct effects of host genetics. In this study, we collected MHC, microsatellite, and gut microbiome data from separate individuals belonging to the Galápagos mockingbird species complex, which consists of four allopatrically distributed species. We applied multiple regression with distance matrices and Bayesian inference to test for correlations between average genetic and microbiome similarity across nine islands for which all three levels of data were available. Clustering of individuals by species was strongest when measured with microsatellite markers and weakest for gut microbiome distributions, with intermediate clustering of MHC allele frequencies. We found that while correlations between island-averaged gut microbiome composition and both microsatellite and MHC dissimilarity existed across species, these relationships were greatly weakened when accounting for geographic distance. Overall, our study finds little support for large-scale control of gut microbiome composition by neutral or adaptive genetic regions across closely related bird phylogenies, although this does not preclude the possibility that host genetics shapes gut microbiome at the individual level.
Collapse
Affiliation(s)
- Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | - Alice Risely
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | | | - Lukas F. Keller
- Zoological MuseumUniversity of ZurichZurichSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| |
Collapse
|
26
|
Lado P, Luan B, Allerdice MEJ, Paddock CD, Karpathy SE, Klompen H. Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis. PeerJ 2020; 8:e9367. [PMID: 32704442 PMCID: PMC7350919 DOI: 10.7717/peerj.9367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Tick-borne diseases (TBDs) continue to emerge and re-emerge in several regions of the world, highlighting the need for novel and effective control strategies. The development of effective strategies requires a better understanding of TBDs ecology, and given the complexity of these systems, interdisciplinary approaches are required. In recent years, the microbiome of vectors has received much attention, mainly because associations between native microbes and pathogens may provide a new promising path towards the disruption of pathogen transmission. However, we still do not fully understand how host genetics and environmental factors interact to shape the microbiome of organisms, or how pathogenic microorganisms affect the microbiome and vice versa. The integration of different lines of evidence may be the key to improve our understanding of TBDs ecology. In that context, we generated microbiome and pathogen presence data for Dermacentor variabilis, and integrated those data sets with population genetic data, and metadata for the same individual tick specimens. Clustering and multivariate statistical methods were used to combine, analyze, and visualize data sets. Interpretation of the results is challenging, likely due to the low levels of genetic diversity and the high abundance of a few taxa in the microbiome. Francisella was dominant in almost all ticks, regardless of geography or sex. Nevertheless, our results showed that, overall, ticks from different geographic regions differ in their microbiome composition. Additionally, DNA of Rickettsia rhipicephali, R. montanensis, R. bellii, and Anaplasma spp., was detected in D. variabilis specimens. This is the first study that successfully generated microbiome, population genetics, and pathogen presence data from the same individual ticks, and that attempted to combine the different lines of evidence. The approaches and pre-processing steps used can be applied to a variety of taxa, and help better understand ecological processes in biological systems.
Collapse
Affiliation(s)
- Paula Lado
- Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Bo Luan
- Statistics, The Ohio State University, Columbus, OH, United States of America
| | - Michelle E J Allerdice
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Hans Klompen
- Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
27
|
Rebollar EA, Martínez-Ugalde E, Orta AH. The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Emanuel Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Alberto H. Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
28
|
Abstract
Discovering that chytrid fungi cause chytridiomycosis in amphibians represented a paradigm shift in our understanding of how emerging infectious diseases contribute to global patterns of biodiversity loss. In this Review we describe how the use of multidisciplinary biological approaches has been essential to pinpointing the origins of amphibian-parasitizing chytrid fungi, including Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, as well as to timing their emergence, tracking their cycles of expansion and identifying the core mechanisms that underpin their pathogenicity. We discuss the development of the experimental methods and bioinformatics toolkits that have provided a fuller understanding of batrachochytrid biology and informed policy and control measures.
Collapse
|
29
|
Kruger A. Functional Redundancy of Batrachochytrium dendrobatidis Inhibition in Bacterial Communities Isolated from Lithobates clamitans Skin. MICROBIAL ECOLOGY 2020; 79:231-240. [PMID: 31165187 DOI: 10.1007/s00248-019-01387-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The cutaneous microbial community can influence the health of amphibians exposed to Batrachochytrium dendrobatidis (Bd), a fungal pathogen that has contributed to recent amphibian declines. Resistance to Bd in amphibian populations is correlated with the presence of anti-Bd cutaneous microbes, which confer disease resistance by inhibiting Bd growth. I aimed to determine if green frogs (Lithobates clamitans), an abundant and widely distributed species in New Jersey, harbored bacteria that inhibit Bd and whether the presence and identity of these microbes varied among sites. I used in vitro challenge assays to determine if bacteria isolated from green frog skin could inhibit or enhance the growth of Bd. I found that green frogs at all sites harbored anti-Bd bacteria. However, there were differences in Bd inhibition capabilities among bacterial isolates identified as the same operational taxonomic unit (OTU), lending support to the idea that phylogenetic relatedness does not always predict Bd inhibition status. Additionally, anti-Bd bacterial richness did not vary by site, but the composition of anti-Bd bacterial taxa was distinct at each site. This suggests that there is functional redundancy of Bd inhibition across unique communities of anti-Bd symbionts found on frogs at different sites. These findings highlight the need to better elucidate the structure-function relationship of microbiomes and their role in disease resistance.
