1
|
Le VVH, Gong Z, Maccario L, Bousquet E, Parra B, Dechesne A, Sørensen SJ, Nesme J. Birmingham-group IncP-1 α plasmids revisited: RP4, RP1 and RK2 are identical and their remnants can be detected in environmental isolates. Microb Genom 2025; 11:001381. [PMID: 40152918 PMCID: PMC11952213 DOI: 10.1099/mgen.0.001381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
RP4, RP1, RK2 and R68 were isolated from the multidrug-resistant bacterial wound isolates in 1969 in the Birmingham Accident Hospital, Birmingham, England, and collectively called Birmingham-group IncP-1α plasmids. These plasmids have been widely used as models to study different aspects of plasmid biology, develop genetic delivery systems and design plasmid vectors. Early studies showed that these plasmids conferred the same antibiotic resistance profile, had a similar size and were undistinguishable from each other using DNA heteroduplex electron microscopy and restriction endonuclease analyses. These observations have led to the widely held assumption that they are identical, although there has been no conclusive supporting evidence. In this work, we sequenced the plasmids RP1 and RP4 from our laboratory strain collection and compared these new sequences with the plasmids RP4 and RK2 assembled from a publicly available sequencing database, showing that the RP1, RP4 and RK2 plasmids are 60 095 bp in length and identical at the nucleotide resolution. Noteworthily, the plasmid sequence is highly conserved despite having been distributed to different labs over 50 years and propagated in different bacterial hosts, strengthening the previous observation that the bacterial host adapts to the RP4/RP1/RK2 plasmid rather than the opposite. In the updated RP4/RP1/RK2 sequence, we found a fusion gene, called pecM-orf2, that was formed putatively by a genetic deletion event. By searching for pecM-orf2 in the National Center for Biotechnology Information database, we detected remnants of the RP4/RP1/RK2 plasmid that carry features of laboratory-engineered vectors in bacterial environmental isolates, either in their chromosome or as a plasmid. This suggests a leak of these plasmids from the laboratory into the environment, which may subsequently impact bacterial evolution and raises concerns about the biocontainment of engineered plasmids when being handled in laboratory settings.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- Living Systems Institute, University of Exeter, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhuang Gong
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Emma Bousquet
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Parra
- Laboratorio de Investigación de Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Concepción, Chile
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhou J, Wu H, Wang H, Wu Z, Shi L, Tian S, Hou LA. Metagenomics reveals the resistance patterns of electrochemically treated erythromycin fermentation residue. J Environ Sci (China) 2025; 148:567-578. [PMID: 39095189 DOI: 10.1016/j.jes.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 08/04/2024]
Abstract
Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.
Collapse
Affiliation(s)
- Jieya Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Wang
- Inner Mongolia Autonomous Region Solid Waste and Soil Ecological Environment Technology Center, Hohhot 010020, China
| | - Zongru Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihu Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shulei Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; High Tech. Inst. Beijing, Beijing 100085, China.
| |
Collapse
|
3
|
Cheng M, Dai JJ, Zhang JF, Su YT, Guo SQ, Sun RY, Wang D, Sun J, Liao XP, Chen S, Fang LX. Evolution and maintenance of a large multidrug-resistant plasmid in a Salmonella enterica Typhimurium host under differing antibiotic selection pressures. mSystems 2024; 9:e0119724. [PMID: 39436144 PMCID: PMC11575406 DOI: 10.1128/msystems.01197-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
The dissemination of antibiotic resistance genes (ARGs) through plasmids is a major mechanism for the development of bacterial antimicrobial resistance. The adaptation and evolution mechanisms of multidrug-resistant (MDR) plasmids with their hosts are not fully understood. Herein, we conducted experimental evolution of a 244 kb MDR plasmid (pJXP9) under various conditions including no antibiotics and mono- or combinational drug treatments of colistin (CS), cefotaxime (CTX), and ciprofloxacin (CIP). Our results showed that long-term with or without positive selections for pJXP9, spanning approximately 600 generations, led to modifications of the plasmid-encoded MDR and conjugative transfer regions. These modifications could mitigate the fitness cost of plasmid carriage and enhance plasmid maintenance. The extent of plasmid modifications and the evolution of plasmid-encoded antibiotic resistance depended on treatment type, particularly the drug class and duration of exposure. Interestingly, prolonged exposure to mono- and combinational drugs of CS and CIP resulted in a substantial loss of the plasmid-encoded MDR region and antibiotic resistance, comparable to the selection condition without antibiotic. By contrast, combinational treatment with CTX contributed to the maintenance of the MDR region over a long period of time. Furthermore, drug selection was able to maintain and even amplify the corresponding plasmid-encoded ARGs, with co-selection of ARGs in the adjacent regions. In addition, parallel mutations in chromosomal arcA were also found to be associated with pJXP9 plasmid carriage among endpoint-evolved clones from diverse treatments. Meanwhile, arcA deletion improved the persistence of pJXP9 plasmid without drugs. Overall, our findings indicated that plasmid-borne MDR region deletion and chromosomal