1
|
Palevich N, Jeyanathan J, Reilly K, Palevich FP, Maclean PH, Li D, Altermann E, Kelly WJ, Leahy SC, Attwood GT, Ronimus RS, Henderson G, Janssen PH. Complete genome sequence of Methanosphaera sp. ISO3-F5, a rumen methylotrophic methanogen. Microbiol Resour Announc 2024; 13:e0004324. [PMID: 38426731 PMCID: PMC11008217 DOI: 10.1128/mra.00043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Methanosphaera spp. are methylotrophic methanogenic archaea and members of the order Methanobacteriales with few cultured representatives. Methanosphaera sp. ISO3-F5 was isolated from sheep rumen contents in New Zealand. Here, we report its complete genome, consisting of a large chromosome and a megaplasmid (GenBank accession numbers CP118753 and CP118754, respectively).
Collapse
Affiliation(s)
- Nikola Palevich
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Jeyamalar Jeyanathan
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kerri Reilly
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Faith P. Palevich
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
- AgResearch Ltd., Hopkirk Research Institute, Palmerston North, New Zealand
| | - Paul H. Maclean
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Dong Li
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Eric Altermann
- School of Veterinary Science and Centre for Bioparticle Applications, Massey University, Palmerston North, New Zealand
- Blue Barn Life Sciences Ltd., Feilding, New Zealand
| | - William J. Kelly
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Sinead C. Leahy
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| | - Graeme T. Attwood
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Ron S. Ronimus
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Gemma Henderson
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
- Bacthera AG, Basel, Switzerland
| | - Peter H. Janssen
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
2
|
Pilliol V, Morsli M, Terlier L, Hassani Y, Malat I, Guindo CO, Davoust B, Lamglait B, Drancourt M, Aboudharam G, Grine G, Terrer E. Candidatus Methanosphaera massiliense sp. nov., a methanogenic archaeal species found in a human fecal sample and prevalent in pigs and red kangaroos. Microbiol Spectr 2024; 12:e0514122. [PMID: 38189277 PMCID: PMC10845953 DOI: 10.1128/spectrum.05141-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/24/2023] [Indexed: 01/09/2024] Open
Abstract
Methanosphaera stadtmanae was the sole Methanosphaera representative to be cultured and detected by molecular methods in the human gut microbiota, further associated with digestive and respiratory diseases, leaving unknown the actual diversity of human-associated Methanosphaera species. Here, a novel Methanosphaera species, Candidatus Methanosphaera massiliense (Ca. M. massiliense) sp. nov. was isolated by culture using a hydrogen- and carbon dioxide-free medium from one human feces sample. Ca. M. massiliense is a non-motile, 850 nm Gram-positive coccus autofluorescent at 420 nm. Whole-genome sequencing yielded a 29.7% GC content, gapless 1,785,773 bp genome sequence with an 84.5% coding ratio, encoding for alcohol and aldehyde dehydrogenases promoting the growth of Ca. M. massiliense without hydrogen. Screening additional mammal and human feces using a specific genome sequence-derived DNA-polymerase RT-PCR system yielded a prevalence of 22% in pigs, 12% in red kangaroos, and no detection in 149 other human samples. This study, extending the diversity of Methanosphaera in human microbiota, questions the zoonotic sources of Ca. M. massiliense and possible transfer between hosts.IMPORTANCEMethanogens are constant inhabitants in the human gut microbiota in which Methanosphaera stadtmanae was the only cultivated Methanosphaera representative. We grew Candidatus Methanosphaera massiliense sp. nov. from one human feces sample in a novel culture medium under a nitrogen atmosphere. Systematic research for methanogens in human and animal fecal samples detected Ca. M. massiliense in pig and red kangaroo feces, raising the possibility of its zoonotic acquisition. Host specificity, source of acquisition, and adaptation of methanogens should be further investigated.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | - Madjid Morsli
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Laureline Terlier
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Yasmine Hassani
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Ihab Malat
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Cheick Oumar Guindo
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | | | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | | | - Elodie Terrer
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Protasov E, Nonoh JO, Kästle Silva JM, Mies US, Hervé V, Dietrich C, Lang K, Mikulski L, Platt K, Poehlein A, Köhler-Ramm T, Miambi E, Boga HI, Feldewert C, Ngugi DK, Plarre R, Sillam-Dussès D, Šobotník J, Daniel R, Brune A. Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods. Front Microbiol 2023; 14:1281628. [PMID: 38033561 PMCID: PMC10684969 DOI: 10.3389/fmicb.2023.1281628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.