Collapse
Affiliation(s)
- Ariel Kruger
- Graduate Program in Ecology and Evolution, Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
30
|
Bird S, Prewer E, Kutz S, Leclerc L, Vilaça ST, Kyle CJ. Geography, seasonality, and host-associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecol Evol 2019; 9:13202-13217. [PMID: 31871639 PMCID: PMC6912892 DOI: 10.1002/ece3.5768] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
The Canadian Arctic is an extreme environment with low floral and faunal diversity characterized by major seasonal shifts in temperature, moisture, and daylight. Muskoxen (Ovibos moschatus) are one of few large herbivores able to survive this harsh environment. Microbiome research of the gastrointestinal tract may hold clues as to how muskoxen exist in the Arctic, but also how this species may respond to rapid environmental changes. In this study, we investigated the effects of season (spring/summer/winter), year (2007-2016), and host genetic structure on population-level microbiome variation in muskoxen from the Canadian Arctic. We utilized 16S rRNA gene sequencing to characterize the fecal microbial communities of 78 male muskoxen encompassing two population genetic clusters. These clusters are defined by Arctic Mainland and Island populations, including the following: (a) two mainland sampling locations of the Northwest Territories and Nunavut and (b) four locations of Victoria Island. Between these geographic populations, we found that differences in the microbiome reflected host-associated genetic cluster with evidence of migration. Within populations, seasonality influenced bacterial diversity with no significant differences between years of sampling. We found evidence of pathogenic bacteria, with significantly higher presence in mainland samples. Our findings demonstrate the effects of seasonality and the role of host population-level structure in driving fecal microbiome differences in a large Arctic mammal.
Collapse
Affiliation(s)
- Samantha Bird
- Forensic Science ProgramTrent UniversityPeterboroughONCanada
| | - Erin Prewer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
| | - Susan Kutz
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryABCanada
- Canadian Wildlife Health CooperativeAlberta NodeFaculty of Veterinary MedicineUniversity of CalgaryCalgaryABCanada
| | | | - Sibelle T. Vilaça
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
- Biology DepartmentTrent UniversityPeterboroughONCanada
| | - Christopher J. Kyle
- Forensic Science ProgramTrent UniversityPeterboroughONCanada
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
| |
Collapse
|
31
|
Horner A, Browett SS, Antwis RE. Mixed-Cropping Between Field Pea Varieties Alters Root Bacterial and Fungal Communities. Sci Rep 2019; 9:16953. [PMID: 31740751 PMCID: PMC6861290 DOI: 10.1038/s41598-019-53342-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/29/2019] [Indexed: 01/21/2023] Open
Abstract
Modern agricultural practices have vastly increased crop production but negatively affected soil health. As such, there is a call to develop sustainable, ecologically-viable approaches to food production. Mixed-cropping of plant varieties can increase yields, although impacts on plant-associated microbial communities are unclear, despite their critical role in plant health and broader ecosystem function. We investigated how mixed-cropping between two field pea (Pisum sativum L.) varieties (Winfreda and Ambassador) influenced root-associated microbial communities and yield. The two varieties supported significantly different fungal and bacterial communities when grown as mono-crops. Mixed-cropping caused changes in microbial communities but with differences between varieties. Root bacterial communities of Winfreda remained stable in response to mixed-cropping, whereas those of Ambassador became more similar to Winfreda. Conversely, root fungal communities of Ambassador remained stable under mixed-cropping, and those of Winfreda shifted towards the composition of Ambassador. Microbial co-occurrence networks of both varieties were stronger and larger under mixed-cropping, which may improve stability and resilience in agricultural soils. Both varieties produced slightly higher yields under mixed-cropping, although overall Ambassador plants produced higher yields than Winfreda plants. Our results suggest that variety diversification may increase yield and promote microbial interactions.