arcA inactivation mutation jointly contributed to co-adaptation and co-evolution between MDR IncHI2 plasmid and Salmonella Typhimurium under different drug selection pressure.IMPORTANCEThe plasmid-mediated dissemination of antibiotic resistance genes has become a significant concern for human health, even though the carriage of multidrug-resistant (MDR) plasmids is frequently associated with fitness costs for the bacterial host. However, the mechanisms by which MDR plasmids and bacterial pairs evolve plasmid-mediated antibiotic resistance in the presence of antibiotic selections are not fully understood. Herein, we conducted an experimental evolution of a large multidrug-resistant plasmid in a Salmonella enterica Typhimurium host under single and combinatorial drug selection pressures. Our results show the adaptive evolution of plasmid-encoded antibiotic resistance through alterations of the MDR region in the plasmid, in particular substantial loss of the MDR region, in response to different positive selections, especially mono- and combinational drugs of colistin and ciprofloxacin. In addition, strong parallel mutations in chromosomal arcA were associated with pJXP9 carriage in Salmonella Typhimurium from diverse treatments. Our results thus highlight promoting the loss of the plasmid's MDR region could offer an alternative approach for combating plasmid-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Ming Cheng
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing-Jing Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jin-Fei Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu-Ting Su
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Si-Qi Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ruan-Yang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Liang-Xing Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Liu Z, Zhao Q, Xu C, Song H. Compensatory evolution of chromosomes and plasmids counteracts the plasmid fitness cost. Ecol Evol 2024; 14:e70121. [PMID: 39170056 PMCID: PMC11336059 DOI: 10.1002/ece3.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Plasmids incur a fitness cost that has the potential to restrict the dissemination of resistance in bacterial pathogens. However, bacteria can overcome this disadvantage by compensatory evolution to maintain their resistance. Compensatory evolution can occur via both chromosomes and plasmids, but there are a few reviews regarding this topic, and most of them focus on plasmids. In this review, we provide a comprehensive overview of the currently reported mechanisms underlying compensatory evolution on chromosomes and plasmids, elucidate key targets regulating plasmid fitness cost, and discuss future challenges in this field. We found that compensatory evolution on chromosomes primarily arises from mutations in transcriptional regulatory factors, whereas compensatory evolution of plasmids predominantly involves three pathways: plasmid copy number regulation, conjugation transfer efficiency, and expression of antimicrobial resistance (AMR) genes. Furthermore, the importance of reasonable selection of research subjects and effective integration of diverse advanced research methods is also emphasized in our future study on compensatory mechanisms. Overall, this review establishes a theoretical framework that aims to provide innovative ideas for minimizing the emergence and spread of AMR genes.
Collapse
Affiliation(s)
- Ziyi Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Qiuyun Zhao
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Chenggang Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
5
|
Buddle JE, Thompson LM, Williams AS, Wright RCT, Durham WM, Turner CE, Chaudhuri RR, Brockhurst MA, Fagan RP. Identification of pathways to high-level vancomycin resistance in Clostridioides difficile that incur high fitness costs in key pathogenicity traits. PLoS Biol 2024; 22:e3002741. [PMID: 39146240 PMCID: PMC11326576 DOI: 10.1371/journal.pbio.3002741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Clostridioides difficile is an important human pathogen, for which there are very limited treatment options, primarily the glycopeptide antibiotic vancomycin. In recent years, vancomycin resistance has emerged as a serious problem in several gram-positive pathogens, but high-level resistance has yet to be reported for C. difficile, although it is not known if this is due to constraints upon resistance evolution in this species. Here, we show that resistance to vancomycin can evolve rapidly under ramping selection but is accompanied by fitness costs and pleiotropic trade-offs, including sporulation defects that would be expected to severely impact transmission. We identified 2 distinct pathways to resistance, both of which are predicted to result in changes to the muropeptide terminal D-Ala-D-Ala that is the primary target of vancomycin. One of these pathways involves a previously uncharacterised D,D-carboxypeptidase, expression of which is controlled by a dedicated two-component signal transduction system. Our findings suggest that while C. difficile is capable of evolving high-level vancomycin resistance, this outcome may be limited clinically due to pleiotropic effects on key pathogenicity traits. Moreover, our data identify potential mutational routes to resistance that should be considered in genomic surveillance.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Lucy M Thompson
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Anne S Williams
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C T Wright
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - William M Durham
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Claire E Turner
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Roy R Chaudhuri