Collapse
Affiliation(s)
- Evgenii Protasov
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - James O. Nonoh
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Joana M. Kästle Silva
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Undine S. Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carsten Dietrich
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristina Lang
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lena Mikulski
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Tim Köhler-Ramm
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Edouard Miambi
- Evolutionary Ecology Department, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), University of Paris-Est Créteil (UPEC), Créteil, France
| | - Hamadi I. Boga
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Christopher Feldewert
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - David K. Ngugi
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Rudy Plarre
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Aryee G, Luecke SM, Dahlen CR, Swanson KC, Amat S. Holistic View and Novel Perspective on Ruminal and Extra-Gastrointestinal Methanogens in Cattle. Microorganisms 2023; 11:2746. [PMID: 38004757 PMCID: PMC10673468 DOI: 10.3390/microorganisms11112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the extensive research conducted on ruminal methanogens and anti-methanogenic intervention strategies over the last 50 years, most of the currently researched enteric methane (CH4) abatement approaches have shown limited efficacy. This is largely because of the complex nature of animal production and the ruminal environment, host genetic variability of CH4 production, and an incomplete understanding of the role of the ruminal microbiome in enteric CH4 emissions. Recent sequencing-based studies suggest the presence of methanogenic archaea in extra-gastrointestinal tract tissues, including respiratory and reproductive tracts of cattle. While these sequencing data require further verification via culture-dependent methods, the consistent identification of methanogens with relatively greater frequency in the airway and urogenital tract of cattle, as well as increasing appreciation of the microbiome-gut-organ axis together highlight the potential interactions between ruminal and extra-gastrointestinal methanogenic communities. Thus, a traditional singular focus on ruminal methanogens may not be sufficient, and a holistic approach which takes into consideration of the transfer of methanogens between ruminal, extra-gastrointestinal, and environmental microbial communities is of necessity to develop more efficient and long-term ruminal CH4 mitigation strategies. In the present review, we provide a holistic survey of the methanogenic archaea present in different anatomical sites of cattle and discuss potential seeding sources of the ruminal methanogens.
Collapse
Affiliation(s)
- Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| |
Collapse
|
5
|
Khairunisa BH, Heryakusuma C, Ike K, Mukhopadhyay B, Susanti D. Evolving understanding of rumen methanogen ecophysiology. Front Microbiol 2023; 14:1296008. [PMID: 38029083 PMCID: PMC10658910 DOI: 10.3389/fmicb.2023.1296008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
Collapse
Affiliation(s)
| | - Christian Heryakusuma
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Kelechi Ike
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Biswarup Mukhopadhyay
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Dwi Susanti
- Microbial Discovery Research, BiomEdit, Greenfield, IN, United States
| |
Collapse
|
6
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
7
|
Feehan B, Ran Q, Dorman V, Rumback K, Pogranichniy S, Ward K, Goodband R, Niederwerder MC, Lee STM. Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea. Anim Microbiome 2023; 5:35. [PMID: 37461084 DOI: 10.1186/s42523-023-00256-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination. RESULTS We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.