Collapse
Affiliation(s)
- Anthony Horner
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Samuel S Browett
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK.
| |
Collapse
|
32
|
Hughey MC, Sokol ER, Walke JB, Becker MH, Belden LK. Ecological Correlates of Large-Scale Turnover in the Dominant Members of Pseudacris crucifer Skin Bacterial Communities. MICROBIAL ECOLOGY 2019; 78:832-842. [PMID: 30949751 DOI: 10.1007/s00248-019-01372-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Animals host a wide diversity of symbiotic microorganisms that contribute important functions to host health, and our knowledge of what drives variation in the composition of these complex communities continues to grow. Microbiome studies at larger spatial scales present opportunities to evaluate the contribution of large-scale factors to variation in the microbiome. We conducted a large-scale field study to assess variation in the bacterial symbiont communities on adult frog skin (Pseudacris crucifer), characterized using 16S rRNA gene amplicon sequencing. We found that skin bacterial communities on frogs were less diverse than, and structurally distinct from, the surrounding habitat. Frog skin was typically dominated by one of two bacterial OTUs: at western sites, a Proteobacteria dominated the community, whereas eastern sites were dominated by an Actinobacteria. Using a metacommunity framework, we then sought to identify factors explaining small- and large-scale variation in community structure-that is, among hosts within a pond, and among ponds spanning the study transect. We focused on the presence of a fungal skin pathogen, Batrachochytrium dendrobatidis (Bd) as one potential driver of variation. We found no direct link between skin bacterial community structure and Bd infection status of individual frog hosts. Differences in pond-level community structure, however, were explained by Bd infection prevalence. Importantly, Bd infection prevalence itself was correlated with numerous other environmental factors; thus, skin bacterial diversity may be influenced by a complex suite of extrinsic factors. Our findings indicate that large-scale factors and processes merit consideration when seeking to understand microbiome diversity.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department, Vassar College, Poughkeepsie, NY, USA.
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA.
| | - Eric R Sokol
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA
- Battelle, National Ecological Observatory Network (NEON), Boulder, CO, USA
- Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA
| |
Collapse
|
33
|
Griffiths SM, Antwis RE, Lenzi L, Lucaci A, Behringer DC, Butler MJ, Preziosi RF. Host genetics and geography influence microbiome composition in the sponge Ircinia campana. J Anim Ecol 2019; 88:1684-1695. [PMID: 31325164 PMCID: PMC6899969 DOI: 10.1111/1365-2656.13065] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Marine sponges are hosts to large, diverse communities of microorganisms. These microbiomes are distinct among sponge species and from seawater bacterial communities, indicating a key role of host identity in shaping its resident microbial community. However, the factors governing intraspecific microbiome variability are underexplored and may shed light on the evolutionary and ecological relationships between host and microbiome. Here, we examined the influence of genetic variation and geographic location on the composition of the Ircinia campana microbiome. We developed new microsatellite markers to genotype I. campana from two locations in the Florida Keys, USA, and characterized their microbiomes using V4 16S rRNA amplicon sequencing. We show that microbial community composition and diversity is influenced by host genotype, with more genetically similar sponges hosting more similar microbial communities. We also found that although I. campana was not genetically differentiated between sites, microbiome composition differed by location. Our results demonstrate that both host genetics and geography influence the composition of the sponge microbiome. Host genotypic influence on microbiome composition may be due to stable vertical transmission of the microbial community from parent to offspring, making microbiomes more similar by descent. Alternatively, sponge genotypic variation may reflect variation in functional traits that influence the acquisition of environmental microbes. This study reveals drivers of microbiome variation within and among locations, and shows the importance of intraspecific variability in mediating eco-evolutionary dynamics of host-associated microbiomes.