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Mohamed DS, Abd El-Baky RM, El-Mokhtar MA, Ghanem SK, Yahia R, Alqahtani AM, Abourehab MAS, Ahmed EF. Influence of selected non-antibiotic pharmaceuticals on antibiotic resistance gene transfer in Escherichia coli. PLoS One 2024; 19:e0304980. [PMID: 38905247 PMCID: PMC11192386 DOI: 10.1371/journal.pone.0304980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/20/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Antibiotic resistance genes (ARGs) transfer rapidly among bacterial species all over the world contributing to the aggravation of antibiotic resistance crisis. Antibiotics at sub-inhibitory concentration induce horizontal gene transfer (HRT) between bacteria, especially through conjugation. The role of common non-antibiotic pharmaceuticals in the market in disseminating antibiotic resistance is not well studied. OBJECTIVES In this work, we indicated the effect of some commonly used non-antibiotic pharmaceuticals including antiemetic (metoclopramide HCl) and antispasmodics (hyoscine butyl bromide and tiemonium methyl sulfate) on the plasmid-mediated conjugal transfer of antibiotic resistance genes between pathogenic E. coli in the gastric intestinal tract (GIT). METHODS Broth microdilution assay was used to test the antibacterial activity of the tested non-antibiotic pharmaceuticals. A conjugation mating system was applied in presence of the studied non-antibiotic pharmaceuticals to test their effect on conjugal transfer frequency. Plasmid extraction and PCR were performed to confirm the conjugation process. Transmission electron microscopy (TEM) was used for imaging the effect of non-antibiotic pharmaceuticals on bacterial cells. RESULTS No antibacterial activity was reported for the used non-antibiotic pharmaceuticals. Plasmid-mediated conjugal transfer between isolates was induced by metoclopramide HCl but suppressed by hyoscine butyl bromide. Tiemonium methylsulfate slightly promoted conjugal transfer. Aggregation between cells and periplasmic bridges was clear in the case of metoclopramide HCl while in presence of hyoscine butyl bromide little affinity was observed. CONCLUSION This study indicates the contribution of non-antibiotic pharmaceuticals to the dissemination and evolution of antibiotic resistance at the community level. Metoclopramide HCl showed an important role in the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Doaa Safwat Mohamed
- Microbiology & Immunology Department, Faculty of Pharmacy, Sohag University, Sohag Al Gadida City, Egypt
| | - Rehab Mahmoud Abd El-Baky
- Microbiology & Immunology Department, Faculty of Pharmacy, Minia University, Minia, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mohamed Ahmed El-Mokhtar
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, El Fateh, Egypt
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Sahar K. Ghanem
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Sohag University, Sohag Al Gadida City, Egypt
| | - Ramadan Yahia
- Microbiology and Immunology Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M. Alqahtani
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Eman Farouk Ahmed
- Microbiology & Immunology Department, Faculty of Pharmacy, Sohag University, Sohag Al Gadida City, Egypt
| |
Collapse
|
7
|
An T, Cai Y, Li G, Li S, Wong PK, Guo J, Zhao H. Prevalence and transmission risk of colistin and multidrug resistance in long-distance coastal aquaculture. ISME COMMUNICATIONS 2023; 3:115. [PMID: 37935916 PMCID: PMC10630474 DOI: 10.1038/s43705-023-00321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Due to the wide use of antibiotics, intensive aquaculture farms have been recognized as a significant reservoir of antibiotic resistomes. Although the prevalence of colistin resistance genes and multidrug-resistant bacteria (MDRB) has been documented, empirical evidence for the transmission of colistin and multidrug resistance between bacterial communities in aquaculture farms through horizontal gene transfer (HGT) is lacking. Here, we report the prevalence and transmission risk of colistin and multidrug resistance in 27 aquaculture water samples from 9 aquaculture zones from over 5000 km of subtropical coastlines in southern China. The colistin resistance gene mcr-1, mobile genetic element (MGE) intl1 and 13 typical antibiotic resistance genes (ARGs) were prevalent in all the aquaculture water samples. Most types of antibiotic (especially colistin) resistance are transmissible in bacterial communities based on evidence from laboratory conjugation and transformation experiments. Diverse MDRB were detected in most of the aquaculture water samples, and a strain with high-level colistin resistance, named Ralstonia pickettii MCR, was isolated. The risk of horizontal transfer of the colistin resistance of R. pickettii MCR through conjugation and transformation was low, but the colistin resistance could be steadily transmitted to offspring through vertical transfer. The findings have important implications for the future regulation of antibiotic use in aquaculture farms globally to address the growing threat posed by antibiotic resistance to human health.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yiwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaoting Li
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, 510006, China
| | - Po Keung Wong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Huijun Zhao
- Centre for Clean Environment and Energy, and Griffith School of Environment, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
8
|