Collapse
Affiliation(s)
- Brandi Feehan
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Qinghong Ran
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Victoria Dorman
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kourtney Rumback
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophia Pogranichniy
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaitlyn Ward
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Sonny T M Lee
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
8
|
Volmer JG, Soo RM, Evans PN, Hoedt EC, Astorga Alsina AL, Woodcroft BJ, Tyson GW, Hugenholtz P, Morrison M. Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host-associated. BMC Biol 2023; 21:59. [PMID: 36949471 PMCID: PMC10035134 DOI: 10.1186/s12915-023-01524-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/20/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND With an increasing interest in the manipulation of methane produced from livestock cultivation, the microbiome of Australian marsupials provides a unique ecological and evolutionary comparison with 'low-methane' emitters. Previously, marsupial species were shown to be enriched for novel lineages of Methanocorpusculum, as well as Methanobrevibacter, Methanosphaera, and Methanomassiliicoccales. Despite sporadic reports of Methanocorpusculum from stool samples of various animal species, there remains little information on the impacts of these methanogens on their hosts. RESULTS Here, we characterise novel host-associated species of Methanocorpusculum, to explore unique host-specific genetic factors and their associated metabolic potential. We performed comparative analyses on 176 Methanocorpusculum genomes comprising 130 metagenome-assembled genomes (MAGs) recovered from 20 public animal metagenome datasets and 35 other publicly available Methanocorpusculum MAGs and isolate genomes of host-associated and environmental origin. Nine MAGs were also produced from faecal metagenomes of the common wombat (Vombatus ursinus) and mahogany glider (Petaurus gracilis), along with the cultivation of one axenic isolate from each respective animal; M. vombati (sp. nov.) and M. petauri (sp. nov.). CONCLUSIONS Through our analyses, we substantially expand the available genetic information for this genus by describing the phenotypic and genetic characteristics of 23 host-associated species of Methanocorpusculum. These lineages display differential enrichment of genes associated with methanogenesis, amino acid biosynthesis, transport system proteins, phosphonate metabolism, and carbohydrate-active enzymes. These results provide insights into the differential genetic and functional adaptations of these novel host-associated species of Methanocorpusculum and suggest that this genus is ancestrally host-associated.
Collapse
Affiliation(s)
- James G Volmer
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, 4102, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, 4102, Australia
| | - Rochelle M Soo
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, University of Queensland, Saint Lucia, 4072, Australia
| | - Paul N Evans
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, University of Queensland, Saint Lucia, 4072, Australia
| | - Emily C Hoedt
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, 4102, Australia
- Current Address: NHMRC Centre of Research Excellence (CRE) in Digestive Health, Hunter Medical Research Institute (HMRI), Newcastle, NSW, Australia
| | - Ana L Astorga Alsina
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, 4102, Australia
| | - Benjamin J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, 4102, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, University of Queensland, Saint Lucia, 4072, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, 4102, Australia.
| |
Collapse
|
9
|
Lv Z, Ding J, Wang H, Wan J, Chen Y, Liang L, Yu T, Wang Y, Wang F. Isolation of a Novel Thermophilic Methanogen and the Evolutionary History of the Class Methanobacteria. BIOLOGY 2022; 11:1514. [PMID: 36290418 PMCID: PMC9598358 DOI: 10.3390/biology11101514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
Methanogens can produce methane in anaerobic environments via the methanogenesis pathway, and are regarded as one of the most ancient life forms on Earth. They are ubiquitously distributed across distinct ecosystems and are considered to have a thermophilic origin. In this study, we isolated, pure cultured, and completely sequenced a single methanogen strain DL9LZB001, from a hot spring at Tengchong in Southwest China. DL9LZB001 is a thermophilic and hydrogenotrophic methanogen with an optimum growth temperature of 65 °C. It is a putative novel species, which has been named Methanothermobacter tengchongensis-a Class I methanogen belonging to the class Methanobacteria. Comparative genomic and ancestral analyses indicate that the class Methanobacteria originated in a hyperthermal environment and then evolved to adapt to ambient temperatures. This study extends the understanding of methanogens living in geothermal niches, as well as the origin and evolutionary history of these organisms in ecosystems with different temperatures.