Collapse
Affiliation(s)
- Sarah M. Griffiths
- Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Rachael E. Antwis
- School of Environment and Life SciencesUniversity of SalfordSalfordUK
| | - Luca Lenzi
- Centre for Genomic Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Anita Lucaci
- Centre for Genomic Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Donald C. Behringer
- Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleFLUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Mark J. Butler
- Department of Biological SciencesOld Dominion UniversityNorfolkVAUSA
| | - Richard F. Preziosi
- Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
34
|
Doherty‐Bone TM, Cunningham AA, Fisher MC, Garner TWJ, Ghosh P, Gower DJ, Verster R, Weldon C. Amphibian chytrid fungus in Africa – realigning hypotheses and the research paradigm. Anim Conserv 2019. [DOI: 10.1111/acv.12538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- T. M. Doherty‐Bone
- Conservation Programs Royal Zoological Society of Scotland Edinburgh UK
- Department of Life Sciences Natural History Museum London UK
| | | | - M. C. Fisher
- School of Public Health Imperial College London London UK
| | - T. W. J. Garner
- Institute of Zoology Zoological Society of London London UK
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - P. Ghosh
- School of Public Health Imperial College London London UK
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - D. J. Gower
- Department of Life Sciences Natural History Museum London UK
| | - R. Verster
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - C. Weldon
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| |
Collapse
|
35
|
Antwis RE, Edwards KL, Unwin B, Walker SL, Shultz S. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. MICROBIOME 2019; 7:27. [PMID: 30770764 PMCID: PMC6377766 DOI: 10.1186/s40168-019-0639-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/29/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Host microbiomes play a role in hormone production and subsequent fertility in humans, but this is less well understood in non-model organisms. This is of particular relevance to species in zoo-based conservation breeding programmes, as relationships between host microbiome composition and reproductive output may allow for the development of microbial augmentation strategies to improve success. Here, we characterise faecal bacterial communities of breeding and non-breeding eastern black rhino (Diceros bicornis michaeli) using 16S rRNA gene amplicon sequencing and quantify progestagen and glucocorticoid metabolite concentrations through enzyme immunoassays to identify such relationships. RESULTS We identified significant differences in black rhino gut microbiome composition according to ID, institution, breeding success and ovarian cycle phase. In particular, the gut microbiome during pregnancy and post-parturition was significantly altered. Around a third of bacterial genera showed more than ± 10% correlation with either progestagen and/or glucocorticoid concentration, and in general, microbial genera correlated with both hormones in the same direction. Through a combination of analyses, we identified four genera (Aerococcaceae, Atopostipes, Carnobacteriaceae and Solobacterium) that were significantly associated with breeding success, pregnancy and/or post-parturition, and higher faecal progestagen metabolite concentrations. These genera had a lower-than-average relative abundance in the gut microbiome. CONCLUSION Our results indicate that many members of the gut microbiome of black rhino are associated with hormone production and breeding success, and some members of the rare microbiota appear to be particularly important. Although the directionality of the relationship is unclear, the variation in gut microbiome communities represents a potential biomarker of reproductive health. We identified four genera that were associated with multiple indicators of reproductive output; these could be candidate probiotics to improve the breeding success of black rhino in zoo-based conservation breeding programmes. Further work is required to understand the efficacy and feasibility of this, either directly through microbial augmentation (e.g. probiotics) or indirectly via dietary manipulation or prebiotics.
Collapse
Affiliation(s)
- Rachael E Antwis
- School of Environment and Life Sciences, University of Salford, Salford, UK.
| | - Katie L Edwards
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Bryony Unwin
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Susan L Walker
- North of England Zoological Society, Chester Zoo, Upton-by-Chester, UK
| | - Susanne Shultz
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Antwis RE, Lea JMD, Unwin B, Shultz S. Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies. MICROBIOME 2018; 6:207. [PMID: 30466491 PMCID: PMC6251106 DOI: 10.1186/s40168-018-0593-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/07/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbiome composition is linked to host functional traits including metabolism and immune function. Drivers of microbiome composition are increasingly well-characterised; however, evidence of group-level microbiome convergence is limited and may represent a multi-level trait (i.e. across individuals and groups), whereby heritable phenotypes are influenced by social interactions. Here, we investigate the influence of spatial structuring and social interactions on the gut microbiome composition of Welsh mountain ponies. RESULTS We show that semi-feral ponies exhibit variation in microbiome composition according to band (group) membership, in addition to considerable within-individual variation. Spatial structuring was also identified within bands, suggesting that despite communal living, social behaviours still influence microbiome composition. Indeed, we show that specific interactions (i.e. mother-offspring and stallion-mare) lead to more similar microbiomes, further supporting the notion that individuals influence the microbiome composition of one another and ultimately the group. Foals exhibited different microbiome composition to sub-adults and adults, most likely related to differences in diet. CONCLUSIONS We provide novel evidence that microbiome composition is structured at multiple levels within populations of social mammals and thus may form a unit on which selection can act. High levels of within-individual variation in microbiome composition, combined with the potential for social interactions to influence microbiome composition, suggest the direction of microbiome selection may be influenced by the individual members present in the group. Although the functional implications of this require further research, these results lend support to the idea that multi-level selection can act on microbiomes.
Collapse
Affiliation(s)
- Rachael E. Antwis
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Jessica M. D. Lea
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Bryony Unwin
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Susanne Shultz
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|