Wedel E, Bernabe-Balas C, Ares-Arroyo M, Montero N, Santos-Lopez A, Mazel D, Gonzalez-Zorn B. Insertion Sequences Determine Plasmid Adaptation to New Bacterial Hosts. mBio 2023:e0315822. [PMID: 37097157 DOI: 10.1128/mbio.03158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Plasmids facilitate the vertical and horizontal spread of antimicrobial resistance genes between bacteria. The host range and adaptation of plasmids to new hosts determine their impact on the spread of resistance. In this work, we explore the mechanisms driving plasmid adaptation to novel hosts in experimental evolution. Using the small multicopy plasmid pB1000, usually found in Pasteurellaceae, we studied its adaptation to a host from a different bacterial family, Escherichia coli. We observed two different mechanisms of adaptation. One mechanism is single nucleotide polymorphisms (SNPs) in the origin of replication (oriV) of the plasmid, which increase the copy number in E. coli cells, elevating the stability, and resistance profile. The second mechanism consists of two insertion sequences (ISs), IS1 and IS10, which decrease the fitness cost of the plasmid by disrupting an uncharacterized gene on pB1000 that is harmful to E. coli. Both mechanisms increase the stability of pB1000 independently, but only their combination allows long-term maintenance. Crucially, we show that the mechanisms have a different impact on the host range of the plasmid. SNPs in oriV prevent the replication in the original host, resulting in a shift of the host range. In contrast, the introduction of ISs either shifts or expands the host range, depending on the IS. While IS1 leads to expansion, IS10 cannot be reintroduced into the original host. This study gives new insights into the relevance of ISs in plasmid-host adaptation to understand the success in spreading resistance. IMPORTANCE ColE1-like plasmids are small, mobilizable plasmids that can be found across at least four orders of Gammaproteobacteria and are strongly associated with antimicrobial resistance genes. Plasmid pB1000 carries the gene blaROB-1, conferring high-level resistance to penicillins and cefaclor. pB1000 has been described in various species of the family Pasteurellaceae, for example, in Haemophilus influenzae, which can cause diseases such as otitis media, meningitis, and pneumonia. To understand the resistance spread through horizontal transfer, it is essential to study the mechanisms of plasmid adaptation to novel hosts. In this work we identify that a gene from pB1000, which encodes a peptide that is toxic for E. coli, and the low plasmid copy number (PCN) of pB1000 in E. coli cells are essential targets in the described plasmid-host adaptation and therefore limit the spread of pB1000-encoded blaROB-1. Furthermore, we show how the interplay of two adaptation mechanisms leads to successful plasmid maintenance in a different bacterial family.
Collapse
Affiliation(s)
- Emilia Wedel
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bernabe-Balas
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ares-Arroyo
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Natalia Montero
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso Santos-Lopez
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Didier Mazel
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Carrilero L, Dunn SJ, Moran RA, McNally A, Brockhurst MA. Evolutionary Responses to Acquiring a Multidrug Resistance Plasmid Are Dominated by Metabolic Functions across Diverse Escherichia coli Lineages. mSystems 2023; 8:e0071322. [PMID: 36722946 PMCID: PMC9948715 DOI: 10.1128/msystems.00713-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/02/2023] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) plasmids drive the spread of antibiotic resistance between bacterial lineages. The immediate impact of MDR plasmid acquisition on fitness and cellular processes varies among bacterial lineages, but how the evolutionary processes enabling the genomic integration of MDR plasmids vary is less well understood, particularly in clinical pathogens. Using diverse Escherichia coli lineages experimentally evolved for ~700 generations, we show that the evolutionary response to gaining the MDR plasmid pLL35 was dominated by chromosomal mutations affecting metabolic and regulatory functions, with both strain-specific and shared mutational targets. The expression of several of these functions, such as anaerobic metabolism, is known to be altered upon acquisition of pLL35. Interactions with resident mobile genetic elements, notably several IS-elements, potentiated parallel mutations, including insertions upstream of hns that were associated with its upregulation and the downregulation of the plasmid-encoded extended-spectrum beta-lactamase gene. Plasmid parallel mutations targeted conjugation-related genes, whose expression was also commonly downregulated in evolved clones. Beyond their role in horizontal gene transfer, plasmids can be an important selective force shaping the evolution of bacterial chromosomes and core cellular functions. IMPORTANCE Plasmids drive the spread of antimicrobial resistance genes between bacterial genomes. However, the evolutionary processes allowing plasmids to be assimilated by diverse bacterial genomes are poorly understood, especially in clinical pathogens. Using experimental evolution with diverse E. coli lineages and a clinical multidrug resistance plasmid, we show that although plasmids drove unique evolutionary paths per lineage, there was a surprising degree of convergence in the functions targeted by mutations across lineages, dominated by metabolic functions. Remarkably, these same metabolic functions show higher evolutionary rates in MDR-lineages in nature and in some cases, like anaerobic metabolism, their expression is directly manipulated by the plasmid. Interactions with other mobile elements resident in the genomes accelerated adaptation by disrupting genes and regulatory sequences that they inserted into. Beyond their role in horizontal gene transfer, plasmids are an important selective force driving the evolution of bacterial genomes and core cellular functions.