Collapse
Affiliation(s)
- Zhenbo Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxin Ding
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Heng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxin Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifan Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
10
|
Yang X, Fan X, Jiang H, Zhang Q, Basangwangdui, Zhang Q, Dang S, Long R, Huang X. Simulated seasonal diets alter yak rumen microbiota structure and metabolic function. Front Microbiol 2022; 13:1006285. [PMID: 36212853 PMCID: PMC9538157 DOI: 10.3389/fmicb.2022.1006285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Yak is the only ruminant on the Qinghai-Tibetan Plateau that grazes year-round. Although previous research has shown that yak rumen microbiota fluctuates in robust patterns with seasonal foraging, it remains unclear whether these dynamic shifts are driven by changes in environment or nutrient availability. The study examines the response of yak rumen microbiota (bacteria, fungi, and archaea) to simulated seasonal diets, excluding the contribution of environmental factors. A total of 18 adult male yaks were randomly divided into three groups, including a nutrition stress group (NSG, simulating winter pasture), a grazing simulation group (GSG, simulating warm season pasture), and a supplementation group (SG, simulating winter pasture supplemented with feed concentrates). Volatile fatty acids (VFAs) profiling showed that ruminal acetate, propionate and total VFA contents were significantly higher (p < 0.05) in GSG rumen. Metagenomic analysis showed that Bacteroidetes (53.9%) and Firmicutes (37.1%) were the dominant bacterial phyla in yak rumen across dietary treatments. In GSG samples, Actinobacteriota, Succinivibrionaceae_UCG-002, and Ruminococcus albus were the most abundant, while Bacteroides was significantly more abundant in NSG samples (p < 0.05) than that in GSG. The known fiber-degrading fungus, Neocallimastix, was significantly more abundant in NSG and SG samples, while Cyllamyces were more prevalent in NSG rumen than in the SG rumen. These findings imply that a diverse consortium of microbes may cooperate in response to fluctuating nutrient availability, with depletion of known rumen taxa under nutrient deficiency. Archaeal community composition showed less variation between treatments than bacterial and fungal communities. Additionally, Orpinomyces was significantly positively correlated with acetate levels, both of which are prevalent in GSG compared with other groups. Correlation analysis between microbial taxa and VFA production or between specific rumen microbes further illustrated a collective response to nutrient availability by gut microbiota and rumen VFA metabolism. PICRUSt and FUNGuild functional prediction analysis indicated fluctuation response of the function of microbial communities among groups. These results provide a framework for understanding how microbiota participate in seasonal adaptations to forage availability in high-altitude ruminants, and form a basis for future development of probiotic supplements to enhance nutrient utilization in livestock.
Collapse
|
11
|
Luo T, Li Y, Zhang W, Liu J, Shi H. Rumen and fecal microbiota profiles associated with immunity of young and adult goats. Front Immunol 2022; 13:978402. [PMID: 36177023 PMCID: PMC9513485 DOI: 10.3389/fimmu.2022.978402] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Low immunity at birth increases risk of disease of young livestock, such as goat kids. Microbiomes change as animals mature, and a healthy microbiome is related to decreased risk of disease. The relationship between microbiota profiles and immunity at different developmental stages remains unclear. Young (female, n = 12, 30 d) and adult (female, n = 12, 2 yrs. old) Saanen dairy goats were used to investigate changes in rumen microbiomes, fecal microbiomes, and their correlations to circulating immune factors. Serum IgG (P = 0.02) and IgM (P < 0.01) were higher at 2 years than 30 d of age, but there were no differences in IgA (P = 0.34), IL-2 (P = 0.05), IL-4 (P = 0.37) and IL-6 (P = 0.73) between ages. Amplicon sequencing analysis revealed young goats had a higher diversity of bacterial communities in rumen and lower diversity in feces compared with adult goats. Ten genera in rumen and 14 genera in feces were positively correlated with serum IgM concentration across both ages. Olsenella, Methanosphaera, Quinella, Candidatus_Saccharimonas, and Methanobrevibacter in rumen and Ruminobacter, Treponema, Rikenelaceae_ RC9_ gut_ Group in feces were positively correlated with the concentration of IgG. The correlation analysis using weighted gene co-expression network analysis showed the MEblue module was positively associated with the IgG and IgM. These data provide novel insight into the association between rumen-feces microbiota and immune response. Further experiments are needed to investigate whether inoculating young livestock with immune-related bacteria identified can improve the immune status. Our data suggest a possible strategy to improve the immunity of the kids by alterative microbiota profiles.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongtao Li