Collapse
Affiliation(s)
- Laura Carrilero
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- School of Biosciences, University of Sheffield, United Kingdom
| | - Steven J. Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Conjugative RP4 Plasmid-Mediated Transfer of Antibiotic Resistance Genes to Commensal and Multidrug-Resistant Enteric Bacteria In Vitro. Microorganisms 2023; 11:microorganisms11010193. [PMID: 36677486 PMCID: PMC9860721 DOI: 10.3390/microorganisms11010193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Many antibiotic-resistant bacteria carry resistance genes on conjugative plasmids that are transferable to commensals and pathogens. We determined the ability of multiple enteric bacteria to acquire and retransfer a broad-host-range plasmid RP4. We used human-derived commensal Escherichia coli LM715-1 carrying a chromosomal red fluorescent protein gene and green fluorescent protein (GFP)-labeled broad-host-range RP4 plasmid with ampR, tetR, and kanR in in vitro matings to rifampicin-resistant recipients, including Escherichia coli MG1655, Dec5α, Vibrio cholerae, Pseudomonas putida, Pseudomonas aeruginosa, Klebsiella pneumoniae, Citrobacter rodentium, and Salmonella Typhimurium. Transconjugants were quantified on selective media and confirmed using fluorescence microscopy and PCR for the GFP gene. The plasmid was transferred from E. coli LM715-1 to all tested recipients except P. aeruginosa. Transfer frequencies differed between specific donor-recipient pairings (10-2 to 10-8). Secondary retransfer of plasmid from transconjugants to E. coli LM715-1 occurred at frequencies from 10-2 to 10-7. A serial passage plasmid persistence assay showed plasmid loss over time in the absence of antibiotics, indicating that the plasmid imposed a fitness cost to its host, although some plasmid-bearing cells persisted for at least ten transfers. Thus, the RP4 plasmid can transfer to multiple clinically relevant bacterial species without antibiotic selection pressure.
Collapse
|
11
|
Yang J, Xiang J, Xie Y, Yu K, Li J, Wang H, Li P, Gin KYH, He Y. Removal behavior and key drivers of antibiotic resistance genes in two full-scale leachate treatment plants. WATER RESEARCH 2022; 226:119239. [PMID: 36279613 DOI: 10.1016/j.watres.2022.119239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Leachate is a critical reservoir of antibiotic resistance genes (ARGs) and its proper treatment is closely related to human health and ecosystem safety. Here, we used high-throughput qPCR to explore the removal behavior of ARGs in two full-scale leachate treatment plants (LTPs) where biological treatment and membrane filtration processes were integrated. A total of 286 ARGs and 55 mobile genetic elements (MGEs) were detected, with aminoglycoside, multidrug and MLSB resistance genes being the most prevalent and abundant. Anaerobic digestion was found to be an important pretreatment process for leachate, while anoxic/aerobic tanks in membrane bioreactor (MBR) acted as incubators for ARGs due to their significant proliferation effect on ARGs. Integrated membrane filtration (UF-NF-RO) excelled in ARGs removal with absolute abundances reduced by 3 to 6 orders of magnitude, from about 109 copies/mL in raw leachate to 103-105 copies/mL in effluents. Our results also showed that leachate treatment processes significantly altered the composition of ARGs and bacterial communities. Procrustes analysis and network analysis revealed strong associations between microbes and ARGs, with several hub genes and bacterial genera identified. Structural equation models (SEMs) indicated that bacterial composition, MGEs and basic water properties were the key drivers shaping ARGs dynamics in the raw leachate, biological system and filtration system, respectively. Notably, several pathogens (e.g., Klebsiella, Vibrio, Aeromonas) were closely correlated with ARGs in raw leachate and may amplify the dissemination risks of ARGs. Moreover, insertion sequences in biological systems would accelerate the horizontal gene transfer of ARGs. In short, this study provides new insights into the mechanisms of ARGs removal and dissemination behavior in industrial-scale LTPs.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase Ⅱ, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Jinyi Xiang
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junnan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase Ⅱ, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Haoyan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase Ⅱ, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase Ⅱ, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
12
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
13
|
Zhang P, Mao D, Gao H, Zheng L, Chen Z, Gao Y, Duan Y, Guo J, Luo Y, Ren H. Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment. THE ISME JOURNAL 2021; 16:1284-1293. [PMID: 34903849 PMCID: PMC9038720 DOI: 10.1038/s41396-021-01171-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC, proQ, and hcaT) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus (fimA and fimH) and the surface adhesin gene (flu) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B (acrA, acrB), outer-membrane protein (tolC), multidrug-resistance protein (mdtM), and macrolide export proteins A and B (macA, macB)) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein (traF) and (trbB), replication protein gene (trfA), beta-lactamase TEM precursor (blaTEM), aminoglycoside 3'-phosphotransferase (aphA) and tetracycline resistance protein A (tetA)) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China.,State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Huihui Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liyang Zheng
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zeyou Chen
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuting Gao
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Yitao Duan
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Yi Luo
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China. .,State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| |
Collapse
|
14
|
Wang Y, Lu J, Zhang S, Li J, Mao L, Yuan Z, Bond PL, Guo J. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. THE ISME JOURNAL 2021; 15:2493-2508. [PMID: 33692486 PMCID: PMC8397710 DOI: 10.1038/s41396-021-00945-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is a global threat to public health. The use of antibiotics at sub-inhibitory concentrations has been recognized as an important factor in disseminating antibiotic resistance via horizontal gene transfer. Although non-antibiotic, human-targeted pharmaceuticals are widely used by society (95% of the pharmaceuticals market), the potential contribution to the spread of antibiotic resistance is not clear. Here, we report that commonly consumed, non-antibiotic pharmaceuticals, including nonsteroidal anti-inflammatories (ibuprofen, naproxen, diclofenac), a lipid-lowering drug (gemfibrozil), and a β-blocker (propranolol), at clinically and environmentally relevant concentrations, significantly accelerated the dissemination of antibiotic resistance via plasmid-borne bacterial conjugation. Various indicators were used to study the bacterial response to these drugs, including monitoring reactive oxygen species (ROS) and cell membrane permeability by flow cytometry, cell arrangement, and whole-genome RNA and protein sequencing. Enhanced conjugation correlated well with increased production of ROS and cell membrane permeability. Additionally, these non-antibiotic pharmaceuticals induced responses similar to those detected when bacteria are exposed to antibiotics, such as inducing the SOS response and enhancing efflux pumps. The findings advance understanding of the transfer of antibiotic resistance genes, emphasizing the concern that non-antibiotic, human-targeted pharmaceuticals enhance the spread of antibiotic resistance among bacterial populations.
Collapse
Affiliation(s)
- Yue Wang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Shuai Zhang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jie Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Likai Mao
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci U S A 2021; 118:2008731118. [PMID: 33526659 DOI: 10.1073/pnas.2008731118] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that plasmids play an important role in the dissemination of antimicrobial resistance (AMR) genes; however, little is known about the role of the underlying interactions between different plasmid categories and other mobile genetic elements (MGEs) in shaping the promiscuous spread of AMR genes. Here, we developed a tool designed for plasmid classification, AMR gene annotation, and plasmid visualization and found that most plasmid-borne AMR genes, including those localized on class 1 integrons, are enriched in conjugative plasmids. Notably, we report the discovery and characterization of a massive insertion sequence (IS)-associated AMR gene transfer network (245 combinations covering 59 AMR gene subtypes and 53 ISs) linking conjugative plasmids and phylogenetically distant pathogens, suggesting a general evolutionary mechanism for the horizontal transfer of AMR genes mediated by the interaction between conjugative plasmids and ISs. Moreover, our experimental results confirmed the importance of the observed interactions in aiding the horizontal transfer and expanding the genetic range of AMR genes within complex microbial communities.
Collapse
|
16
|
Zhou ZC, Shuai XY, Lin ZJ, Liu Y, Zhu L, Chen H. Prevalence of multi-resistant plasmids in hospital inhalable particulate matter (PM) and its impact on horizontal gene transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116296. [PMID: 33341549 DOI: 10.1016/j.envpol.2020.116296] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance is exacerbated by the exchange of antibiotic resistance genes (ARGs) between microbes from diverse habitats. Plasmids are important ARGs mobile elements and are spread by horizontal gene transfer (HGT). In this study, we demonstrated the presence of multi-resistant plasmids from inhalable particulate matter (PM) and its effect on gene horizontal transfer. Three transferable multi-resistant plasmids were identified from PM in a hospital, using conjugative mating assays and nanopore sequencing. pTAir-3 contained 26 horizontal transfer elements and 10 ARGs. Importantly pTAir-5 harbored carbapenem resistance gene (blaOXA) which shows homology to plasmids from human and pig commensal bacteria, thus indicating that PM is a media for antibiotic resistant plasmid spread. In addition, 125 μg/mL PM2.5 and PM10 significantly increased the conjugative transfer rate by 110% and 30%, respectively, and augmented reactive oxygen species (ROS) levels. Underlying mechanisms were revealed by identifying the upregulated expressional levels of genes related to ROS, SOS, cell membranes, pilus generation, and transposition via genome-wide RNA sequencing. The study highlights the airborne spread of multi-resistant plasmids and the impact of inhalable PM on the horizontal transfer of antibiotic resistance.