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenying Zhang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hengbo Shi
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- *Correspondence: Hengbo Shi,
| |
Collapse
|
12
|
Garcia PS, Gribaldo S, Borrel G. Diversity and Evolution of Methane-Related Pathways in Archaea. Annu Rev Microbiol 2022; 76:727-755. [PMID: 35759872 DOI: 10.1146/annurev-micro-041020-024935] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methane is one of the most important greenhouse gases on Earth and holds an important place in the global carbon cycle. Archaea are the only organisms that use methanogenesis to produce energy and rely on the methyl-coenzyme M reductase (Mcr) complex. Over the last decade, new results have significantly reshaped our view of the diversity of methane-related pathways in the Archaea. Many new lineages that synthesize or use methane have been identified across the whole archaeal tree, leading to a greatly expanded diversity of substrates and mechanisms. In this review, we present the state of the art of these advances and how they challenge established scenarios of the origin and evolution of methanogenesis, and we discuss the potential trajectories that may have led to this strikingly wide range of metabolisms.Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pierre Simon Garcia
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| |
Collapse
|
13
|
Mohammadzadeh R, Mahnert A, Duller S, Moissl-Eichinger C. Archaeal key-residents within the human microbiome: characteristics, interactions and involvement in health and disease. Curr Opin Microbiol 2022; 67:102146. [PMID: 35427870 DOI: 10.1016/j.mib.2022.102146] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Since the introduction of Archaea as new domain of life more than 40 years ago, they are no longer regarded as eccentric inhabitants of extreme ecosystems. These microorganisms are widespread in various moderate ecosystems, including eukaryotic hosts such as humans. Indeed, members of the archaeal community are now recognized as paramount constituents of human microbiome, while their definite role in disease or health is not fully elucidated and no archaeal pathogen has been reported. Here, we present a brief overview of archaea residing in and on the human body, with a specific focus on common lineages including Methanobrevibacter, Methanosphaeraand Methanomassilococcales.
Collapse
Affiliation(s)
- Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed, 8010 Graz, Austria.
| |
Collapse
|
14
|
Zeng F, Zhao C, Li N, Gao X, Pan YY, Liu B, Pang J. Effects of Alkaloid-Rich Extracts Obtained from Grifola frondosa on Gut Microbiota and Glucose Homeostasis in Rats. Food Funct 2022; 13:2729-2742. [DOI: 10.1039/d1fo04062f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grifola frondosa (GF), also known as maitake (a type of mushroom), has been widely used as a food item and it exhibits various health-beneficial hypoglycemic activities. Rats fed with a...
Collapse
|
15
|
The Impact of Pre-Slaughter Fasting on the Ruminal Microbial Population of Commercial Angus Steers. Microorganisms 2021; 9:microorganisms9122625. [PMID: 34946226 PMCID: PMC8709334 DOI: 10.3390/microorganisms9122625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Diet impacts the composition of the ruminal microbiota; however, prior to slaughter, cattle are fasted, which may change the ruminal microbial ecosystem structure and lead to dysbiosis. The objective of this study was to determine changes occurring in the rumen after pre-slaughter fasting, which can allow harmful pathogens an opportunity to establish in the rumen. Ruminal samples were collected before and after pre-slaughter fasting from seventeen commercial Angus steers. DNA extraction and 16S rRNA gene sequencing were performed to determine the ruminal microbiota, as well as volatile fatty acid (VFA) concentrations. Microbial richness (Chao 1 index), evenness, and Shannon diversity index all increased after fasting (p ≤ 0.040). During fasting, the two predominant families Prevotellaceae and Ruminococcaceae decreased (p ≤ 0.029), whereas the remaining minor families increased (p < 0.001). Fasting increased Blautia and Methanosphaera (p ≤ 0.003), while Campylobacter and Treponema tended to increase (p ≤ 0.086). Butyrate concentration tended to decrease (p = 0.068) after fasting. The present findings support that fasting causes ruminal nutrient depletion resulting in dysbiosis, allowing opportunistic pathogens to exploit the void in the ruminal ecological niche.