Collapse
Affiliation(s)
- Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Liu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr Biol 2021; 31:346-357.e3. [PMID: 33157023 PMCID: PMC7846284 DOI: 10.1016/j.cub.2020.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Plasmids are important in microbial evolution and adaptation to new environments. Yet, carrying a plasmid can be costly, and long-term association of plasmids with their hosts is poorly understood. Here, we provide evidence that the Chlamydiae, a phylum of strictly host-associated intracellular bacteria, have coevolved with their plasmids since their last common ancestor. Current chlamydial plasmids are amalgamations of at least one ancestral plasmid and a bacteriophage. We show that the majority of plasmid genes are also found on chromosomes of extant chlamydiae. The most conserved plasmid gene families are predominantly vertically inherited, while accessory plasmid gene families show significantly increased mobility. We reconstructed the evolutionary history of plasmid gene content of an entire bacterial phylum over a period of around one billion years. Frequent horizontal gene transfer and chromosomal integration events illustrate the pronounced impact of coevolution with these extrachromosomal elements on bacterial genome dynamics in host-dependent microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Tamara Halter
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Daryl Domman
- Wellcome Sanger Institute, Parasites and Microbes Programme, Hinxton, Cambridge CB10 1SA, UK; Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria.
| |
Collapse
|
18
|
De-Kayne R, Frei D, Greenway R, Mendes SL, Retel C, Feulner PGD. Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets. Mol Ecol Resour 2020; 21:653-660. [PMID: 33314612 DOI: 10.1111/1755-0998.13309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Technological advances in DNA sequencing over the last decade now permit the production and curation of large genomic data sets in an increasing number of nonmodel species. Additionally, these new data provide the opportunity for combining data sets, resulting in larger studies with a broader taxonomic range. Whilst the development of new sequencing platforms has been beneficial, resulting in a higher throughput of data at a lower per-base cost, shifts in sequencing technology can also pose challenges for those wishing to combine new sequencing data with data sequenced on older platforms. Here, we outline the types of studies where the use of curated data might be beneficial, and highlight potential biases that might be introduced by combining data from different sequencing platforms. As an example of the challenges associated with combining data across sequencing platforms, we focus on the impact of the shift in Illumina's base calling technology from a four-channel system to a two-channel system. We caution that when data are combined from these two systems, erroneous guanine base calls that result from the two-channel chemistry can make their way through a bioinformatic pipeline, eventually leading to inaccurate and potentially misleading conclusions. We also suggest solutions for dealing with such potential artefacts, which make samples sequenced on different sequencing platforms appear more differentiated from one another than they really are. Finally, we stress the importance of archiving tissue samples and the associated sequences for the continued reproducibility and reusability of sequencing data in the face of ever-changing sequencing platform technology.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - David Frei
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ryan Greenway
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Sofia L Mendes
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cas Retel
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol 2020; 29:8-18. [PMID: 32536522 DOI: 10.1016/j.tim.2020.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Mobile genetic elements (MGEs), such as plasmids and integrative and conjugative elements (ICEs), are main drivers for the spread of antibiotic resistance (AR). Coevolution between bacteria and plasmids shapes the transfer and stability of plasmids across bacteria. Although ICEs outnumber conjugative plasmids, the dynamics of ICE-bacterium coevolution, ICE transfer rates, and fitness costs are as yet largely unexplored. Conjugative plasmids and ICEs are both transferred by type IV secretion systems, but ICEs are typically immune to segregational loss, suggesting that the evolution of ICE-bacterium associations varies from that of plasmid-bacterium associations. Considering the high abundance of ICEs among bacteria, ICE-bacterium dynamics represent a promising challenge for future research that will enhance our understanding of AR spread in human pathogens.
Collapse
Affiliation(s)
- João Botelho
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany.
| | - Hinrich Schulenburg
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
20
|
Yu K, Li P, Chen Y, Zhang B, Huang Y, Huang FY, He Y. Antibiotic resistome associated with microbial communities in an integrated wastewater reclamation system. WATER RESEARCH 2020; 173:115541. [PMID: 32036288 DOI: 10.1016/j.watres.2020.115541] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 05/08/2023]
Abstract
Antibiotic resistome is a raising concern around the world, especially considering treated wastewater for reclamation. A wastewater reclamation system (WWRS), composed by a treatment system (TS) and a reclaimed system (RS) with supplementation from the treated effluent and considered as an integrated system of treatment and reclamation, was selected in this study. High-throughput qPCR (HT-qPCR) was applied to profile 283 antibiotic resistance genes (ARGs) and 12 mobile genetic elements (MGEs) in the WWRS. A total of 251 ARG and 12 MGE subtypes were detected in the WWRS. The TS exhibited good performance for the removal of ARGs with the number, relative and absolute abundances of ARGs largely decreased (99.07% removal efficiency) in the final effluent, which might be ascribed to biosolid sedimentation. Enhancement of biosolids removal contributed the lessening of ARGs. In the RS, high quality effluent significantly reduced the number and abundance of ARGs along the flow to downstream. MGEs were less reduced in the treated effluent than that of the influent (R2 = -0.16, p > 0.05), and exhibited close connections with ARGs. Arcobacter, Cloacibacterium, Cyanobacteria, Acinetobacter, Flavobacterium and Dechloromonas were the relatively abundant genera in the WWRS, and exhibited significantly correlations with ARGs. Microbial communities and MGEs contributed 65.64% to the changes of ARGs. These two factors may be the main drivers of ARG proliferation in the WWRS. Thus, attention should be paid to MGEs and those abundant genera when considering treated wastewater for reclamation.
Collapse
Affiliation(s)
- Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Peng Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011, China
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuansheng Huang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
21
|
Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW, McNeil HE, Blair JM. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143-157. [PMID: 32073314 DOI: 10.2217/fmb-2019-0235] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.
Collapse
Affiliation(s)
- Abigail L Colclough
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily E Whittle
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah L Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Helen E McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
22
|
Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME JOURNAL 2020; 14:1170-1181. [PMID: 32020051 DOI: 10.1038/s41396-020-0596-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
The current epidemic of antibiotic resistance has been facilitated by the wide and rapid horizontal dissemination of antibiotic resistance genes (ARGs) in microbial communities. Indeed, ARGs are often located on plasmids, which can efficiently shuttle genes across diverse taxa. While the existence conditions of plasmids have been extensively studied in a few model bacterial populations, their fate in complex bacterial communities is poorly understood. Here, we coupled plasmid transfer assays with serial growth experiments to investigate the persistence of the broad-host-range IncP-1 plasmid pKJK5 in microbial communities derived from a sewage treatment plant. The cultivation conditions combined different nutrient and oxygen levels, and were non-selective and non-conducive for liquid-phase conjugal transfer. Following initial transfer, the plasmid persisted in almost all conditions during a 10-day serial growth experiment (equivalent to 60 generations), with a transient transconjugant incidence up to 30%. By combining cell enumeration and sorting with amplicon sequencing, we mapped plasmid fitness effects across taxa of the microbial community. Unexpected plasmid fitness benefits were observed in multiple phylotypes of Aeromonas, Enterobacteriaceae, and Pseudomonas, which resulted in community-level plasmid persistence. We demonstrate, for the first time, that plasmid fitness effects across community members can be estimated in high-throughput without prior isolation. By gaining a fitness benefit when carrying plasmids, members within complex microbial communities might have a hitherto unrecognised potential to maintain plasmids for long-term community-wide access.
Collapse
|
23
|
Vial L, Hommais F. Plasmid-chromosome cross-talks. Environ Microbiol 2019; 22:540-556. [PMID: 31782608 DOI: 10.1111/1462-2920.14880] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
Plasmids can be acquired by recipient bacteria at a significant cost while conferring them advantageous traits. To counterbalance the costs of plasmid carriage, both plasmids and host bacteria have developed a tight regulatory network that may involve a cross-talk between the chromosome and the plasmids. Although plasmid regulation by chromosomal regulators is generally well known, chromosome regulation by plasmid has been far less investigated. Yet, a growing number of studies have highlighted an impact of plasmids on their host bacteria. Here, we describe the plasmid-chromosome cross-talk from the plasmid point of view. We summarize data about the chromosomal adaptive mutations generated by plasmid carriage; the impact of the loss of a domesticated plasmid or the gain of a new plasmid. Then, we present the control of plasmid-encoded regulators on chromosomal gene expression. The involvement of regulators homologous to chromosome-encoded proteins is illustrated by the H-NS-like proteins, and by the Rap-Phr system. Finally, plasmid-specific regulators of chromosomal gene expression are presented, which highlight the involvement of transcription factors and sRNAs. A comprehensive analysis of the mechanisms that allow a given plasmid to impact the chromosome of bacterium will help to understand the tight cross-talk between plasmids and the chromosome.
Collapse
Affiliation(s)
- Ludovic Vial
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5557 Ecologie Microbienne, 69622, Villeurbanne, France.,INRA, UMR1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, 69622, Villeurbanne, France
| |
Collapse
|
24
|
|
25
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|