Collapse
|
16
|
Pryor J, Eslick GD, Talley NJ, Duncanson K, Keely S, Hoedt EC. Clinical medicine journals lag behind science journals with regards to "microbiota sequence" data availability. Clin Transl Med 2021; 11:e656. [PMID: 34870904 PMCID: PMC8647683 DOI: 10.1002/ctm2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer Pryor
- School of Biomedical Sciences and PharmacyCollege of HealthMedicine and WellbeingUniversity of NewcastleNewcastleAustralia
- NHMRC Centre for Research Excellence in Digestive HealthUniversity of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Guy D. Eslick
- NHMRC Centre for Research Excellence in Digestive HealthUniversity of NewcastleNewcastleAustralia
- School of Medicine and Public HealthCollege of HealthMedicine and WellbeingUniversity of NewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Nicholas J. Talley
- NHMRC Centre for Research Excellence in Digestive HealthUniversity of NewcastleNewcastleAustralia
- School of Medicine and Public HealthCollege of HealthMedicine and WellbeingUniversity of NewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Kerith Duncanson
- NHMRC Centre for Research Excellence in Digestive HealthUniversity of NewcastleNewcastleAustralia
- School of Medicine and Public HealthCollege of HealthMedicine and WellbeingUniversity of NewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Simon Keely
- School of Biomedical Sciences and PharmacyCollege of HealthMedicine and WellbeingUniversity of NewcastleNewcastleAustralia
- NHMRC Centre for Research Excellence in Digestive HealthUniversity of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Emily C. Hoedt
- NHMRC Centre for Research Excellence in Digestive HealthUniversity of NewcastleNewcastleAustralia
- School of Medicine and Public HealthCollege of HealthMedicine and WellbeingUniversity of NewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| |
Collapse
|
17
|
Pitta DW, Melgar A, Hristov AN, Indugu N, Narayan KS, Pappalardo C, Hennessy ML, Vecchiarelli B, Kaplan-Shabtai V, Kindermann M, Walker N. Temporal changes in total and metabolically active ruminal methanogens in dairy cows supplemented with 3-nitrooxypropanol. J Dairy Sci 2021; 104:8721-8735. [PMID: 34024597 DOI: 10.3168/jds.2020-19862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), a potent methane inhibitor, on total and metabolically active methanogens in the rumen of dairy cows over the course of the day and over a 12-wk period. Rumen contents of 8 ruminally cannulated early-lactation dairy cows were sampled at 2, 6, and 10 h after feeding during wk 4, 8, and 12 of a randomized complete block design experiment in which 3-NOP was fed at 60 mg/kg of feed dry matter. Cows (4 fed the control and 4 fed the 3-NOP diet) were blocked based on their previous lactation milk yield or predicted milk yield. Rumen samples were extracted for microbial DNA (total) and microbial RNA (metabolically active), PCR amplified for the 16S rRNA gene of archaea, sequenced on an Illumina platform, and analyzed for archaea diversity. In addition, the 16S copy number and 3 ruminal methanogenic species were quantified using the real-time quantitative PCR assay. We detected a difference between DNA and RNA (cDNA)-based archaea communities, revealing that ruminal methanogens differ in their metabolic activities. Within DNA and cDNA components, methanogenic communities differed by sampling hour, week, and treatment. Overall, Methanobrevibacter was the dominant genus (94.3%) followed by Methanosphaera, with the latter genus having greater abundance in the cDNA component (14.5%) compared with total populations (5.5%). Methanosphaera was higher at 2 h after feeding, whereas Methanobrevibacter increased at 6 and 10 h in both groups, showing diurnal patterns among individual methanogenic lineages. Methanobrevibacter was reduced at wk 4, whereas Methanosphaera was reduced at wk 8 and 12 in cows supplemented with 3-NOP compared with control cows, suggesting differential responses among methanogens to 3-NOP. A reduction in Methanobrevibacter ruminantium in all 3-NOP samples from wk 8 was confirmed using real-time quantitative PCR. The relative abundance of individual methanogens was driven by a combination of dietary composition, dry matter intake, and hydrogen concentrations in the rumen. This study provides novel information on the effects of 3-NOP on individual methanogenic lineages, but further studies are needed to understand temporal dynamics and to validate the effects of 3-NOP on individual lineages of ruminal methanogens.
Collapse
Affiliation(s)
- D W Pitta
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348.
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - N Indugu
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - K S Narayan
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - C Pappalardo
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - M L Hennessy
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - B Vecchiarelli
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - V Kaplan-Shabtai
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - M Kindermann
- Animal Nutrition and Health, DSM Nutritional Products, Basel CH-4002, Switzerland
| | - N Walker
- Animal Nutrition and Health, DSM Nutritional Products, Basel CH-4002, Switzerland
| |
Collapse
|
18
|
State of the Art in the Culture of the Human Microbiota: New Interests and Strategies. Clin Microbiol Rev 2020; 34:34/1/e00129-19. [PMID: 33115723 DOI: 10.1128/cmr.00129-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The last 5 years have seen a turning point in the study of the gut microbiota with a rebirth of culture-dependent approaches to study the gut microbiota. High-throughput methods have been developed to study bacterial diversity with culture conditions aimed at mimicking the gut environment by using rich media such as YCFA (yeast extract, casein hydrolysate, fatty acids) and Gifu anaerobic medium in an anaerobic workstation, as well as media enriched with rumen and blood and coculture, to mimic the symbiosis of the gut microbiota. Other culture conditions target phenotypic and metabolic features of bacterial species to facilitate their isolation. Preexisting technologies such as next-generation sequencing and flow cytometry have also been utilized to develop innovative methods to isolate previously uncultured bacteria or explore viability in samples of interest. These techniques have been applied to isolate CPR (Candidate Phyla Radiation) among other, more classic approaches. Methanogenic archaeal and fungal cultures present different challenges than bacterial cultures. Efforts to improve the available systems to grow archaea have been successful through coculture systems. For fungi that are more easily isolated from the human microbiota, the challenge resides in the identification of the isolates, which has been approached by applying matrix-assisted laser desorption ionization-time of flight mass spectrometry technology to fungi. Bacteriotherapy represents a nonnegligible avenue in the future of medicine to correct dysbiosis and improve health or response to therapy. Although great strides have been achieved in the last 5 years, efforts in bacterial culture need to be sustained to continue deciphering the dark matter of metagenomics, particularly CPR, and extend these methods to archaea and fungi.
Collapse
|
19
|
Drancourt M, Djemai K, Gouriet F, Grine G, Loukil A, Bedotto M, Levasseur A, Lepidi H, Bou-Khalil J, Khelaifia S, Raoult D. Methanobrevibacter smithii archaemia in febrile patients with bacteremia, including those with endocarditis. Clin Infect Dis 2020; 73:e2571-e2579. [PMID: 32668457 DOI: 10.1093/cid/ciaa998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/10/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The spectrum of infections caused by the emerging opportunistic pathogens methanogens which escape routine detection remains to be described. To determine the prevalence of archaemia, we searched for methanogens in the blood of febrile patients using specific tools. METHODS We conducted a prospective study at Institut Hospitalier Universitaire Méditerranée Infection, Marseille, France, September 2018 - April 2020, enrolling 7,716 blood culture samples routinely collected in patients with fever. Blood samples were screened by specific PCR assays for the presence of methanogens. Positive samples were observed by autofluorescence and electron microscopy, analyzed by metagenomics and cultured using previously developed methods. Blood culture bottles experimentally inoculated were used as controls. The presence of methanogens in vascular and cardiac tissues was assessed by indirect immunofluorescence, fluorescent in situ hybridization and PCR-based investigations. RESULTS PCR detection attempted in 7,716 blood samples, was negative in all 1,312 aerobic bottles and 810 bacterial culture-negative anaerobic bottles. PCRs were positive in 27/5,594 (0.5%) bacterial culture-positive anaerobic bottles that contained cultures collected from 26 patients. Sequencing confirmed Methanobrevibacter smithii associated with staphylococci in 14 patients, fermentative Enterobacteriaceae in nine patients and streptococci in three patients. Metagenomics confirmed M. smithii in five blood samples, and M. smithii was isolated via culture in broth from two samples; the genomes of these two isolates were sequenced. Blood cultures experimentally inoculated with Enterobacteriaceae, Staphylococcus epidermidis or Staphylococcus hominis yielded hydrogen, but no methane, authentifying observational data.Three patients, all diagnosed with infectious mitral endocarditis, were diagnosed by microscopy, PCR-based detections and culture: we showed M. smithii microscopically and by a specific PCR followed by sequencing method in two of three cardiovascular tissues. CONCLUSIONS Using appropriate methods of detection, M. smithii is demonstrated as causing archaemia and endocarditis in febrile patients who are coinfected by bacteria.
Collapse
Affiliation(s)
- Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Kenza Djemai
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Frédérique Gouriet
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Ghiles Grine
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Ahmed Loukil
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Marielle Bedotto
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Hubert Lepidi
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | | | | | - Didier Raoult
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
20
|
Kelly WJ, Leahy SC, Kamke J, Soni P, Koike S, Mackie R, Seshadri R, Cook GM, Morales SE, Greening C, Attwood GT. Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Anim Microbiome 2019; 1:15. [PMID: 33499937 PMCID: PMC7807696 DOI: 10.1186/s42523-019-0016-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022] Open
Abstract
Background Digestive processes in the rumen lead to the release of methyl-compounds, mainly methanol and methylamines, which are used by methyltrophic methanogens to form methane, an important agricultural greenhouse gas. Methylamines are produced from plant phosphatidylcholine degradation, by choline trimethylamine lyase, while methanol comes from demethoxylation of dietary pectins via pectin methylesterase activity. We have screened rumen metagenomic and metatranscriptomic datasets, metagenome assembled genomes, and the Hungate1000 genomes to identify organisms capable of producing methyl-compounds. We also describe the enrichment of pectin-degrading and methane-forming microbes from sheep rumen contents and the analysis of their genomes via metagenomic assembly. Results Screens of metagenomic data using the protein domains of choline trimethylamine lyase (CutC), and activator protein (CutD) found good matches only to Olsenella umbonata and to Caecibacter, while the Hungate1000 genomes and metagenome assembled genomes from the cattle rumen found bacteria within the phyla Actinobacteria, Firmicutes and Proteobacteria. The cutC and cutD genes clustered with genes that encode structural components of bacterial microcompartment proteins. Prevotella was the dominant genus encoding pectin methyl esterases, with smaller numbers of sequences identified from other fibre-degrading rumen bacteria. Some large pectin methyl esterases (> 2100 aa) were found to be encoded in Butyrivibrio genomes. The pectin-utilising, methane-producing consortium was composed of (i) a putative pectin-degrading bacterium (phylum Tenericutes, class Mollicutes), (ii) a galacturonate-using Sphaerochaeta sp. predicted to produce acetate, lactate, and ethanol, and (iii) a methylotrophic methanogen, Methanosphaera sp., with the ability to form methane via a primary ethanol-dependent, hydrogen-independent, methanogenesis pathway. Conclusions The main bacteria that produce methyl-compounds have been identified in ruminants. Their enzymatic activities can now be targeted with the aim of finding ways to reduce the supply of methyl-compound substrates to methanogens, and thereby limit methylotrophic methanogenesis in the rumen.
Collapse
Affiliation(s)
| | - Sinead C Leahy
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Janine Kamke
- Horizons Regional Council, Palmerston North, New Zealand
| | - Priya Soni
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | | | | | - Rekha Seshadri
- Department of Energy, Joint Genome Institute, San Francisco, CA, USA
| | | | | | | | - Graeme T Attwood
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.
| |
Collapse
|